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Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each
array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order
to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium.
Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an
array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication
within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains.
One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system
of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.
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1. Introduction

Microarray experiments provide high-throughput gene
expression data required for elucidating networks and
pathways occurring in organisms and for validating models
derived from other experimental data. The quality of models
and inference derived from microarray experiments obvi-
ously depends on the quality of the microarray data. For
example, predictive models are hard to develop or validate if
microarray data have high false positive and/or false negative
rates for identifying differential gene expression. Thus, it
is important to make results from microarray experiments
as reproducible and reliable as possible. In addition, it is
important to institute a process to monitor, assess, and
ultimately improve the quality of the microarray data.

A number of researchers have identified a variety of sou-
rces of variation which affect the reproducibility of microar-
ray data. Statistically designed microarray experiments that

include replication have been critical to understanding,
assessing, and improving the quality of microarray data
[1-3]. In our own experience, through various statistically
designed experiments, we have been able to identify and
correct problems with the training of operators (scanner),
inhomogeneous hybridizations, inadequate blocking of the
poly-L-lysine coatings, print problems, and normalization
procedures.

Along with others (see, e.g., [4, 5]), we have often
observed effects of sources of variation that are manifested
spatially. Frequently, these effects are most striking from
the top to the bottom of an array. We have reduced these
effects by modifying our hybridization processes to include
a gentle rocking of the hybridization chamber (e.g., see also
[6]). Nevertheless, even after this process modification, we
have observed spatial effects that can result in apparent
differences in relative expression of 30% or more across
an array. Variation of this magnitude can be problematic
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TaBLE 1: Array assignment.
Slide Cy3 Cy5
1 SYNW0947-sample no. 1 WHS8102
2 WHS8102 SYNW0947-sample no. 1
3 SYNW0947-sample no. 2 WHS8102
4 WHS8102 SYNW0947-sample no. 2

when one is trying to identify genes that are weakly up-
or downregulated. Thus, it is important to be able to easily
monitor spatial effects.

The continuing effects of spatially-related sources of vari-
ation (including instances where printing or hybridization
artifacts render a portion of an array completely unusable)
have motivated the development of print designs that
include replicate spots per gene that are spatially distributed
over the array and printed with different pins. Combining
this approach along with multiple technical and biological
replicates is an effective way to provide the necessary data
to enable a meaningful analysis that is able to separate the
effects of multiple sources of variation and produce a more
accurate assessment of a gene’s true expression level.

In our study of gene expression in Synechococcus
WHS8102, we have constructed a complete genome microar-
ray with multiple spots per gene spread out spatially across
the array. This microarray is being used as a platform to
compare various regulatory mutants of Synechococcus with
the wild type under a variety of conditions and to study
the effects of different sources of nitrogen or phosphorus for
growth of the wild type [7]. Here we report a case study of the
analysis of one of these experiments, comparing phosphorus
metabolism of wild type and a strain in which a phosphorus-
related response regulator gene has been inactivated.

Phosphorus can sometimes be a limiting nutrient in
marine ecosystems (see, e.g., [8]). The availability of intracel-
lular phosphorus for growth and the response of the cell to
changing phosphorus levels are controlled in many bacteria
by a two-component system including a histidine kinase
(sensor) and response regulator (DNA-binding protein)
pair, PhoR and PhoB, respectively, [9, 10]. In Synechococcus
WHS8102 the gene SYNW0947 is a PhoB homologue [11].
This gene was insertionally inactivated using the methods
described in [12]. Gene expression of this mutant was
then compared to that of wild type grown under standard
conditions. This comparison along with other studies of cells
grown under different phosphorus conditions will lead to an
understanding of the phosphate regulon of these ecologically
important microorganisms.

2. Materials and Methods

2.1. Experimental. The complete genome microarray for
Synechococcus sp. strain WH8102 was used as the platform
for a replicated dye-swap design [13] involving four slides
(see Table 1). A single sample of the wild-type Synechococcus
(WH8102) RNA was used as a control, while two sam-
ples of the mutant RNA were obtained for comparison.
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FiGure 1: Full genome Synechococcus array.

The microarray consists of a mixed population of PCR
amplicons (2142 genes) and 70-mer oligonucleotides (389
genes). Unique PCR amplicons representing each gene are
approximately 800 bp in size or smaller if the gene size is
smaller. Unique 70-mer oligonucleotides were utilized for
genes under 300bp in size and for the two genes that we
were unable to amplify by PCR. Six complete replicates of the
2531-member gene set were printed on aminosilane coated
Corning ultraGAP glass slides using an Intelligent Automa-
tion Systems (IAS) high-precision microarray-printing robot
with 48 pins for printing and irreversibly bound by UV-
crosslinking at 250 m]J. Each array slide also includes a variety
of negative controls (50% DMSO/50% deionized water) and
positive controls (including a total mix of WH8102 PCR
amplicons, spiked Arabidopsis PCR amplicons and 70-mer
oligonucleotides).

The amplicons/oligonucleotides were split into two
separate sets of 384-well plates with each amplicon/
oligonucleotide in a different well position. This enabled us
to develop a print pattern with each of the six replicate spots
located in different blocks separated both horizontally and
vertically across the slide.

The Synechococcus strains were grown in standard ocean
water (SOW) medium, and total RNA was extracted using
a Trizol-based method (Invitrogen) following manufacturers
recommendations and purified using a mini RNeasy kit
(Qiagen). The purity and yield of the RNA were determined
spectrophotometrically by measuring optical density at
wavelengths of 260 and 280 nm. An indirect labeling method
was used to label cDNA, where cDNA was synthesized in
the presence of a nucleoside triphosphate analog containing
a reactive aminoallyl group to which the fluorescent dye
molecule was coupled. Prior to hybridization, labeled cDNA
was scanned spectrophotometrically to ensure optimal dye
incorporation per sample for adequate signal intensity. A
single sample of the wild-type Synechococcus (WH8102)
RNA was used as a control, while two samples of the mutant
RNA were obtained for comparison. Hybridizations were
performed as previously described in [14], and slides were
promptly scanned at a 10-ym resolution using an Axon
4000B scanner with GenePix 4.0 software.

Figure 1 displays the fluorescence image of a hybridized
array. The array contains 19200 spots in 48 blocks with 20
rows and columns in each block. Each of the genes appears in
six different blocks within the array (and therefore is printed
by six of the 48 different pins) and is assigned to a letter {A, B,
C,D,E, E G, or H}. For a given gene, the block positions are
given by the position of its assigned letter in Figure 2. The
position of a given gene within a block is consistent across
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A|lE |C A|JE|C|G|A|E|C|G

FiGure 2: Full genome Synechococcus array (showing block posi-
tions of replicates).

its six replicates. In addition, the array contains a number of
control spots, both positive and negative. Some control spots
are used for alignment (e.g., see first column of the first few
rows of each block), and others are used for quality control.

2.2. Data Preprocessing. TIGR’s SPOTFINDER and MIDAS
software [15] was used to process the four microarray
images. This processing resulted nominally in a “4 arrays X
6 gene replicates X 2531 genes” data array consisting of
the relative intensities, Itveatment/IControl, Of €ach spot. The
relatively few spots that were rejected were rejected only on
the basis of poor visual quality. Spots with low intensity
were not automatically rejected, resulting in quantitative
representation of a vast majority of the genes over six
spatially varying replicate spots on each array.

We use 10g, (ITreatment/Icontrol) as a basis for the quantita-
tive analysis that follows.

2.3. Array Normalization. A two-step modeling process anal-
ogous to the approach used in [16] was used to normalize
the data. However, unlike in [16], log(ratios) were used
rather than log(intensities). First, the data were normalized
by subtracting the slide-specific global average log-ratio. This
adjusted for global effects (across all spots on a slide) due to
the dye configuration (standard versus flipped) and/or the
biological replicate. To formalize this, let Y;; be the observed
log-ratio associated with the gth gene, ith biological replicate,
and jth dye configuration (i = 1:2 and j = 1:2). Then, the
normalized expression data are given by Ryij = Ygi; — Y,-j,
where Y ;; represents the average expression level of the slide
corresponding to the ith biological replicate and the jth dye
configuration.

2.4. Variance Components Analysis. Following array normal-
ization, a variance components analysis was used to partition
the observed variability in expression level across replicate
arrays. The purpose of this analysis was to help further
understanding the relative magnitudes of the various sources
of experimental variation. A model for the normalized
expression data is given by Ryij = Gy + (BG)g; + (DG)g; + &ij
where Rg;; is the observed normalized relative expression
of the gth gene for the ith biological replicate and the jth
dye configuration. G, represents the true (but unknown)
relative expression level of the gth gene, and (BG)y; and
(DG),; represent the random gene-specific effects associated
with the biological replicate and the dye. The term &;
is representative of a nonspecific random effect that is
unrelated to the biological replicate or the dye. The variances

of these random effects are given by 0, 03, and o2. The true
expression level of a given gene is estimated as the average
value of R over the four slides: Qg = (1/4)- Zf:12§:1Rgij.
One degree-of-freedom estimates for the three variance
components can be obtained for each gene via an analysis of
variance (ANOVA) of the values of R (see, e.g., [17]):
2 2 - o,
02 => > (Ryij — Rgi. — Rg.j + Gg)
i=1j=1

2
_ ~2 1 A
07 = max (O,E(Rgi. - Gg) - 3 052) , (1)
i=1
) 2 53 A2 1 ~2
07 = max O,Z(Rg] G,) — 50 |
=1

where

2 2
— 1
Z Rgijs»  Rg.j = g'zRgij- (2)
j=1

i=1

Ry =

N | —

Smoothed versions (“running 10%-trimmed means”) of
these summary statistics were also computed. That is, for
each case, (@, o) are ordered by the value of G, resulting in
{G(1),6(2),...,G(N)} and {5(1),5(2),...,6(N)}, where N
is the number of genes considered. The left endpoint of each
curve is given by the co-ordinates: mediani:moo(é(i)) and

\/trimmed mean;_1:100(0%(i)). In general the jth point of each

curve is given by the coordinates: median;- j.100+j-1 (é(i)) and

\/trimmed mean;—j.100+j—1(02(i)). The trimmed mean is the
average of the 100 observations with the smallest and largest
5 observations removed. In contrast to the noisy individual
values of 64,05, and 0. (which are each associated with a
single degree of freedom), these curves provide a smooth
visual perspective regarding the behavior of each of the
variance components with varying levels of G. In addition,
statistics derived from these curves are used as a basis for
making inference.

2.5. Standard Error of @g. Based on the gene-specific vari-
ance components estimates, a direct (but noisy) estimate of

the standard error of Gg is given by

. J 6(Ge) | 3(Gy) | 32(Cy)
2 2 4

og, = 3)
Alternatively, we can assume that the smooth versions of
these variance components are more representative of the
underlying true levels of the variance components and that
these variance components are dependent only on the level of

Gg. Denote these smooth curves by &d(é), &b(@), and 55(@).
BasAed on these smooth curves, the estimated standard error
of G is given by

(4)
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FIGURE 3: Number of genes with {1, 2, 3, 4, 5, or 6} acceptable spots
per slide. Slides 1, 2, 3, and 4 are represented from top to bottom.

We are most interested in the constituent variance com-
ponents and overall level of variability of G when G = 0
(corresponding to the case when the hypothetical treatment
gene expression level is unchanged from the control). In
practice, since we do not know what the true gene expression
level (G) is, we are interested in the level of variability
when G ~ 0 (corresponding to the case where there is a
relatively little observed change in the gene expression level).

Evaluating 05 at G = 0, we computed

(5)

0=

~2 ~2 ~2
P \J 0,4(0) N 0, (0) 49 (0)'
2 2 4

2.6. Test Statistic. A test statistic was developed to form the
basis for our assessment of whether a particular gene was
significantly upregulated or downregulated. The test statistic
is S = Ag/%g(com), where 3@g(com) = max(aég,go). The
purpose of this combined estimate for the standard error
of @g is to prevent the computed statistic, S, from being
too large (in absolute value) based on a chance small value
of 8@gthat is not representative of the true value of o .
Such nonrepresentative small values of 8@g would not be
uncommon due to the small sample size of 4 arrays. Note
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FIGURE 4: Median log-ratios within each block: slide no. 1.

that Cui and Churchill [18] discuss other modified t-tests
used to assess differential expression. The floor of Gég(com),

0y, is analogous to the “fudge” term used in the widely used
significance analysis of microarrays method (SAM) that was
developed by Tusher et al. [19]. The distribution of this
test statistic, when G, = 0, is complicated and depends
on assumptions about the random effects in the normalized
gene expression model: Ryjj = Gg + (BG),; + (DG + &ij-
If we assume that the random effects are normally dis-
tributed with zero mean and specified variances (¢7, o, 62),
then selected percentiles of the null distribution of the test
statistic can be estimated by simulating gene expression data
via the model: Rjj = G+ B;+Dj +¢; (i = 1:22and j =
1:2) with G = 0. The simulation is set up to mimic the
actual experiment: a replicated dye-swap design involving
four slides and two biological samples. The experiment can
be simulated many times with each realization resulting in a
value for the test statistic, S¢. Selected order statistics from
the distribution of S; values obtained from the simulations
provide approximate percentiles of the null distribution.

3. Results and Discussion

3.1. Assessment of Slide Quality and Identification of Anoma-
lous Data. The four microarray images each containing six
replicate representations of the 2531 genes were processed
into a 4 X 6 X 2531 data array of relative intensities. Spots
were rejected solely on the basis of poor quality resulting in
quantitative representation of a vast majority of the genes
over six spatially varying replicate spots on each array.
Figure 3 illustrates the distribution of acceptable spots per
gene on each array. We recommend a graphic of this nature
for experiments which have multiple spots per gene printed
on each slide as it allows for a quick assessment of the relative
quality of each slide in the study.

Here, due to the nature of the print design it is also
possible to examine whether there are gross spatial effects
within each slide. Note that the 48 blocks are arranged ina 12
meta-row by 4 meta-column configuration. About 300 genes
are printed in each block. Figure 4 displays the median log-
ratios of spots within each block for slide no. 1. Assuming
that the typical gene is not differentially expressed, we expect
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FIGURE 5: Scatterplot matrix of the median log-ratios. The expression distribution of each slide is represented along the diagonal of the

scatterplot matrix.

that the median log-ratio for each block to be close to zero.
Overall, the median log-ratios of slide no. 1 are slightly
negative, but quite small in magnitude (effects span about
0.07 log, units). However, as is the case with the other slides,
no large block-to-block spatial effects are observed. Note that
this is in contrast to earlier Synechococcus experiments that
we conducted in which much larger spatial effects (spanning
about 0.3log, units across slides) were observed but later
improved by changing hybridization conditions. If such large
effects were present in association with a traditional print
design, the perceived expression level of genes with spots
located only in the discrepant area would be inaccurate.

In our print design, the influence of the spatial effects is
minimized since affected genes are represented elsewhere in
spatially distinct locations on the slide.

The results from the 2408 genes represented by at least
4 spots on each array of “acceptable” quality form the
basis for further analysis and modeling. For each of these
genes, we computed median(log, (ITreatment/Icontrol)) across
the acceptable replicate spots within each slide. Figure 5
presents the relationship between values of median log-ratios
across the four slides. For the most part, the median log-
ratios are quite consistent across the four slides. However,
there are a number of genes that produced atypically large
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log-ratios for slide no. 2 (see scatter plots in the second row
and the second column of Figure 5). A graphical analysis
comparing slide no. 1 to slide no. 2 shows that these genes
were associated with the last five print plates in the print
run (see Figure 6). Although not confirmed, it is suspected
that these effects are due to evaporation of the print solution.
Figure 7 presents the relationship between values of median
log-ratios across the four slides after excluding the 271 genes
associated with the five suspect print plates.

3.2. Results of Array Normalization. The remaining data
(involving 2137 genes) were normalized using the procedure
described in Section 2.3. Figure 8 displays the values of 7,,7
and hence illustrates the average effects of dye and biological
replicate over the 4 slides. Notice that across a slide the
average effect of the dye is about 0.05log, units, while
the average effect due to the biological replicate is barely
perceptible.

3.3. Results of Variance Components Analysis. As described
in Section 2.4, one degree-of-freedom estimates of the three
variance components (67, 67, and G2) were obtained for
each gene via an analysis of variance (ANOVA) of the values
of R. These summary statistics (ég, 03, 07, and 02) were
computed for each gene and are displayed in Figures 9-12.
Figure 9 displays the empirical cumulative distribution of
estimated gene expression levels (@g). For example, from this
figure one can see that about 90% of the genes produced
values of \Ggl that are less than one (or, exhibited less than
a 2-fold change). Superimposed on the summary statistics in
Figures 10-12 are the “curves” that represent the “running
10%-trimmed mean” of the summary statistics (04, 05, and
0) versus Gg.

From Figure 10, one can conclude that the magnitude
of the gene-specific effects associated with the dye status
does not depend strongly on the level of G as the curve
is nearly flat. Conversely, Figures 11 and 12 show that the
magnitudes of the “biological” and “nonspecific” sources of
variation depend on the level of G. As Iél increases, the
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TaBLE 2: Selected percentiles of S, under assumption of no treat-
ment effect based on 1 000 000 independent simulation realizations.

a/2 1 — a/2 percentile
.01 2.16
.001 2.95
.0001 3.6
.000025 4.2

magnitudes of the “biological” and “nonspecific” sources of
variation increase. The asymmetry of the curves in Figures
11 and 12 is interesting. The data indicate the biological (and
nonspecific) variation of positively expressed genes exceeds
that of negatively expressed genes. It should be noted that in
some of our other experiments, we have noted much more
variation across biological replicates and in the future we
hope to identify and minimize the underlying sources of the
variation across biological replicates.

3.4. Identification of Up- and Downregulated Genes. The
ultimate objective of this study is to discover differences
between the wild type and mutant strains in their response
to their growth environment. The assessment whether a
particular gene is upregulated or downregulated in the
mutant (compared to the wild-type) is based on the test
statistic S, = Gg/b\-@g(com)’ where S@g(com) = max(?fég,ao)
as discussed in Sections 2.5 and 2.6. In the neighborhood
around G = 0, we find that 5(:1 ~ 0.047, 55 ~ 0.048, 58 ~
0.067, and thus

-2 ~2 ~2
~ 04(0)  0,(0)  0.(0)
ao_\J 5 + 5 + 1 = 0.058. (6)
Selected percentiles of the test statistic given in Table 2
were obtained by simulating expression data (assuming that
o; = 0.047, 0, = 0.048, and o, = 0.067) as described
in Section 2.6. An individual gene is declared as being
significantly expressed (either up or down relative to the
control) if |S,| > 4.2. This corresponds to a type-1 error
of « = 0.00005, meaning that the likelihood of incorrectly
declaring a specific gene (i.e., in fact nondifferentially
expressive) as being significantly expressive is about 0.00005.
Using the very conservative Bonferroni correction for the
simultaneous inference of about 2000 genes, we have a type-1
error of about 0.10. Figure 13 illustrates the set of 629 genes
that were declared as being significantly expressed relative to
the control. Note that the significance analysis of microarrays
(SAMs) procedure developed by Tusher et al. [19]) was not
used in this example due to the fact that it is not possible to
create a good resampling distribution with the very restricted
number of possible permutations available with only 4 slides
(see, e.g., [20]).

A similar process was used to assess the expression
level associated with the 271 genes whose slide no. 2
measurements were anomalous (see Figures 5 and 6). Again,
we rely on the model R;; = G + B; + D; + ¢&;; with specified
levels of the random effects given by g5 = 0.047, 0, = 0.048,
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FIGURE 7: Scatterplot matrix of the median log-ratios (genes from 5 suspect plates removed). The expression distribution of each slide is
represented along the diagonal of the scatterplot matrix.

and o, = 0.067. Here, however, the simulation used to obtain

the null distribution of the test statistic uses only three slides
(since for these cases, results from three slides [rather than
four slides] were used) and two biological samples. In this
case, the test statistic is Sy = Gg/06;: (com)> Where
w1 'El. +wy Ry
w1+ w;
1 1

=5, W)= —5——"5

.5-05+.5-02 + 0 2T o3

Ax
g

w1

A}(com) = max (8@g, 0.063),

~ 1
W1 = "%  ~3
5.0+ 07’
2
ot

i=1

(2R -B) + (R - B) )

1

=~
o} +0j,

=> (Rii - EL)Z,

2

— 52
Oy

07 = max | 0,

ﬁl. =.5- (R]] +R12),

(3-5/3)

R=

1
3

“(Ri1 + Riz + Ryy).

(7)
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The estimates for 02 and o} were obtained using methods
for unbalanced data described in [17, page 72]. The second

argument (0.063) in the definition for ¢, .,y is the variance
g

of @;‘ obtained by assuming 04(0), 0,(0), and 0,(0).

From the simulation, we found approximate percentiles
of the distribution of S;. For example, the 0.000025
(0.999975) percentile was found to be about —3.95 (3.95).
Thus, with a type-1 error of « = 0.00005, an individual
gene is declared as being significantly expressed if [Sy| >
3.95. Of these 271 genes in question, 90 were deemed to be
significantly expressed (43 positive and 47 negative).

Opverall, across all 2408 genes considered (the 2137 genes
represented on 4 slides plus the 271 genes represented on
3 slides), 719 genes were deemed to be significantly up-
or downregulated. Tables 3 and 4 list the 15 genes that
were the most upregulated and the 15 genes that were the
most downregulated. The supplementary tables list all genes
that were significantly up- or downregulated (See Tables 1
and 2 in the Supplementary Material available online at
doi:10.1155/2009/950171).
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FIGURE 11: 6} versus Gg.

Figure 14 provides the cumulative distributions of \@gl
for both the selected and unselected genes. Based on the

floor for G@K(com) (6o = 0.058 or 0y = 0.063) and the

seﬂected threshold of 4.2 (or 3.95), the minimum level of
|G|, such that gene is declared significant, is 4.2-0.058 =~
0.24log, relative expression units. About 1400 of the 2408
genes are associated with values of Iégl less than 0.24log,
relative expression units. Almost three quarters of the
remaining genes (719 out of 993) were deemed to have been
significantly expressed relative to the control. About 70% of
the 719 significant genes exhibited less than a 2-fold change
in intensity. About 35% of the significant genes exhibited
less than a 1-fold change in intensity. Thus, we are able
to identify large numbers of genes for which the treatment
causes a small, but significantly different level in expression
when compared to the control.

3.5. Biological Interpretations. One interesting biological
outcome of these results is the extent to which changes in
the phosphorus regulatory system seem to affect the gene
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TaBLE 3: Statistically significant genes with highest level of upregulation. @g: estimated relative expression level, S,: test statistic.

~

Gene ID Gy Se Gene description

SYNW1555 2.72 13.47 Hypothetical

SYNW2478 2.58 7.42 Conserved hypothetical protein

SYNW24380 2.37 11.28 ABC transporter, ATP binding component, possibly zinc transport
SYNWO0524 2.13 6.10 Conserved hypothetical protein

SYNW0424 2.13 5.46 Possible HMGL-like family protein
SYNW2481 2.10 9.36 Putative zinc transport system substrate-binding protein
SYNW1305 2.03 11.34 Hypothetical

SYNW0947 2.03 12.86 Two-component response regulator, phosphate
SYNW1463 2.02 32.03 Hypothetical

SYNW2479 1.96 9.04 ABC transporter component, possibly Zn transport
SYNW1654 1.95 13.34 Conserved hypothetical protein

SYNW2486 1.91 15.10 Putative cyanate ABC transporter
SYNW0454 1.84 12.43 Possible glycosyltransferase

SYNW1947 1.81 14.14 Conserved hypothetical protein

SYNW0456 1.79 7.00 Possible glycosyltransferase

TABLE 4: Significant genes with highest level of downregulation. @g: estimated relative expression level, S,: test statistic.

~

Gene ID Gy Se Gene description

SYNW2508 —4.07 —-10.24 Molecular chaperone DnaK2, heat shock protein hsp70-2
SYNWO0514 —3.44 —21.37 GroEL chaperonin

SYNW1503 —-3.06 —-17.05 Endopeptidase Clp ATP-binding chain B
SYNW1797 —2.96 —47.82 Putative iron ABC transporter, substrate binding protein
SYNWO0513 —2.94 —41.756 GroES chaperonin

SYNW1278 —-2.90 —19.209 Heat shock protein HtpG

SYNW2391 —-2.81 —-8.68 Putative alkaline phosphatase

SYNW1018 -2.69 —11.50 ABC transporter, substrate binding protein, phosphate
SYNW1798 —2.65 —-11.14 Putative iron ABC transporter

SYNWI511 —-2.58 —25.108 Conserved hypothetical

SYNW0938 —2.54 —12.69 Endopeptidase Clp ATP-binding chain C
SYNW2390 —2.48 —22.48 Putative alkaline phosphatase/5" nucleotidase
SYNW0835 -2.22 —15.82 Probable oxidoreductase

SYNW1842 -2.17 —10.44 Apocytochrome f

SYNW0670 —2.14 —7.950 Conserved hypothetical protein

expression of multiple genes beyond those strictly involved
in phosphorus acquisition. This may be due to the many uses
of phosphorus in the cell. It may also be due to the relatively
small number of two-component regulatory systems in open
ocean cyanobacteria, for example, only 5 histidine kinase
sensors and 9 response regulators [11] and the possibility of
substantial cross-talk among these systems. Inactivating one
response regulator may affect this regulatory cross-talk. One
unknown is whether the inactivation of SYNW0947 caused
polar effects on nearby genes, especially the downstream
phoR (SYNW0948) although this would still be part of
changing the phosphorus regulatory system.

In addition, this statistical approach should allow for
a much more robust identification of operons especially if
gene expression in genes later in an operon are attenuated.
The microarray results presented here suggest that several
clusters of genes are potentially operons. For example,

SYNW1016 and SYNW1017 were both significantly down-
regulated (see the supplementary tables). These are genes
that are next to two other genes known to be involved
in phosphate metabolism (SYNW1018 and SYNW1019).
In addition a set of genes (SYNWO0465-SYNW0470) were
all highly upregulated and thus are a potential operon
involved in phosphate metabolism. Interestingly, a third
region probably comprising several operons (SYNW2477-
2491) was also upregulated. These predictions merit further
experimentation such as gene knockouts. As can be seen
in Supplementary Figure 1 no spatial clustering of genes
is apparent, suggesting that the operons detected are being
found purely as a consequence of their place in regulatory
networks affected by phosphate limitation.

We utilized the pathway analysis package DAVID
(http://david.abcc.ncifcrf.gov/home.jsp) to examine the
extent to which pathways, potentially involving multiple
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FiGurek 13: Significantly upregulated or downregulated genes (red):
[Sgl >4.2.

operons, are altered in the SYNW0947 mutant. The up-
and downregulated genes from our analysis as well as using
a simple 2-fold change statistic were mapped to KEGG
pathways (see Supplementary Tables 1 and 2 where genes
with simple 2-fold changes are shown in bold). We mapped
67 upregulated (of 360) genes to KEGG pathways while only
20 (of 100) genes were mapped using a 2-fold change. Our
results demonstrated a much more convincing upregulation
of the photosynthetic antenna proteins (9 genes) compared
to the simpler analysis (5 genes). In addition new pathways
involving mannose metabolism (SYNW0422, SYNW0423,
SYNW0919) and other sugars were convincing upregulated
in our analysis but were not seen with a 2-fold change
statistic. We mapped 154 downregulated (of 337) genes
to KEGG pathways compared to 40 (of 83) genes with a
2-fold change. Interestingly, we were able to map a larger
fraction of downregulated genes to KEGG pathways. Again
we saw a much more convincing downregulation of specific
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FiGUrg 14: Cumulative distributions of I@gl for selected (unse-
lected) genes.

pathways. We found 28 ribosomal genes downregulated
compared to 8 using a 2-fold statistic. Since these genes are
likely to be coregulated, our results are biologically coherent.
Similarly 15 photosynthesis genes were downregulated
compared to 5 in the simpler analysis. Interestingly, the cells
are downregulating core phycobilisome antenna proteins
while upregulating rod proteins. This suggests that they are
making fewer but larger light harvesting antenna complexes.

4. Conclusions

We have used a replicated dye-swap experiment with mul-
tiple spots per gene per array as a platform for comparing
a regulatory mutant of Synechococcus sp. WH8102 with
the wild type under defined growth conditions in artificial
seawater. Our process for analyzing the experimental data
includes utilizing simple graphical displays. These displays
were used to assess spot quality, spatial variability within an
array, array-to-array reproducibility, as well as other effects
due to special causes (e.g., well plate). Quantitative analysis
was based on the median expression level (within an array)
of each gene. Following array normalization, a variance
components analysis was used to partition the observed
variability in expression level across replicate arrays. The level
of variability introduced by dye swapping was found to be
relatively small and independent of the apparent expression
level. The variation in gene expression across biological
replicates was found to be more significant and was found
to be dependent on the apparent expression level. As only
one strain was utilized, the biological significance of the
data cannot be extended beyond the wild type strain used,
but the statistical method developed with this model will
allow greater sensitivity than was previously possible. The
assessment of whether a particular gene is upregulated or
downregulated was based on a test statistic that excludes
genes that would otherwise be identified solely on the basis
of a chance abnormally low level of variation across arrays.
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The null distribution of the test statistic was computed
making a number of assumptions and by carefully con-
structing a simulation that mimicked the experiment and the
observed sources of variation. A relatively large proportion of
the genes were identified as being significantly upregulated or
downregulated by the treatment, albeit with relatively small
changes in the levels of expression. The ability to detect these
small changes in the levels of expression (as small as about
0.25log, units) is a direct consequence of the replication
within the array.
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