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Diabetes Mellitus is one of the World Health Organization’s priority diseases under

research by the first and second programmes of Innovative Medicines Initiative, with the

acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by

IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC,

EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT,

and CARDIATEAM. In general, a total of e447 249 438 was spent by IMI in the

area of Diabetes. In order to prompt a better integration of achievements between

the different projects, we perform a literature review and used three data sources,

namely the official project’s websites, the contact with the project’s coordinators and

co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were

included. The data collected were integrated into the objectives proposed for the

four IMI2 program research axes: (1) target and biomarker identification, (2) innovative

clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence

programmes. The IMI funded projects identified new biomarkers, medical and research

tools, determinants of inter-individual variability, relevant pathways, clinical trial designs,

clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale

production strategies, and patient-centered predictive models for diabetes and its

complications. Taking into account the scientific data produced, we provided a joint vision

with strategies for integrating personalized medicine into healthcare practice. The major

limitations of this article were the large gap of data in the libraries on the official project

websites and even the Cordis database was not complete and up to date.

Keywords: innovative medicines initiative, diabetes, complications of diabetes, personalized medicine, type 2

diabetes, type 1 diabetes

INTRODUCTION

Innovative Medicines Initiative (IMI) is a unique pan-European public and private partnership
that pioneered large-scale open collaborations between large pharmaceutical companies, small
and medium-sized enterprises, public authorities (including regulators), organizations of patients,
academia, and clinical centers to throw bottlenecks in research and development (R&D) of new
effective and safer medicines (1).

To implement the InnovativeMedicines Initiative, the European Commission and the European
Federation of Pharmaceutical Industries and Associations (EFPIA) hold joint responsibility for
creating and operating a new non-profit international organization (1).
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IMI aims to accelerate the discovery and development
of more effective vaccines, medicines, and treatments with
fewer side-effects, especially in areas where there is an unmet
medical or social need. IMI intends to implement patient
centered projects, prompting the patient access to innovative
pharmaceutical options (1, 2). This initiative provide socio-
economic benefits and contribute to the health of European
citizens, minimize duplication of work at different organizations,
increase competitiveness, and help to establish Europe as the
most attractive and competitive site for innovation (1, 2).

The first programme of IMI (IMI1) was created by Council
Regulation (EC) n.◦ 73/2008, of 20th December 2007. The overall
aim was to support pre-competitive pharmaceutical research and
development, through the funding of innovative patient-centered
projects for the research of European health priorities defined by
the World Health Organization (WHO) (3). IMI1 programme
was based on four strategic interdependent areas (Four-pillars)
namely Safety, Efficacy, Knowledge Management, and Education
and Training (1). The vision of this programme consisted on the
creation of new scientific knowledge and capabilities/techniques
to support the ability to identify a lack of efficacy or safety
quickly in all stages of the medicine development process, even
when a potential medicine has promising pre-clinical data (1). In
addition, IMI1 programme intended to support the benefit-risk
assessment conducted by the regulatory authorities (1, 2).

For this initiative, the budget committed was e2 billion (2, 4).
During the execution period of IMI1 programme (2008 to 2013),
eleven calls for proposals were released, which resulted in 59
funded-projects (4, 5).

The success of the IMI1 programme prompted the European
Commission and the European Federation of Pharmaceutical
Industries and Associations to take the commencing of initiating
a second IMI programme (IMI2) under the Horizon 2020 vision
of “improve the health and well-being of populations, reduce
health inequalities, and ensure sustainable people-centered
health systems” (5). Innovative Medicines Initiative 2 Joint
Undertaking was established by Regulation (EU) n.◦ 557/2014,
6th of May (6). The major research axes recognized for IMI2
were: target & biomarker identification, innovative clinical trial
paradigms, innovative medicines, and patient tailored adherence
programmes (5). This programme ran from 2014 to 2020 and the
budget committed was up to e3.276 billion, half funded by the
European Comission and the other part from EFPIA.

Diabetes mellitus (DM) is one of the eleven priority
diseases addressed by IMI1 and IMI2 programmes in
the Strategic Reseach Agenda. This is a chronic metabolic
disorder characterized by a defined phenotype (hyperglycemia
accompanied by greater or lesser impairment in the metabolism
of carbohydrates, lipids, and proteins), triggered by either lack of
insulin secretion or decreased sensitivity of the tissues to insulin
(7–9). Worldwide, a majority of diabetic patients (80–90%) have
type 2 diabetes (T2D) and 5–10% type 1 diabetes (T1D) (8).

In 2014, WHO estimated that the prevalence of diabetes could
reach more than 20% of the world’s population within the next
20 years (8, 10, 11). Besides, the diabetes-associated mortality
rate has been increasing, being the seventh leading cause of
death in 2016 (12), and the disease and its acute and chronic
complications represent a major economic burden on the global

healthcare system and the wider global economy (5). For all the
factors, previously presented,WHO considered this disease as the
pandemic of the 21st century (8).

With the purpose of slowing the increasing prevalence,
decreasing the mortality rate and diminishing the economic
burden of diabetes and its related complications, IMI focused on
projects aimed at understanding T1D and T2D, developing new
precision medicines, identifying better patient-focused outcome
measures for diagnosis, treatment selection and prognosis of
T1D, T2D, and complications of diabetes, as well as promoting
better lifestyle management and adherence to prescribed
medicines (1, 5).

IMI1 programme funded six projects in the Diabetes
& Metabolic disorders field, namely: Surrogate markers for
micro- and macro-vascular hard endpoints for innovative
diabetes tools (SUMMIT), Improving beta-cell function and
identification of diagnostic biomarkers for treatment monitoring
in diabetes (IMIDIA), Diabetes research on patient stratification
(DIRECT), Stem cells for biological assays of novel medicines
and predictive toxicology (StemBANCC), European Medical
Information Framework (EMIF), and European Bank for
induced pluripotent Stem Cells (EBiSC).

In IMI2 programme, until October of 2019, seven projects
were supported in the area of Diabetes & metabolic disorders
(13). These projects were: Translational approaches to disease
modifying therapy of type 1 diabetes: an innovative approach
toward understanding and arresting type 1 diabetes (INNODIA),
Assessing risk and progression of prediabetes and type 2
diabetes to enable disease modification (RHAPSODY),
Biomarker enterprise to attack DKD (BEAT-DKD), Liver
Investigation: Testing Marker Utility in Steatohepatitis
(LITMUS), Hypoglycaemia–redefining solutions for better
lives (Hypo-RESOLVE), Investigating mechanisms and
models predictive of accessibility of therapeutics into the
brain (IM2PACT), and Cardiomyopathy in type 2 diabetes
mellitus (CARDIATEAM).

Of the 13 projects, one was targeted to type 1 diabetes—
INNODIA, three to type 2 diabetes—DIRECT, EMIF,
and RHAPSODY, four to complications of diabetes—
SUMMIT, BEAT-DKD, LITMUS, Hypo-RESOLVE, and
CARDIATEAM, and the remaining four were scientific-
oriented—StemBANCC, EBiSC, IMIDIA, and IMI2PACT. A
more detailed description of the projects and its objectives is
available in Supplementary Material section.

A total of e447.249.438 was mobilized for Diabetes
(e253.865.866 from IMI1 and e193.383.572 from IMI2),
however there has not been a systematization of scientific
production by the IMI-funded projects.

The purpose of this literature review was to summarize the
project results of IMI1 and IMI2 programmes into the major
research axes of IMI2 programme and propose a joint vision
model including the data collected into two inter-dependent
paths, one scientific-oriented and the other medical-oriented.

MATERIALS AND METHODS

The data sources used in this review were the IMI website, the
official project websites, contact with the project coordinators
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TABLE 1 | Summary of sources and publications included in this study.

Projects Articles

obtained by

contact via

e-mail

Publications

retrieved from

the project’s

website

Articles

collected on

CORDIS

database

SUMMIT – 52 42

IMIDIA – 13 16

DIRECT 25 NA NA

StemBANCC – 91 31

EMIF – 47 0

EBiSC – 6 9

INNODIA – 47 32

RHAPSODY – 20 19

BEAT-DKD – 52 38

LITMUS – 0 0

Hypo- RESOLVE 0 0 0

IMI2PACT – 0 0

CARDIATEAM – 0 0

NA, Not applicable.

and co-coordinators, and the CORDIS (The Community
Research and Development Information Service) database. From
IMI website it was collected the project’s start and end date, the
grant agreement number, the contributions, and the coordinators
and co-coordinators’ e-mail addresses. The aim of each project
was retrieved from its official website. The sources of the
publications were the project’s official website, CORDIS database,
and the contact via e-mail with the coordinators and co-
coordinators (Table 1).

The contacts with the coordinators and co-coordinators were
conducted in January of 2019 and for non-respondents, a recall
in February of 2019. This step was performed for all projects.

The literature research on the project’s websites and the
CORDIS databases was conducted from February 2019 to
October 2019. In October 2019, a new consultation was
conducted on the IMI website, and the new funded projects
(IMI2PACT and CARDIATEAM) were included.

For SUMMIT’s project, a total of 98 citations were screened, 52
from the SUMMIT’s website and 46 from the CORDIS database.
A total of 67 references were excluded: (i) duplicates−29, (ii)
book chapters−2, (iii) not access to the full text−7, (iv) the
publication’s objective was not related to diabetes mellitus or its
complications−9, and (v) the publication’s achievements did not
allow to induce a scientific advance in Diabetes field (e.g., state of
the art, outdated information, the article’s data don’t address an
objective of the IMI2 programme)−20. For this project, a total of
31 articles were included.

For IMIDIA’s project, a total of 29 citations were screened,
13 from the IMIDIA’s website and 12 from CORDIS database.
A total of 11 references were excluded: (i) duplicates−5, (ii)
book chapters−1, (iii) the publication’s objective was not related
with diabetes mellitus or its complications−3, and (iv) the
publication’s achievements did not allow to induce a scientific
advance in Diabetes field (e.g., state of the art, outdated
information, the article’s data don’t address an objective of the

IMI2 programme)−2. For this project, a total of 18 articles
were included.

For DIRECT’s project, a total of 25 citations were screened
on the list of publications sent by the project coordinator.
Since this list is not available online (either on the project’s
website or on CORDIS database), we present it in the
Supplementary Material section. A total of nine references were
excluded: (i) duplicates−1, (ii) not access to the full text−2, and
(iii) the publication’s achievements did not allow to induce a
scientific advance in Diabetes field (e.g., state of the art, outdated
information, the article’s data don’t address an objective of the
IMI2 programme)−6. For this project, a total of 16 articles
were included.

For StemBANCC’s project, a total of 122 citations were
screened, 91 from the StemBANCC’s website and 31
from CORDIS database. A total of 103 references were
excluded: (i) duplicates−30, (ii) book chapters−1, (iii) the
publication’s objective was not related to diabetes mellitus or
its complications−71, and (iv) the publication’s achievements
did not allow to induce a scientific advance in Diabetes field
(e.g., state of the art, outdated information, the article’s data
don’t address an objective of the IMI2 programme)−1. For this
project, a total of 19 articles were included.

For EMIF’s project, a total of 165 citations were screened,
all from the EMIF’s website. A total of 136 references were
excluded: (i) duplicates−1, (ii) article’s exclusion criterion was
the presence of diabetes−1, (iii) the publication’s objective was
not related with diabetes mellitus or its complications−120, and
(iv) the publication’s achievements did not allow to induce a
scientific advance in Diabetes field (e.g., state of the art, outdated
information, the article’s data don’t address an objective of the
IMI2 programme)−14. For this project, a total of 29 articles
were included.

For EBiSC’s project, a total of 15 citations were screened, six
from the EBiSC’s website and 9 from CORDIS database. A total
of 14 references were excluded: (i) the publication’s objective was
not related to diabetes mellitus or its complications (e.g., state of
the art, outdated information, the article’s data don’t address an
objective of the IMI2 programme)−14. For this project, a total of
one article was included.

For INNODIA’s project, a total of 79 citations were screened,
47 from the INNODIA’s website and 32 from CORDIS database.
A total of 34 references were excluded: (i) duplicates−32, (ii) not
access to the full text−1, and (iii) the publication’s achievements
did not allow to induce a scientific advance in Diabetes field
(e.g., state of the art, outdated information, the article’s data
don’t address an objective of the IMI2 programme)−11. For this
project, a total of 35 articles were included.

For RHAPSODY’s project, a total of 39 citations were
screened, 20 from the RHAPSODY’s website and 19 from
CORDIS database. A total of 28 references were excluded: (i)
duplicates−21, (ii) book chapters−1, and (iii) the publication’s
achievements did not allow to induce a scientific advance in
Diabetes field (e.g., state of the art, outdated information,
the article’s data don’t address an objective of the IMI2
programme)−6. For this project, a total of 11 articles
were included.
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For BEAT-DKD’s project, a total of 90 citations were screened,
52 from the BEAT-DKD’s website and 38 fromCORDIS database.
A total of 65 references were excluded: (i) duplicates−40, (ii) the
publication’s objective was not related to diabetes mellitus or its
complications−10, and (iii) the publication’s achievements did
not allow to induce a scientific advance in Diabetes field (e.g.,
state of the art, outdated information, the article’s data don’t
address an objective of the IMI2 programme)−15.

No results were identified in LITMUS, Hypo-RESOLVE,
IMI2PACT, and CARDIATEAM projects.

The search and screening processes are summarized in
Figure 1.

The results gathered in the literature review were integrated
into the axes presented by the IMI2 programme, namely
target & biomarker identification, innovative clinical trials
paradigms, innovative medicines, and patient-tailored
adherence programmes.

The data collected was organized according to the objectives
established for each axis by the Strategic Research Agenda (SRA).

RESULTS

In Target & Biomarker identification axis, from the 10 objectives
outlined in SRA, those achieved were (1) identify and validate
biological markers, tools and assays, (2) determinants of inter-
individual variability, (3) understand the molecular mechanisms
underlying the disease, (4) develop a platform of pre-clinical
assays, and (5) develop systems models.

For the “innovative clinical trial paradigms” axis, the data
applied two of the twelve objectives defined in SRA, especially
(1) utilize innovative endpoints, trial designs, simulation and
analytical approaches to devise new clinical trial paradigms and
(2) develop innovative clinical endpoints.

In the innovative medicines axis, from the eleven objectives
in SRA, those with results were: (1) identify new or alternative
therapeutic concepts (targets) for treatment and prevention
of disease, (2) develop novel therapeutic agents and disease
prevention strategies, and (3) as implement new approaches
for the development and production of biopharmaceuticals and
tissue engineering.

Lastly, from the seven objectives in SRA, the data collected
for maximizing patient-tailored adherence programmes
address only one goal, namely develop patient-centered
predictive models.

In short, the outline of the projects with results in the
research axes of the IMI2 programme, namely target & biomarker
identification, innovative clinical trials paradigms, innovative
medicines, and patient-tailored adherence programmes, is
displayed in Figure 2.

No outputs were identified in LITMUS, Hypo-RESOLVE,
IMI2PACT, and CARDIATEAM projects, as these were starting
close to or during the literature search process.

Due to the quantity and diversity of data collected, we
summarized the results obtained by each IMI funded-project in
figures that are presented in Supplementary Material section.

A wide range of biomarkers have been identified for the onset
of type 1 diabetes (14–24) by INNODIA; for risk prediction
(14, 15, 17–21) and identification of patients at high-risk of
type 2 diabetes (25) by SUMMIT, IMIDIA, DIRECT, and EMIF;
for pancreatic β-cells function and protection by RHAPSODY
(26, 27) and INNODIA (14, 16, 22–24); for hyperglycemia
by RHAPSODY (28); for protection, prediction, initiation,
progression, patient stratification, and medicine efficacy of
diabetic kidney disease (DKD) (29, 30) by SUMMIT and BEAT-
DKD (31–39); for development of cardiovascular disease (CVD)
by SUMMIT (30, 40, 41); and for the development of diabetic
retinopathy (DR) by SUMMIT (30, 42, 43).

Additionally, several novel tools were identified for diabetes,
T1D, T2D, diabetic complications, and genetic research. The
tools for diabetes intended to diagnose and monitoring disease
progression [IMIDIA (44–49), DIRECT (50), and RHAPSODY
(51)]. The tools designed for T1D were focused on monitor
β-cell function, screen individuals at high risk, and select the
more benefic intervention [INNODIA (15, 52, 53)]. For T2D, a
new test was proposed to follow-up patients’ insulin treatment
need [EMIF (54, 55)]. Regarding diabetic complications, new
tools were developed to enable the detection of patients at high
risk of developing CVD and DR [SUMMIT (30, 56, 57)]. At
last, in genetic research area, new tools were validated for the
identification of single nucleotide polymorphism [SUMMIT (58–
61) and StemBANCC (62, 63)].

Concerning the novel determinants of inter-individual
variability, SUMMIT (43, 60, 64–72), IMIDIA (46, 49, 73–76),
DIRECT (50, 77–82), EMIF (83–89), INNODIA (22, 23, 90–93),
and RHAPSODY (27, 28, 94, 95) proposed a significant number
of genetic markers for predisposition, initiation, identification,
and progression of diabetes and its complications. Additionally,
SUMMIT and DIRECT verified the influence of genetic factors in
patients’ medicine-response (96–101), and BEAT-DKD identified
a non-genetic inter-individual therapeutic variability factor, i.e.,
NT-proBNP levels (37, 102, 103). DIRECT also confirmed
the influence of gut composition (99, 100), age of diagnosis
(50), year of diagnosis (104), and BMI factors (105) on the
onset of diabetes, and EMIF showed the association with other
factors such as ethnicity and metabolic health on T2D risk
and development of complications (106). Moreover, two models
of patient stratification were proposed, one by INNODIA for
glycemic control in patients with T1D (107) and another by
RHAPSODY and BEAT-DKD related with the identification of
the patient’s risk level for certain diabetic complications (108).

Novel relevant pathways were proposed to understand β-cell
development and function [by IMIDIA (109–113), StemBANCC
(114–119), and RHAPSODY (27)], type 1 diabetes (by INNODIA
(16, 20, 23, 120–125), type 2 diabetes [by DIRECT (50), EMIF
(85, 126–130), and Rhapsody (131)], CVD [SUMMIT (30, 132)
and INNODIA (133)], DKD [BEAT-DKD (32, 36, 134–138)], DR
[SUMMIT (30, 42, 43)], endometrial cancer risk [EMIF (139)],
dementia [EMIF (140)], non-alcoholic fatty liver disease [EMIF
(54, 55, 141–143)], anorexia or bulimia [INNODIA (125)], and
attention-deficit hyperactivity disorder [INNODIA (125)].

In terms of pre-clinical studies, StemBANCC (114, 144, 145),
EBiSC (146, 147), and IMIDIA (45, 49) proposed innovative
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FIGURE 1 | Flowchart of literature search.

iPSCs lines derived from diabetes and created their own
databases; StemBANCC, INNODIA and RHAPSODY developed
three catalogs, namely β-cell’ Bi-DOCS (148), HLA-I peptidome
of β-cells (21) and cis-eQTLs for T2D (149); IMIDIA (44–
49), StemBANCC (144, 150), and RHAPSODY (151) established
several protocols to improve the reliability of laboratory studies;
and SUMMIT (30, 152, 153) and IMIDIA (46) developed new
specific animal models.

Regarding systems models, two new in silico models were
generated by SUMMIT (30), one for clinical complications
in T1D and the other for aspirin action. In addition, BEAT-
DKD proposed three models associated with DKD, namely
the Drosophila nephrocyte to reveal mechanisms of podocyte
function and glomerular diseases (154), the systems biology
to better prediction of patient’s medicine- response (155),
and an in-silico analysis to identify compounds reversing a
set of renal age-associated genes associated with the disease’s
progression (32).

For clinical trials, two novel designmodels were proposed, one
by DIRECT and a second by BEAT—DKD: the Genotype-based
Recall (GBR) (156) and “umbrella” or “platform” trials (157,
158), respectively. Regarding the innovative clinical endpoints,

DIRECT validated a prediction model for T2D–DIRECT-
DETECT, which may be used in the selection process in clinical
trials (159, 160).

New potential therapeutic targets were suggested for the
treatment of accelerated atherosclerosis in diabetic patients (161)
(SUMMIT), for treating glomerular disease in T2D patients
(36, 135, 162–164) (SUMMIT), for T2D patients with obesity
(165) (EMIF), for counteracting hyperglycemia in individuals
with T2D (166) (IMIDIA), for prevent or reverse β-cell loss
[IMIDIA (167), StemBANCC (114, 116, 168, 169) and INNODIA
(14, 90, 120, 121, 170–172)], and for diabetes with a focus
on the use of new concepts such as epitranscriptome-based
therapy by RHAPSODY (173), StemBANCC (114–116, 168, 169,
174), EMIF (86), and RHAPSODY (173). In terms of novel
pharmacologic agents for T2D, SUMMIT developed the clinical
trials of Aleglitazar (175), RAAS inhibitors (176), and supported
the use of low-dose aspirin for the secondary prevention of
cerebro-cardiovascular events (177).

Furthermore, DIRECT demonstrated the cardio-metabolic
benefit of metformin (178), BEAT-DKD supported the clinical
efficacy of SGLT2 inhibitors and GLP1R agonists in diabetic
patients with DKD (179, 180), and StemBANCC established
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FIGURE 2 | Projects’ distribution according to their outcomes and the axes of the IMI2 programme.

four different stem cell-based replacement treatments (181–183).
For large-scale production, StemBANCC demonstrated that the
continuous peristaltic pump-based circulation technology, in a
hydraulically driven bioreactor, can be a potential 3D tool and a
key in this process (184).

Lastly, it was established two patient-centered screening
tools for T2D, more precisely the “palette” model, based on
molecular taxonomy, and the DIRECT-DETECT prediction
model, composed by glycaemic deterioration biomarkers (159,
160, 185).

DISCUSSION

Based on the objectives of the IMI funded-projects and the
results previously mentioned, we propose an integrated model
addressing diabetes in its multiple dimensions, which includes
two inter-dependent paths that should be executed in parallel,
the first one being more scientific-oriented and the second one
medical-oriented, as illustrated in Figure 3.

The scientific dimension would include the acquisition of
more biological samples and genetic data and with the help of
SUMMIT, IMIDIA, EBiSC, StemBANCC, EMIF, and IMI2PACT
promote the research on β-cells as well as validate new
biomarkers, genetic markers, patient stratification, discover more
molecular mechanisms/pathways, and develop new treatments
for T1D, T2D and diabetic complications. Besides, this approach
aims at conducting clinical trials with more safety and efficacy
endpoints through the application of those identified by
SUMMIT, DIRECT, INNODIA, and BEAT-DKD to allow a

marketing authorization of innovative medicines/therapeutics
in a shorter time, less expensive and more focused on
personalized medicine.

The medical dimension would include the use of
predisposition markers developed by IMIDIA, DIRECT
and INNODIA to identify people at higher risk of developing
diabetes, with a particular interest in T2D, promoting the
possibility of early intervention mainly in lifestyle habits,
diet and physical exercise, and thus delaying the disease.
Following the natural cycle of the disease, the objective would
be to diagnose the recent-onset patients, through imaging
technologies, tools and patient-centered models for clinicians
developed by DIRECT, IMIDIA, INNODIA and RHAPSODY.
Subsequently, the characterization of the subtype of patient
and the treatment selection would be performed through the
application of the DIRECT, INNODIA or RHAPSODY/BEAT-
DKD stratification models and considering the inter-individual
factors that impact the patient’s response to the therapeutic
agents identified by SUMMIT and DIRECT. The monitoring of
disease progression would be possible in case of implementation
of biomarkers, genetic markers and tools created by SUMMIT,
IMIDIA, DIRECT, INNODIA, EMIF and RHAPSODY, with
adaptations of pharmacological treatment dose or medicines
changes in case of inadequate response. Additionally, with
the use of biomarkers, genetic factors and tools developed by
SUMMIT and BEAT-DKD, it would be possible to identify
patients who during the progression of the disease, are more
likely to develop diabetic complications, enabling to act in
advance. With the application of imaging technologies developed
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FIGURE 3 | Integrated vision model for diabetes, based on the objectives and results of the IMI funded-projects. Color meaning: gray, general population; green,

individuals at low risk of diabetes; yellow, individuals at medium risk of diabetes; orange, individuals at medium-high risk of diabetes; red, individuals at high risk of

diabetes; dark orange, individuals at high risk of DKD; dark red, individuals at high risk of CVD; brown, individuals at high risk of DR; light red, individuals at high risk of

NAFLD; and light orange, individuals at high risk of hypoglycaemia. BEAT-DKD, Biomarker Enterprise to Attack DKD Project; CARDIATEAM, Cardiomyopathy in Type 2

Diabetes Mellitus Project; CVD, Cardiovascular diseases; DIRECT, Diabetes Research on Patient Stratification Project; DKD, Diabetic Kidney Disease; DR, Diabetic

Retinopathy; EBiSC, European Bank for induced pluripotent Stem Cells Project; EMIF, European Medical Information Framework Project; Hypo-RESOLVE,

Hypoglycaemia, Redefining Solutions for Better Lives Project; IMIDIA, Improving Beta-cell Function and Identification of Diagnostic Biomarkers for Treatment

Monitoring in Diabetes Project; INNODIA, Translational Approaches to Disease Modifying Therapy of Type 1 Diabetes: An Innovative Approach Toward Understanding

and Arresting Type 1 Diabetes Project; LITMUS, Liver Investigation: Testing Marker Utility in Steatohepatitis Project; NAFLD, Non-Alcoholic Fatty Liver disease;

RHAPSODY, Assessing Risk and Progression of Prediabetes and Type 2 Diabetes to Enable Disease Modification Project; StemBANCC, Stem Cells for Biological

Assays of Novel Medicines and Predictive Toxicology Project; SUMMIT, Surrogate Markers for Micro- and Macro-Vascular Hard Endpoints for Innovative Diabetes

Tools Project.

by SUMMIT and EMIF and the information provided by
BEAT-DKD, LITMUS, Hypo-RESOLVE, and CARDIATEAM,
it would also be possible to predict the identification of patients
with diabetic complications, especially diabetic nephropathy,
diabetic retinopathy, cardiovascular disease, hypoglycemia, and
non-Alcoholic Fatty Liver disease. Through the use of genetic
factors and biomarkers developed by SUMMIT and BEAT-DKD,
it would be desirable to select the best pharmacological treatment
option according to the patient’s characteristics and thenmonitor
the follow-up to retard/stabilize its progression.

Summarizing, our integrated vision model supports a clinical
model directed primarily and mainly at prevention, through

the individual genetic and biological knowledge; as a first-line
intervention, acting in the delay of diabetes onset; and in cases
of diagnosis, to promote treatment according to the subtype of
patients and monitor the progression of the disease. Only in this
way, it will be possible to decrease the incidence and mortality
rate of diabetes, provide an increase in the patient’s quality of life,
ensure sustainable people-centered health systems, andminimize
direct and indirect diabetes-related costs in health systems.

Overall, it was found that the target & biomarker identification
and innovative medicines axis have more published data. This
was because these were major bottlenecks addressed by IMI 1
programme and included goals that corresponded to the key
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unmet needs in Diabetes during the programme’s execution
period 2008–2013.

Our literature review is subject to some limitations. When
collecting the projects’ data, we found a large gap in their
publication’s library, mainly SUMMIT, IMIDIA, and DIRECT
projects. On SUMMIT website, there were only publications
between 2010 and 2014, however, on the Cordis database, we
found publications up to 2018. Similarly, although the IMIDIA
website only included publications from 2011 and 2012, the
Cordis database had articles until 2014. Regarding the DIRECT
project, its website had only assembled the publications of the
participating companies, all published before obtaining funding.
Other limitations include the unsuccessful response from the
project’s coordinators and co-coordinators, and the CORDIS
database was also not updated and complete.

CONCLUSION

In order to reduce the incidence, the mortality rate, and
the economic burden on healthcare systems, as well as to
improve disease management, until October of 2019, IMI1
and IMI2 programmes funded 13 projects encompassing
several bottlenecks identified for R&D and clinical practice in
Diabetes area.

Taking into account the scientific production available by
these projects, we prepared a joint vision model including two
paths: one scientific-oriented and the other medical-oriented.
The scientific dimension integrates the current knowledge
regarding this disease, research tools, as well as clinical trial
designs and endpoints to allow marketing authorization of
new effective and safer medicines in a shorter time and less
expensive. The medical dimension includes the application of
predisposition markers (biological and genetic), diagnostic tools,
stratification models, treatment selection, and monitoring the

progression of the disease to prevent/delay the development of
diabetic complications.

As IMI programmes fostered the enhancing of knowledge
and the improvement of the medical practice (with better tools,
medicines, and prediction models), being a big step for the
implementation of personalized medicine, it is clear that this
initiative has an important role in the scientific advances that
have occurred in recent years.

In terms of future perspectives, the biggest bottleneck will
be the implementation of the proposed joint vision model, or a
similar one, into the clinical practice, although all IMI-funded
projects highlight this trend as the only one able to provide
an effective response in the treatment of chronic diseases, in
particular diabetes, and there are already proves of shifts in the
paradigm. Nevertheless, the involvement of key stakeholders,
including patients, will always be essential to the success of
this process.
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