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Abstract

Integrated information theory (IIT) has established itself as one of the leading theories for the study of consciousness. IIT es-
sentially proposes that quantitative consciousness is identical to maximally integrated conceptual information, quantified
by a measure called Umax, and that phenomenological experience corresponds to the associated set of maximally irreducible
cause–effect repertoires of a physical system being in a certain state. With the current work, we provide a general formula-
tion of the framework, which comprehensively and parsimoniously expresses Umax in the language of probabilistic models.
Here, the stochastic process describing a system under scrutiny corresponds to a first-order time-invariant Markov process,
and all necessary mathematical operations for the definition of Umax are fully specified by a system’s joint probability distri-
bution over two adjacent points in discrete time. We present a detailed constructive rule for the decomposition of a system
into two disjoint subsystems based on flexible marginalization and factorization of this joint distribution. Furthermore, we
show that for a given joint distribution, virtualization is identical to a flexible factorization enforcing independence between
variable subsets. We then validate our formulation in a previously established discrete example system, in which we also
illustrate the previously unexplored theoretical issue of quale underdetermination due to non-unique maximally irreduc-
ible cause–effect repertoires. Moreover, we show that the current definition of U entails its sensitivity to the shape of the
conceptual structure in qualia space, thus tying together IIT’s measures of quantitative and qualitative consciousness,
which we suggest be better disentangled. We propose several modifications of the framework in order to address some of
these issues.
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Introduction

Integrated information theory (IIT; Tononi 2004, 2005, 2008,
2012, 2015; Oizumi et al. 2014; Tononi et al. 2016) has established
itself as one of the most prominent theories in the study of the
physical substrates of consciousness. IIT essentially proposes
that quantitative consciousness, i.e. the degree to which a phys-
ical system is conscious, is identical to its state-dependent level
of maximally integrated conceptual information, which can be
quantified by a measure called ‘Umax’. Integration here means
that the information generated by the system as a whole is in

some measurable sense more than the information generated
by its parts and intuitively corresponds to finding an index of a
system state’s causal irreducibility. Intriguingly, IIT also equates
the set of maximally integrated cause–effect repertoires associ-
ated with a system state to qualitative consciousness, i.e. the
actual phenomenological experience or ‘what-it-is-like-ness’
(Nagel 1974) of a physical system being in a certain state, and
thus aims at nothing less than a formal description of a quale.
While this approach is not undisputed (e.g. Aaronson 2014;
Cerullo 2015), IIT has both explanatory and predictive power,
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and thus the idea of measuring integrated information has by
now gained widespread popularity in the cognitive neurosci-
ence literature and beyond (e.g. Balduzzi and Tononi 2008, 2009;
Deco et al. 2015; Koch et al. 2016; Tegmark 2016).

With the current work, we provide a general probabilistic
formulation of the framework, starting from the most recent in-
stantiation of the theory called ‘III 3.0’ (Oizumi et al. 2014), which
features several important theoretical advances over previous
versions of IIT. Henceforth, we thus use the abbreviation ‘IIT’ to
refer exclusively to IIT 3.0 as developed by Oizumi et al. (2014).
In the methods section, we first present a comprehensive for-
mulation of IIT with respect to the general language of probabil-
istic models, by which we simply mean joint probability
distributions over random entities (e.g. Barber 2012; Murphy
2012; Gelman et al. 2014; Efron and Hastie 2016). We derive a
constructive rule for the decomposition of a system into two
disjoint subsets, central to the definition of information integra-
tion. Moreover, we show that for a given joint distribution, vir-
tualization is identical to distribution factorization. All
mathematical operations presented herein are sufficiently
specified by a system’s joint probability distribution over two
adjacent points in discrete time by flexible marginalization and
factorization. We then validate our general formulation in the
‘Results’ section by evaluating Umax in a previously established
discrete state example system. Here, we also illustrate the pre-
viously unexplored theoretical issue of ‘quale under-
determination’, and we show that the current definition of U

combines IIT’s measures of quantitative and qualitative con-
sciousness, which we suggest be better disentangled. Finally,
we discuss some open theoretical questions regarding further
development of IIT and propose constructive modifications of
the framework to overcome some of these issues.

Notation, terminology, and implementation

A few remarks on our notation of probabilistic concepts are in
order. To denote random variables/vectors and their probability
distributions, we use an applied notation throughout. This
means that we eschew a discussion of a random entity’s under-
lying measure-theoretic probability space model (e.g. Billingsley
2008), and focus on the random entity’s outcome space and
probability distribution. For a random variable/vector X, we de-
note its distribution by p(X), implicitly assuming that this may
be represented either by a probability mass or a probability den-
sity function. To denote different distributions of the same ran-
dom variable/vector, we employ subscripts. For example, pa(X)
is to indicate a probability distribution of X that is different from
another probability distribution pb(X). In the development of in-
tegrated information, stochastic conditional dependencies be-
tween random variables are central. To this end, we use the
common notation that the statement p(XjY)¼ p(X) is meant to
indicate the stochastic independence of X from Y and the state-
ment p XjY;Zð Þ ¼ p XjZð Þ is meant to indicate the (stochastic) con-
ditional independence of X on Y given Z (Dawid 1979; Geiger
et al. 1990). Since the notion of a system subset being in a partic-
ular state is crucial for the definition of U, we refer to a given
subset of the D-dimensional system by the superscript S (i.e.
XS � XD) and the realization of a state with an elevated asterisk.

Since IIT comes with its own terminology, it may be helpful
to highlight some expressions used throughout the manuscript.
In the following, by ‘system’ we mean a network of physical ele-
ments described by a corresponding set of random entities (the
joint probability distribution over which is assumed to ade-
quately capture the system’s causal structure see below. A

‘purview’ refers to the notion of considering a particular subset
of random entities in describing the system. For any subset be-
ing in a particular state at a specific time, the ‘cause repertoire’
of that state refers to a conditional probability distribution over
past states, and the ‘effect repertoire’ describes the conditional
distribution over future states. A ‘partition’ means rendering
the system into two independent parts. The terms ‘concept’ and
‘conceptual structure’ refer to maximally integrated cause and
effect repertoires and are explained in the context of our formu-
lation in the section ‘On composition and exclusion’. The reader
wishing to retrace our formulation of IIT will find all Matlab
code (The MathWorks, Inc., Natick, MA, USA) developed for the
implementation of the below and the generation of the techni-
cal figures herein from the Open Science Framework (https://
osf.io/nqqzg/).

Methods: Defining U

System model

IIT models the temporal evolution of a system by a discrete
time multivariate stochastic process (Cox and Miller 1977)

p X1;X2; . . .;XTð Þ: (1)

In the probabilistic model (1), Xt; t ¼ 1; . . .;T denotes a finite set
of D-dimensional random vectors. Each random vector Xt com-
prises random variables xti

with i ¼ 1; 2; . . .;D D 2 Nð Þ that may
take on values in one-dimensional outcome spaces
X1;X2. . .;XD, such that

Xt ¼ xt1 ; xt2 ; . . .; xtDð ÞT (2)

may take on values in the D-dimensional outcome space
X :¼

QD
i¼1 X i. We assume X � R

D throughout.
IIT further assumes that the stochastic process fulfills the

Markov property, i.e. that the probabilistic model (1) factorizes
according to

p X1;X2; . . .;XTð Þ ¼ p X1ð Þ
YT
t¼2

p XtjXt�1ð Þ; (3)

and that the ensuing Markov process is time-invariant,
i.e. that all conditional probability distributions p XtjXt�1ð Þ on
the right-hand side of Equation (3) are identical (Fig. 1A). We
will refer to p XtjXt�1ð Þ as the system’s ‘transition probability
distribution’ in the following. Finally, IIT assumes that the
random variables constituting Xt are conditionally indepen-
dent given Xt–1, i.e. that the conditional distribution p XtjXt�1ð Þ
factorizes according to

p xt1 ; xt2 ; . . .; xtd jXt�1
� �

¼
YD
i¼1

p xti jXt�1
� �

: (4)

On causal structure and interventional calculus

In IIT, a system of elements in a state is required to exert cause–
effect power upon itself to meet the postulate of (intrinsic) exis-
tence (Tononi 2015). Furthermore, the system is required to be
‘physical’ in the sense that it can be intervened on. In Oizumi
et al. (2014), assessing the causal structure of the system under
scrutiny therefore rests on interventional calculus as intro-
duced in Pearl (2009). Specifically, IIT makes use of the ‘do’
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operator, which corresponds to perturbing a system into all pos-
sible states and observing the system transitions as a means of
assessing the ensuing probability distributions. This has the ad-
vantage of being able to define a non-sparse transition probabil-
ity distribution even if it is not a priori possible to observe every
possible system state. In the following, we assume that the
causal structure of the system under question (i.e. the distribu-
tions in Equation (4)) is known (cf. discussion section). The per-
turbational approach also entails the notion of virtualization to
enforce independence between variable subsets, which, as we
will detail in the following sections ‘Virtualization is

factorization’, corresponds to a flexible factorization given the
system’s joint distribution as defined below.

Characterization of a system by its joint probability
distribution

The stochastic process’ forward transition probability distribu-
tion is defined as the conditional distribution of Xt given Xt–1

pe XtjXt�1ð Þ :¼ p XtjXt�1ð Þ: (5)

Next, we define a joint distribution pce over Xt–1 and Xt by multi-
plication of the Markov transition probability distribution
p XtjXt�1ð Þwith a marginal distribution pu Xt�1ð Þ, i.e.

pce Xt�1;Xtð Þ :¼ pu Xt�1ð Þp XtjXt�1ð Þ: (6)

Here, the marginal distribution pu Xt�1ð Þ is meant to represent a
maximum of uncertainty about Xt–1, and for the case of a finite
outcome space X amounts to the uniform distribution over all
states. This corresponds to the maximum entropy perturba-
tional distribution pper Xt�1ð Þ used for perturbing the system into
all possible states with equal probability in Oizumi et al. (2014)
(see also Tegmark (2016)). Based on the joint distribution of
Equation (6), the backward transition probability distribution is
then defined as the conditional distribution of Xt–1 given Xt:

pc Xt�1jXtð Þ :¼ pce Xt�1;Xtð ÞP
Xt�1

pce Xt�1;Xtð Þ (7)

Definition of integrated cause–effect information /ce

Based on the assumptions of Equations (1), (3), and (4), IIT de-
fines the integrated cause–effect information /ce of a set of sys-
tem elements in a state X� 2 X as follows:

/ce : X ! R;X� 7!/ce X�ð Þ :¼min /e X�ð Þ;/c X�ð Þf g; (8)

where /e : X ! R and /c : X ! R are defined as

/eðX�Þ :¼min
i2I

D peðXtjXt�1 ¼ X�ÞjjpðiÞe ðXtjXt�1 ¼ X�Þ
� �n o

(9)

and

/cðX�Þ :¼min
i2I

D pcðXt�1jXt ¼ X�ÞjjpðiÞc ðXt�1jXt ¼ X�Þ
� �n o

; (10)

respectively. Note that this applies generally, regardless of
whether we consider the whole system XD or a subset of system
elements XS � XD. In Equations (10) and (9),

• /e X�ð Þ and /c X�ð Þ are referred to as ‘integrated effect infor-
mation’ and ‘integrated cause information’ of the state
X ¼ X�,

• pc Xt�1jXt ¼ X�ð Þ and pe XtjXt�1 ¼ X�ð Þ are conditional probabil-
ity distributions that are constructed from the joint probabil-
ity distribution p Xt;Xt�1ð Þ of the stochastic process as
detailed below and are referred to as the ‘effect repertoire’
and ‘cause repertoire’ of state X�, respectively,

• p ið Þ
e XtjXt�1 ¼ X�ð Þ and p ið Þ

c Xt�1jXt ¼ X�ð Þ are ‘decomposed vari-
ants’ of the effect and cause repertoires, that result from the
removal of potential stochastic dependencies in the sys-
tem’s transition probability distribution as detailed below,

• I is an index set, the elements of which index the decomposed
variants of the effect and cause repertoires, and

Figure 1. System model and system decomposition for integrated
cause–effect information. IIT models the system of interest by a time-
invariant first-order Markov process, depicted as a graphical model in
panel A (e.g. Bishop 2006). Nodes denote random vectors and directed
links denote the stochastic dependence of the child node on the par-
ent node. Panels B and C display the exemplary decomposition of a
three-dimensional system with state vector Xt :¼ ðat; bt; ctÞ as a graph-
ical model. Here, nodes denote the constituent random variables of
the random vectors Xt–1 and Xt. Panel B depicts the unpartitioned sys-
tem, in which all potential stochastic dependencies of the elements
are visualized. The constituent random variables of Xt are condition-
ally independent given Xt–1 (cf. Equation (4)), and the joint distribution
pceðXt�1;XtÞ is invoked by the assumption of a maximally uncertain
marginal distribution puðXtÞ for each t ¼ 2; . . .;T. Panel C shows an ex-
emplary decomposition of the system, which is based on the biparti-
tion of ðXt�1;XtÞ into the subsets PðiÞ1 ¼ fat�1; bt�1; bt; ctg (gray inset)
and PðiÞ2 ¼ fat; ct�1g. In the factorized joint distribution pðiÞceðXt�1;XtÞ,
the directed links across the partition boundary are removed, while
the links within each partition remain.
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• D : P� P! Rþ; p1; p2ð Þ7!D p1jjp2ð Þ denotes a divergence mea-
sure between (conditional) probability distributions over the
same random entity, with P indicating the set of all possible
distributions of this entity. While a variety of distance mea-
sures can be used for this assessment in principle (see also
Tegmark (2016)), we will in practice follow Oizumi et al. (2014)
in defining D as the earth mover’s distance for discrete state
systems (Mallows 1972; Levina and Bickel 2001) due to its in-
creased sensitivity to state differences when compared with
the Kullback–Leibler Divergence (Kullback and Leibler 1951).

We next discuss the intuitive and technical underpinnings
of the constituents of the definition of /ce by Equations (8)–(10)
in further detail.

System decomposition

To evaluate integrated cause–effect information /ce, IIT first con-
siders all possible ways to decompose a system into two subsets
that do not influence each other. The aim is then to identify the
system decomposition which, for a given set of system elements
in a particular state, is most similar to the actual system in terms
of the divergence between the system state’s effect and cause
repertoires (cf. Equations (9) and (10)). The particular decomposi-
tion which fulfills this criterion is labelled the minimum informa-
tion partition (MIP). In technical terms, the system to be
decomposed corresponds to the collection of random variables
and their conditional dependencies that define the discrete time
multivariate stochastic process (cf. Equation (1)). Because of the
process’ time-invariant Markov property (cf. Equation (3)), the rel-
evant random variables are the constituents of two time-
adjacent random vectors Xt–1 and Xt. As seen above, based on an
uncertain marginal distribution over Xt–1, one may define a joint
distribution pce Xt�1;Xtð Þ of these vectors for each t ¼ 2; . . .;T. Note
that the joint distribution pce Xt�1;Xtð Þ can equivalently be re-
garded as a joint distribution over the set of all constituent ran-
dom variables of the random vectors Xt–1 and Xt,

Xt�1;Xtð Þ :¼ fxt�11 ; xt�12 ; . . .; xt�1D ; xt1 ; x12 ; . . .; xtDg: (11)

IIT then uses the intuitive appeal of graphical models
(Lauritzen 1996; Jordan 1998) to introduce the idea of ‘cutting a
system’ into two independent parts (therefore a bipartition).
Technically, cutting the graphical model of pce Xt�1;Xtð Þ corre-
sponds to (i) partitioning the set of random variables in
Equation (11) into two disjoint subsets and (ii) removing all sto-
chastic dependencies across the boundary between the result-
ing random variable subsets while retaining conditional
dependencies within each subset as detailed below (cf. also Fig.
1B, C). Notably, there are k :¼ 2n�1 � 1 unique ways to bipartition
a set of cardinality n (see the Appendix in the online
Supplementary Material for proof). This corresponds to k ways
of cutting the corresponding graphical model and thus induces
a set of k differently factorized joint distributions
p ið Þ

ce Xt�1;Xtð Þ; i ¼ 1; . . .; k, which form the basis for the decom-
posed effect and cause repertoires p ið Þ

e XtjXt�1ð Þ and p ið Þ
c Xt�1jXtð Þ in

the definition of /ce (cf. Equations (9) and (10)).
We next formalize the construction of p ið Þ

ce Xt�1;Xtð Þ for
i ¼ 1; . . .; k. To this end, first recall that a partition of a set S is a
family of sets P with the properties

1 62P; [
M2P

M¼S; and if M;M0 2P and M 6¼M0; then M\M0 ¼1:

(12)

Let P ið Þ denote a bipartition of a subset of random variables
XS

t�1;X
S
t

� �
under scrutiny, i.e.

P ið Þ :¼ P ið Þ
1 ;P

ið Þ
2

� �
; (13)

where

P ið Þ
1 ;P

ið Þ
2 � XS

t�1;X
S
t

� �
;P ið Þ

1 \P ið Þ
2 ¼1 and P ið Þ

1 [P ið Þ
2 ¼ XS

t�1;X
S
t

� �
:

(14)

Let further

pce P ið Þ
1

� �
¼
X
P ið Þ

2

pce XS
t�1;X

S
t

� �
and pce P ið Þ

2

� �
¼
X
P ið Þ

1

pce XS
t�1;X

S
t

� �

(15)

denote the marginal distributions of pce XS
t�1;X

S
t

� �
(cf. Equation

(6)) of the random variables contained in P ið Þ
1 and P ið Þ

1 , respec-
tively. Then the elements of the set of factorized variants of the
joint distribution pce XS

t�1;X
S
t

� �
are given by

p ið Þ
ce XS

t�1;X
S
t

� �
:¼ pce P ið Þ

1

� �
pce P ið Þ

2

� �
for i ¼ 1;2; ::; k: (16)

When partitioning a system into two independent parts, IIT
evokes the notion of virtual elements to enforce conditional inde-
pendence across the border of this partition. In the supplemen-
tary section of Oizumi et al. (2014), however, the exemplary
calculations do not necessitate the actual introduction of virtual
elements once the system’s transition probability distribution
has been determined via perturbation. Therefore, we now aim to
show that, given the system’s joint probability distribution, virtu-
alization is in fact always identical to factorization, and we then
provide general formulas for the evaluation of cause and effect
repertoires in both the unpartitioned and the partitioned case.

Virtualization is factorization

The intuition behind virtualization is to account for correlation
effects over the subset of variables in question due to common
input from outside this considered subset. In order to decorre-
late this common input, virtual elements are introduced with
independent output to the elements inside of the considered
subset, and a maximum entropy distribution is defined over the
input states of these virtual elements. If, for instance, a system
element xt�11 provides input to two elements xt1 and xt2 , then
the state of xt�11 will indeed lead to correlations between xt1 and
xt2 because the input (i.e. the state of xt�11 ) will automatically af-
fect both xt1 and xt2 due to the connectivity of the system. If we
are to assess the effect that the state of xt�11 has on xt1 and xt2

independently, however, we must remove this correlation. In
this case, IIT defines two virtual elements xV1

t�11
and xV2

t�11
that

can be perturbed independently, thereby effectively removing
the stochastic dependence of these variables (or ‘noising the
connections’). Formally, the idea behind virtualization is thus to
enforce conditional independence on the variables within a
subset in question from elements outside this subset. In the
following, we aim to show that given the transition probability
distribution in Equation (5) factorization is identical to virtuali-
zation because (i) ‘inputs’ from one element to another have an
implicit temporal direction (input always refers to the previous
temporal state), (ii) virtual elements and real past elements
share the same state space, and a maximum entropy marginal
distribution is placed over virtual elements just as over past
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states (cf. Equation (6)), and (iii) in calculating the actual proba-
bility distributions, we always marginalize over virtual ele-
ments, thus leading to the same output distributions.

Figure 2 shows the system decomposition in IIT 3.0 for the
cause repertoire along with the virtualization, which we will de-
note in the following by the superscript V. For explicit reference (cf.
Supplementary Text S2 in Oizumi et al. (2014)), we refer to the nu-
merator by Q ið Þ (the inputs) and to the denominator by R ið Þ which
are partitioned into Q ið Þ

1 ; Q ið Þ
2 and R ið Þ

1 ; R ið Þ
2 , respectively, depending

on partition i. The cause repertoire is factorized according to

p ið Þ
c QjRð Þ ¼ p Q ið Þ

1 jR
ið Þ

1

� �
p Q ið Þ

2 jR
ið Þ

2

� �
: (17)

For a system subset X ¼ XS under consideration (purview)
with jXS

t�1j ¼ d1; jXS
t j ¼ d2, and d1þ d2 ¼ jfQ;Rgj (see Fig. 2),

Q ið Þ
1 ;Q ið Þ

2 � XS
t�1;Q

ið Þ
1 \ Q ið Þ

2 ¼1 and Q ið Þ
1 [ Q ið Þ

2 ¼ Q ið Þ ¼ XS
t�1: (18)

Similarly,

R ið Þ
1 ;R

ið Þ
2 � XS

t ;R
ið Þ

1 \ R ið Þ
2 ¼1 and R ið Þ

1 [ R ið Þ
2 ¼ R ið Þ ¼ XS

t : (19)

For each of the two subsets, virtual elements are introduced over
the complement of the respective partition of Q ið Þ with regard to
XS

t�1 (i.e. over the ‘inputs’ outside of the subset in question), i.e.

QV ið Þ
1 ¼ XS

t�1nQ
ið Þ

1 and QV ið Þ
2 ¼ XS

t�1nQ
ið Þ

2 : (20)

Note, however, that for every element qV ið Þ
1;1 ; . . .; qV ið Þ

1;l in QV ið Þ
1 , there

are in fact m ¼ jR ið Þ
2 j individual virtual elements because pertur-

bation requires a single independent input element from QV ið Þ
1

to R ið Þ
2 , and in analogy for the connections from QV ið Þ

2 to R ið Þ
1 . In

Fig. 2, we summarize this as a single red circle for every set of
independent virtual elements for visual coherence (see also
Appendix B in the online Supplementary Material). For every in-
put element in QV ið Þ

1 , IIT places a maximally uncertain perturba-
tional distribution over its states, and likewise for QV ið Þ

2 (cf.
maximum entropy distribution over past states pu Xt�1ð Þ in
Equation (6)). We now form the joint distribution for the two
factorized conditional distributions in Equation (17) (cf. Fig. 2,
panels B and C) as

p Q ið Þ
1 ;R ið Þ

1

� �
¼
P

QV ið Þ
1

p QV ið Þ
1 ;Q ið Þ

1 jR
ið Þ

1

� �
p R ið Þ

1

� �

¼
P

QV ið Þ
1

p QV ið Þ
1 ;Q ið Þ

1 ;R ið Þ
1

� � (21)

and equivalently for p Q ið Þ
2 ;R ið Þ

2

� �
. Note that we sum over all vir-

tual elements to obtain this subjoint distribution, and that with
Equations (12)–(16) we have

P ið Þ
1 ¼ Q ið Þ

1 [ R ið Þ
1 and P ið Þ

2 ¼ Q ið Þ
2 [ R ið Þ

2 : (22)

With the above and by forming the joint distribution in
Equation (17), we state that

p ið Þ
ce XS

t�1;X
S
t

� �
¼p ið Þ

ce Q;Rð Þ

¼p Q ið Þ
1 ;Q ið Þ

2 ;R ið Þ
1 ;R

ið Þ
2

� �

¼
P

QV ið Þ
1

p QV ið Þ
1 ;Q ið Þ

1 ;R ið Þ
1

� �P
QV ið Þ

2
p QV ið Þ

2 ;Q ið Þ
2 ;R ið Þ

2

� �

¼p Q ið Þ
1 ;R ið Þ

1

� �
p Q ið Þ

2 ;R ið Þ
2

� �

¼p P ið Þ
1

� �
p P ið Þ

2

� �

; (23)

where the last equation is the expression stated Equation (16).
The equality for the effect repertoire follows in analogy, with
the difference that we now condition p Q ið Þ;R ið Þ� �

on p Q ið Þ� �
, with

which Equation (21) becomes

p Q ið Þ
1 ;R ið Þ

1

� �
¼
P

QV ið Þ
1

p R ið Þ
1 jQ

ið Þ
1 ;QV ið Þ

1

� �
p Q ið Þ

1 ;QV ið Þ
1

� �

¼
P

QV ið Þ
1

p QV ið Þ
1 ;Q ið Þ

1 ;R ið Þ
1

� � (24)

and equivalently for p Q ið Þ
2 ;R ið Þ

2

� �
. Note that the above subjoint

Figure 2. General system decomposition and virtualization in IIT 3.0
(Oizumi et al. 2014). Panel A visualizes the system decomposition in
a general manner for the cause repertoire. The cause repertoire is
decomposed as a factorization of two conditional distributions for
every partition i (see equation inset below panel A). For unique refer-
ence to Oizumi et al. (2014) (Supplementary Text S2), we denote the
elements in the partition of a subset of Xt–1 with cardinality d1 by
fq1;1; . . .; q1;j; q2;1; . . .; q2;kg ¼ Q, where jþ k ¼ d1. Likewise, the ele-
ments in the partition of a subset of Xt with cardinality d2 are
denoted by fr1;1; . . .; r1;l; r2;1; . . .; r2;mg ¼ R, where lþm ¼ d2. Panel B
shows the first conditional distribution, and Panel C the second con-
ditional distribution of the factorization. Virtualization is indicated
by the superscript V. Every element in QVðiÞ

2 comprises l virtual ele-
ments with independent connections to each element in Ri

1, and
likewise for QVðiÞ

1 , yielding a total of l � k virtual elements in the for-
mer and j �m in the latter virtual set. Every red circle in panels B and
C thus summarizes a set of independent virtual elements connected
to the respective elements in the partition of R. As we show in the
main text, virtualization is identical to a factorization of the sys-
tem’s joint distribution.
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distribution is identical to Equation (21), and thus the equiva-
lence in Equation (23) follows in analogy.

Factorization and distribution normalization

Apart from partitioning, the application of virtualization in IIT
also concerns the calculation of cause and effect repertoires over
a subset XS

t � XD
t , where the maximum cardinality of S is D (i.e.

the whole system of interest). Similarly, XS
t�1 � XD

t�1 (but note that
we do not necessarily refer to the same variables in the subset
XS

t�1 and XS
t , e.g. if we want to find pce xt;1; xt;2; xt�1;4; xt�1;5

� �
).

The ensuing subjoint distribution p XS
t ;X

S
t�1

� �
is found from

the original joint distribution by marginalizing over the comple-
ment of the subset with regard to the whole system, i.e. XD

t nXS
t

and XD
t�1nXS

t�1. The aim of virtualization is again to enforce the in-
dependence of system elements at time t given their respective
inputs. For the case of the effect repertoire, this corresponds to
the independence of xS

t1
; xS

t2
; . . .; xS

tS
given XS

t�1. For every element
in XS

t , virtual elements are introduced over the complement of
XS

t�1 with regard to X. Similar to the above, however, the neces-
sary independence is equally enforced by marginalization and
multiplication of the ensuing subjoint distributions

pe XS
t jXS

t�1

� �
¼
YjSj

i¼1

P
XS

t nxS
ti

p XS
t ;X

S
t�1

� �
P

XS
t

p XS
t ;X

S
t�1

� �

¼
YjSj

i¼1

p xS
ti
;XS

t�1

� �

p XS
t�1

� �

¼
YjSj

i¼1

p xS
ti
jXS

t�1

� �
:

(25)

The above essentially corresponds to the assumption of condi-
tional independence inherent to the system model in
Equation (4). Note also that in the absence of any constraint from
the past system state, the expression in Equation (25) reduces to

pu XS
t

� �
¼
YjSj

i¼1

p xS
ti

� �
; (26)

which represents the definition of a maximum entropy distribu-
tion in the forward temporal direction (‘unconstrained future
repertoire’ in IIT).

For the cause repertoire, we again enforce independence of
the elements in XS

t based on their respective inputs in XS
t�1.

However, we now condition the subjoint p XS
t ;X

S
t�1

� �
on XS

t (intui-
tively, enforcing ‘backward’ conditional independence), which
again corresponds to the factorization of the joint distribution
into the corresponding subjoint distributions and forming their
product

pe XS
t�1jXS

t

� �
¼
YjSj

i¼1

P
XS

t nxS
ti

p XS
t ;X

S
t�1

� �
P

XS
t nxS

ti

P
XS

t�1
p XS

t ;X
S
t�1

� �

¼
YjSj

i¼1

p xS
ti
;XS

t�1

� �

p xS
ti

� �

¼
YjSj

i¼1

p XS
t�1jxS

ti

� �
:

(27)

Based on Equation (25) and Equation (27), there are a couple of
interesting aspects to mention. First, note that in the second
line of both equations, the subjoint distribution in the

numerator is the same and all necessary distributions are easily
obtained from the whole system’s joint distribution. Second, we
can state a general rule of when repertoire normalization is nec-
essary in IIT. This will be the case for the cause repertoire if

YjSj

i¼1

p xS
ti

� �
6¼
X
XS

t�1

p XS
t ;X

S
t�1

� �
; (28)

i.e. depending on whether it makes a difference to the cause rep-
ertoire if the marginal over XS

t factorizes or not. If it does, the
cause repertoire must be normalized by the sum over all previous
states XS

t�1 for every current state to ensure unity, i.e.P
XS

t�1

QjSj
i¼1 p XS

t�1jxS
ti
¼ xS�

ti

� �
, which, computationally, corresponds

to column-wise matrix normalization and is equivalent to the
formulations in Tononi (2015) and Marshall et al. (2016). Note that
the effect repertoire in Equation (25) is always conditioned on the
marginal p XS

t�1

� �
, and thus never needs to be normalized. Third,

if the cardinality of XS
t is 1, i.e. we assess the cause repertoire over

a single variable xS
t , then the inequality in Equation (28) is never

true, which means that these repertoires do not require normali-
zation and which is also the reason why virtualization (i.e. factor-
ization) is necessary for ‘higher order mechanisms’ in IIT (see
cause repertoire in Text S2 (Oizumi et al. 2014)). Finally, note that
based on the system decomposition related above, we factorize
the system’s joint distribution into two subjoint distributions pce

P ið Þ
1

� �
and pce P ið Þ

2

� �
in order to induce independence between the

corresponding two subsets of variables. In evaluating the cause
and effect repertoires of the partitioned system, we then factorize
pce P ið Þ

1 ;P
ið Þ

2

� �
(cf. Equation (16)) again, according to Equation (25)

and Equation (27). To this end, let

P ið Þ
1;t ¼ P ið Þ

1 \ XS
t ; P ið Þ

2;t ¼ P ið Þ
2 \ XS

t ;

and naturally P ið Þ
t ¼ P ið Þ

1;t [P ið Þ
2;t ¼ XS

t

(29)

and equally

P ið Þ
1;t�1 ¼ P ið Þ

1 nP
ið Þ

1;t;P
ið Þ

2;t�1 ¼ P ið Þ
2 nP

ið Þ
2;t;

and P ið Þ
t�1 ¼ P ið Þ

1;t�1 [P ið Þ
2;t�1 ¼ XS

t�1:
(30)

Let z1 and z2 denote the cardinality of P ið Þ
1;t and P ið Þ

2;t, respectively.
Note that if z1 ¼ 0, then z2 ¼ jXS

t j, and vice versa, and always
z1 [ z2 ¼ z ¼ jXS

t j. Intuitively, z1 and z2 thus describe the number
of output elements in the respective subsets P ið Þ

1 and P ið Þ
2 due to

partition i. Similarly, let u1 ¼ jP ið Þ
1;t�1j and u2 ¼ jP ið Þ

2;t�1j. We now
apply the general formulas in Equations (25) and (27) to pce

P ið Þ
1 ;P

ið Þ
2

� �
by defining

pce P ið Þ
t ;P

ið Þ
t�1

� �
:

¼

Qz2
h¼1 p P ið Þ

2;t;h

� �
p P ið Þ

1;t�1

� �
; if z1 ¼ 0;u2 ¼ 0

Qz2
h¼1 p P ið Þ

2;t;h;P
ið Þ

2;t�1

� �
p P ið Þ

1;t�1

� �
; if z1 ¼ 0;u1;2 6¼ 0

Qz1
h¼1 p P ið Þ

1;t;h

� �
p P ið Þ

2;t�1

� �
; if z2 ¼ 0;u1 ¼ 0

Qz1
h¼1 p P ið Þ

1;t;h;P
ið Þ

1;t�1

� �
p P ið Þ

2;t�1

� �
; if z2 ¼ 0;u1;2 6¼ 0

Qz1
h¼1 p P ið Þ

1;t;h

� �Qz2
h¼1 p P ið Þ

2;t;h;P
ið Þ

2;t�1

� �
; if z1;2 6¼ 0;u1 ¼ 0

Qz1
h¼1 p P ið Þ

1;t;h;P
ið Þ

1;t�1

� �Qz2
h¼1 p P ið Þ

2;t;h

� �
; if z1;2 6¼ 0;u2 ¼ 0

Qz1
h¼1 p P ið Þ

1;t;h;P
ið Þ

1;t�1

� �Qz2
h¼1 p P ið Þ

2;t;h;P
ið Þ

2;t�1

� �
; if z1;2 6¼ 0;u1;2 6¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(31)
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Intuitively, we thus factorize the subjoints p P ið Þ
1

� �
and

p P ið Þ
2

� �
into as many factors as they contain variables in XS

t ,
where the case distinction above accounts for the marginal
cases in which one of the subsets is empty due to a particular
partition i (see the Results section ‘On non-unique maximally
irreducible cause and effect repertoires’ for how this relates to
the ‘empty conditionals’ sometimes occurring in IIT). With
Equation (31), we now have a general rule to factorize the sys-
temiz joint distribution. In order to state a general rule to cal-
culate the cause and effect repertoires, however, we still need
to condition the thus factorized joint distribution on the corre-
sponding marginal distribution. For the effect repertoire, this
marginal is given by

pce P ið Þ
t�1

� �
:¼
X

P ið Þ
1

pce P ið Þ
t ;P

ið Þ
t�1

� �
(32)

For the cause repertoire, the marginal always factorizes (cf.
Equation (27)) and is thus

pce P ið Þ
t

� �
:¼
YjSj

i¼1

p xS
ti

� �
: (33)

We thus generally state that for every partition i, the cause rep-
ertoire is given by

p ið Þ
c XS

t�1jXS
t

� �
¼

pce P ið Þ
t ;P

ið Þ
t�1

� �

pce P ið Þ
t

� � (34)

and the effect repertoire by

p ið Þ
e XS

t jXS
t�1

� �
¼

pce P ið Þ
t ;P

ið Þ
t�1

� �

pce P ið Þ
t�1

� � : (35)

Finally, for the sake of completeness, note that the above fully
and generally applies to the system model as detailed above,
accounting for all potential dependencies in the graphical
model between nodes at t – 1 and nodes at t. Of course, not all
potential dependencies are necessarily present in a given net-
work because they depend on the network’s connectivity. In
these cases, the subjoints in Equations (31) and (32) may be fur-
ther factorized to express independencies that are always pre-
sent, i.e. simply that p a; bð Þ ¼ p að Þp bð Þ if a and b are independent
variables (Barber 2012), in which cases the decomposed reper-
toires in Equations (34) and (35) also simplify (see example in
the online Supplementary Materials). In formal terms of graphi-
cal models, this is the case if

pa x1=2;t;j
� �

6¼ P ið Þ
1=2;t�1; (36)

for any j ¼ 1; 2; . . .; z1=2, or intuitively, if not every output element
in the respective subset is the child of all past nodes on their
side of partition i (where pa denotes parents).

Example

For a brief illustration of the decomposition, we consider the
exemplary system of Fig. 1. Here, the concatenated state vector
over two adjacent time-points is given by (cf. Equation (11))

Xt�1;Xtð Þ ¼ fat�1; bt�1; ct�1; at; bt; ctg: (37)

One of the k ¼ 26�1 � 1 ¼ 31 bipartitions of Equation (37)
(which we label here as i :¼ 1) is given by

P 1ð Þ
1 ¼ fat�1; bt�1; bt; ctg and P 1ð Þ

2 ¼ fct�1;atg: (38)

Note that this corresponds to the partition depicted in panel B
of Fig. 1. Hence, with Equation (15)

pce P 1ð Þ
1

� �
¼ pce at�1; bt�1; bt; ctð Þ and pce P 1ð Þ

2

� �
¼ pce ct�1; atð Þ: (39)

We have P 1ð Þ
1;t�1 ¼ fat�1; bt�1g; P 1ð Þ

1;t ¼ fbt; ctg; P 1ð Þ
2;t�1 ¼ fct�1g, and

P 1ð Þ
2;t ¼ fatg. Thus, z1;2 6¼ 0;u1;2 6¼ 0, which yields (Equation (31))

the fully factorized joint distribution

pce P 1ð Þ
t ;P 1ð Þ

t�1

� �
¼ pce at�1;bt�1; btð Þpce at�1; bt�1; ctð Þpce ct�1; atð Þ (40)

and based on Equations (32) and (33) the marginal distributions

pce P 1ð Þ
t�1

� �
¼ pce at�1; bt�1ð Þpce at�1; bt�1ð Þpce ct�1ð Þ ; and

pce P 1ð Þ
t

� �
¼ pce atð Þpce btð Þpce ctð Þ:

(41)

The decomposed cause repertoire is then given by Equation (34) as

pce P 1ð Þ
t ;P 1ð Þ

t�1

� �

pce P 1ð Þ
t

� � ¼ pce at�1; bt�1; btð Þpce at�1; bt�1; ctð Þpce ct�1;atð Þ
pce atð Þpce btð Þpce ctð Þ

¼ pce at�1; bt�1jbtð Þpce at�1; bt�1jctð Þpce ct�1jatð Þ

;

(42)

requiring normalization by the sum over p Pt�1jPt ¼ P�t
� �

, and
the decomposed effect repertoire (Equation (35)) evaluates to

pce P 1ð Þ
t ;P 1ð Þ

t�1

� �

pce P 1ð Þ
t�1

� � ¼ pce at�1; bt�1; btð Þpce at�1; bt�1; ctð Þpce ct�1;atð Þ
pce at�1; bt�1ð Þpce at�1;bt�1ð Þpce ct�1ð Þ

¼ pce btjat�1;bt�1ð Þpce ctjat�1; bt�1ð Þpce atjct�1ð Þ

:

(43)

For further illustration of this constructive process and a con-
crete example of the equivalence of factorization and virtualiza-
tion given the joint distribution, please see the Supplementary
Material.

On composition and exclusion

One of the main theoretical advances of IIT 3.0 over previous
formulations is the extension of the general framework to ex-
clude superposition of multiple causes and effects (exclusion
principle) and to reflect the composition of the system in the
definition of integrated information on a system level (composi-
tion principle). To this end, the evaluation of /c and /e as speci-
fied above is carried out in two distinct ways over the powerset
of the system elements.

Exclusion principle
The intuition behind the exclusion principle is that just as any
conscious experience excludes all others, in physical systems
sustaining consciousness, causes and effects must not be ‘mul-
tiplied beyond necessity’ and only maximally integrated cause
and effect repertoires of a set of elements can contribute to
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consciousness, thereby excluding all other possible causes and
effects (Oizumi et al. 2014). Mathematically, for a given subset
XS � XD, the evaluation of /c and /e is therefore carried out over
all possible cause and effect repertoires, which are specified by
the powerset of the system elements. Excluding the empty set,
the system’s powerset is generally given by

P XD� �
¼ ffx1g; fx2g; . . .; fxDg; fx1; x2g; . . .; fx1; x2; . . .; xDgg (44)

with cardinality C ¼ 2D � 1. For notational clarity, let every sub-
set in the powerset be denoted by P Xð Þ :¼ ffXP1g;
fXP2g; . . .; fXPCgg. For a given subset XS

t � XD
t , we thus compute a

total of C cause and C effect repertoires. The set of cause reper-
toires for XS

t is thus given by

p jð Þ
c P Xt�1ð ÞjXS

t

� �
:¼ pc X

Pj

t�1jX
S
t

� �
(45)

and the set of effect repertoires by

p jð Þ
e P Xtþ1ð ÞjXS

t

� �
:¼ pe X

Pj

tþ1jX
S
t

� �
(46)

with j ¼ 1; 2; . . .;C. For illustration, consider the thus defined set
of cause repertoires for the case XS

t ¼ xt1 . We thus compute
pc X

Pj

t�1jxt1

� �
, or, explicitly, the distributions p xt�11 jxt1ð Þ;

p xt�12 jxt1ð Þ; . . .; p xt�11 ; xt�12 jxt1ð Þ; . . .; p XS
t�1jxt1

� �
.

Through system decomposition, we obtain a total of C differ-
ent /c and /e values, one for every decomposition of the jth
cause and effect repertoires. Of all those /c and /e values ob-
tained over the powerset, the exclusion postulate in IIT 3.0 now
requires that only the maximally integrated cause (and respec-
tively effect) information be considered.

/max
c :¼max

j2C
/j

c

n o
; and /max

e :¼max
j2C

/j
e

n o
: (47)

The cause repertoire pc X
Pj¼j�

t�1 jXS
t

� �
whose decomposition yields

/max
c is called the maximally integrated cause repertoire of XS

t

(recall that this is always evaluated for XS
t being in a particular

state), and equivalently for the maximally integrated effect rep-
ertoire. Here, j� refers to the corresponding subset of the power-
set (note that j� does not have to be the same for /max

c and /max
e ).

The minimum of maximally integrated cause and maximally
integrated effect information then defines maximally inte-
grated cause–effect information,

/max
ce :¼min /max

c ;/max
e

� �
: (48)

If a subset of XS
t being in a particular state specifies /max

ce > 0, it
forms a maximally irreducible cause–effect repertoire (a ‘con-
cept’ in Oizumi et al. (2014)). Notably, in the IIT framework, this
concept is identical to a quale in the strict sense of the word.
Intriguingly, the particular repertoire j� yielding /max

c (and
equivalently for /max

e ) is not necessarily unique. While this may
seem like a mathematical detail at this point, it has important
implications both for the quantification of capital U (see below)
and the interpretation of a concept as a point in qualia space
(see discussion).

Composition principle
The composition principle is a natural extension of the above.
By iterating over all possible cause and effect repertoires for a
subset of XS

t being in a particular state, we define /max
ce for that

subset in its state. In order to take system composition into ac-
count, we now compute /max

ce not only for a specific subset XS
t

but rather over all possible subsets of the system XD
t , i.e. again

over the powerset. For every element j in the powerset, we thus
compute the set of cause repertoires as

p jð Þ
c P Xt�1ð ÞjXPj
� �

:¼ pc P Xt�1ð ÞjXS
t ¼ X

Pj

t

� �
(49)

and the set of effect repertoires as

p jð Þ
e P Xtþ1ð ÞjXPj
� �

:¼ pe P Xtþ1ð ÞjXS
t ¼ X

Pj

t

� �
(50)

for j ¼ 1; 2; ::;C. We thus obtain a total of C values for /max
ce .

Together, all those subsets XPj that specify a maximally inte-
grated cause–effect repertoire are considered a ‘conceptual
structure’ in IIT, i.e. a set of concepts. In the following, let the
number of concepts be denoted by J�.

Integrated conceptual information U

We are now in a position to define the integrated information
capital U of the conceptual structure of a system being in a partic-
ular state X ¼ X�. The idea behind U is to quantify how much a
constellation of concepts specified by a system state is irreducible
to its individual parts. Formally, this corresponds to quantifying
how much the information inherent in a system state’s concep-
tual structure can be reduced. Thus, we first need to define the
conceptual information CI that is specified by the constellation of
concepts. IIT defines this as the sum of the distances between a
maximally integrated cause and effect repertoire to the respec-
tive maximum entropy distribution in the past or future (cf.
Equation (6) and Equation (26)), weighted by their /max

ce values, for
all J� concepts that a system X in state X� specifies:

CI X�t
� �

:¼
XJ�

j�¼1

/max;j�
ce D p j�ð Þ

c X
P�j
t

� �
jjpu Xt�1ð Þ

� �
þD p j�ð Þ

e X
P�j
t

� �
jjpu Xtþ1ð Þ

� �� �
:

(51)

However, due to the aspect of non-unique maximally integrated
cause and effect repertoires (which we will illustrate in a dis-
crete state example system below), we instead define the con-
ceptual information of a constellation of concepts simply as the
sum of all /max

ce values of those concepts

CI X�t
� �

:¼
XJ�

j�¼1

/max;j�
ce : (52)

As we will exemplify in the applications section, this has the ad-
vantage of being unaffected by the underdetermination due to
non-unique maximally integrated cause and effect repertoires
while still depending on whether or not a particular system sub-
set in a state specifies a concept.

Unidirectional partitions

At this point, we have to partition the system again to define U.
This kind of partition differs somewhat from the system decom-
position presented above in that it is a unidirectional partition.
The aim behind unidirectional partitioning is to evaluate
whether a subset XS � XD has both selective causes and selec-
tive effects on its complement XDnXS. Intuitively, this corre-
sponds to noising the connections from XS to XDnXS and — in an
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independent calculation — the connections from XDnXS to XS

(‘unidirectional’ partition). Again, this is readily done by factori-
zation of the system’s original joint distribution pce Xt;Xt�1ð Þ. To
this end, for a subset XS, we compute two subjoint distributions,
! pce XS

� �
, where we noise the input to XS (making its current

state independent by factorization), and p
 

ce XS
� �

where we noise
the input from XS (making its past state independent by
factorization):

! pce XS
� �

:¼
P

XS
t

p XD
t ;X

D
t�1

� �P
XD

t nXS
t

P
XD

t�1
p XD

t ;X
D
t�1

� �

¼ p XD
t nXS

t ;X
D
t�1

� �
p XS

t

� � (53)

and

p
 

ce XS
� �

:¼
P

XS
t�1

p XD
t ;X

D
t�1

� �P
XD

t�1nX
S
t�1

P
XD

t
p XD

t ;X
D
t�1

� �

¼ p XD
t�1nXS

t�1;X
D
t

� �
p XS

t�1

� � : (54)

Here, we implicitly take advantage of the fact that the original
joint distribution encompasses two adjacent points in time and
that, therefore, every variable in XS

t has its counterpart in XS
t�1.

For the two newly defined joint distributions, we repeat the
above calculations for the same system state to see whether and
how many of the original concepts (maximally integrated cause
and effect repertoires) we can recover and if their /max

ce values
change. For all possible cuts, we then define the unidirectional
partition that makes the least difference to the original constella-
tion of concepts as the minimum (conceptual) information parti-
tion (MIP). IIT then essentially defines the integrated conceptual
information U as the amount of conceptual information that is
lost due to the partition over the MIP. Similarly, but again avoid-
ing the underdetermination due to non-unique maximally inte-
grated cause and effect repertoires, we define U of a system being
in a state based on Equation (52) as

U X�t
� �

:¼
XJ�

j�¼1

/max;j�
ce �

XJ�

j�¼1

/max;j�

ce;MIP: (55)

Maximally integrated conceptual information Umax

Defining the maximally integrated conceptual information Umax

of a system being in a specific state corresponds to the reitera-
tion of the above evaluation over all possible subsystems. First,
there is an important conceptual distinction to make. Until this
point, we have always considered a subset XS � XD describing a
set of D physical elements. A subsystem YB with B<D now re-
fers to the notion of treating YB as a new system while regarding
the elements XDnYB as external background conditions.
Formally, this corresponds to keeping the state of the outside el-
ements fixed in the marginal conditional distributions in
Equation (4). We thus essentially define a new forward TPM
over the subsystem YB and therefore a new joint distributions
based on Equation (6). We then determine U as in Equation (55)
over the subsystem. This process is repeated for all possible
subsystems, with the constraint that B� 2 because one-element
subsystems cannot be partitioned and therefore cannot be inte-
grated by definition. The maximum value of U over all subsys-
tems is then defined as maximally integrated conceptual
information Umax (and the corresponding subsystem is called a
‘complex’ in IIT). Notably, IIT claims that Umax is identical to the
degree to which a physical system is conscious.

In summary, the measure of integrated information U rests
on a standard probabilistic model approach to dynamical

systems—a multivariate stochastic process that fulfills the
Markov property (cf. Equations (1), (3), and (4)). Against this
background, the integrated information of a system state is de-
fined by the irreducibility of its conceptual structure as assessed
by partitioning the system, which corresponds to the removal
of stochastic dependencies between the random entities de-
scribing the system. The system’s joint probability distribution
over two adjacent points in time is uniquely defined by the sys-
tem’s transition probability distribution and is sufficient for all
necessary mathematical operations in the evaluation of U. In
the following sections, we show how this general definition of U

can be applied in the context of a specific example system.

Results: Computing U

In the current section, we consider a concrete application of the
general formulation above in a system with discrete state space
which is defined non-parametrically by the explicit definition of
the transition probability distribution factors as logical opera-
tions. This system corresponds to the exemplary system dis-
cussed in Oizumi et al. (2014) and serves the validation of our
formulation and the illustration of quale underdetermination.

Characterization of the system by its joint distribution

In discrete state systems, the random variables that model the
system’s elements take on a finite number of states with a cer-
tain probability mass. As an exemplary discrete state system,
we consider a system presented in Oizumi et al. (2014). This sys-
tem is three-dimensional, and, in concordance with Oizumi
et al. (2014), we denote its state vector by Xt ¼ at; bt; ctð Þ (Fig. 3A).
The system is defined in terms of the marginal conditional dis-
tributions of its component variables (cf. Equation (4)).
Specifically, the variables at, bt, and ct may take on values in
{0, 1}, such that the outcome space X is defined as f0; 1g3, and
implement logical operations on the state of their predecessors
at�1; bt�1 and ct�1. As shown in Fig. 3B, at implements a logical
OR, bt implements a logical AND, and ct implements a logical
XOR operation (constituting the causal structure of the system).
Note that in this case, the relevant distributions of Equation (3)
correspond to probability mass functions, which can be repre-
sented on the implementational level by high-dimensional nu-
merical arrays.

As discussed above, the forward transition probability ma-
trix pe XtjXt�1ð Þ of the system corresponds to the product of the
marginal conditional distributions (cf. Equation (4)). This distri-
bution is shown in Fig. 3C. The joint distribution pce Xt�1;Xtð Þ is
derived by multiplication of the transition probability distribu-
tion with a maximally uncertain distribution over past states
pu Xt�1ð Þ (cf. Equation (6)). In this example, the maximally uncer-
tain distribution is given by the uniform distribution over past
states, i.e. pu Xt ¼ X�t

� �
:¼ jf0; 1g3j�1 for all X�t 2 f0; 1g

3 (cf. Fig. 3D).
From the ensuing joint distribution pce Xt�1;Xtð Þ ¼ p at�1;ð
bt�1; ct�1; at; bt; ctÞ, the backward TPM pc Xt�1jXtð Þ can be evaluated
by conditioning on Xt. The resulting distribution is shown in Fig.
3E. Note that there are some undefined entries (displayed in
red). These undefined entries correspond to system states that
cannot have been caused by any previous state due to the con-
straints placed by the logical operations of the system variables.
In the following, we illustrate the application of the theoretical
formulation above in the evaluation of U for the system state
Xt ¼ at ¼ 1; bt ¼ 0; ct ¼ 0ð Þ.
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Exclusion principle and computation of /max
ce

First, we illustrate the computation of maximally integrated
cause–effect information /max

ce (i.e. the implementation of the
exclusion principle) in the discrete state system. To this end, we
focus on the example of the system subset XS

t ¼ bt and evaluate
the maximally integrated effect information /max

e for this subset
being in the state bt¼ 0. Recall that this corresponds to comput-
ing the /e values for all possible conditional distributions over
the system’s powerset (Equation (46)), which in the example
system is given by

P Xð Þ ¼ ffag; fbg; fcg; fa; bg; fa; cg; fb; cg; fa; b; cgg; (56)

according to Equation (44). Note that the powerset is of cardinal-
ity C ¼ 23 � 1 ¼ 7 (cf. Equation (44)). We thus compute the seven
conditionals pe X

Pj

tþ1jbt ¼ 0
� �

for j ¼ 1; 2; . . .; 7 to find the one
whose decomposition yields the maximum /e value compared
with all the others. Explicitly, we thus compute p atþ1jbt ¼ 0ð Þ;
p btþ1jbt ¼ 0ð Þ; . . .; p atþ1;btþ1; ctþ1jbt ¼ 0ð Þ and their respective
decomposed variants according to the system decomposition
rule (cf. Equation (35)) and calculate the corresponding /e values
based on Equation (9) (for a detailed illustration of how a single
/ value is computed, the reader is kindly referred to Appendix C
in the Supplementary Material). Figure 4 shows two out of the
seven conditionals together with their decomposed variants.
Note that the respective conditional distributions are always ex-
panded to the states over the whole system (here, Xtþ1) in order
to compare conditional distributions of differing dimensionality

(see figure caption). The distribution pe XP1
tþ1 ¼ atþ1jbt ¼ 0

� �
yields

/e ¼ 0:25 over its MIP P1 ¼ fatþ1g;P2 ¼ fbtg. The conditional dis-
tribution pe XP6

tþ1 ¼ btþ1; ctþ1jbt ¼ 0
� �

on the other hand is identi-
cally recovered over its MIP, and thus /e ¼ 0. This is also true for
all other five conditional distributions, so that /max

e ¼ 0:25, and
the corresponding maximally irreducible effect repertoire is
pe atþ1jbt ¼ 0ð Þ. We proceed in analogy with the set of seven
cause repertoires for bt¼ 0 to define /max

c . The minimum of /max
c

and /max
e then defines maximally integrated cause–effect infor-

mation /max
ce (cf. Equation (48)).

Composition principle and conceptual information

To implement the composition principle, we now apply the pro-
cess illustrated above not only to the subset XS

t ¼ bt but to all
possible subsets, i.e. again over the system’s powerset in
Equation (56) according to Equations (49) and (50). Figure 5 visu-
alizes the results of these calculations (similar to figs 10 and 11
in Oizumi et al. (2014)). Based on the powerset, we thus obtain
seven /max

ce values, one for every element in the powerset. All
those elements XPt of the powerset that yield a /max

ce > 0 form a
maximally irreducible cause–effect repertoire, called a ‘concept’
in Oizumi et al. (2014). We see that this is the case for all XPt ex-
cept for XPt ¼ fat; ctg because the effect repertoires over this vari-
able subset are not maximally integrated, i.e. all possible effect
repertoires for at ¼ 1; ct ¼ 0 yield /e ¼ 0. The example system be-
ing in the state at ¼ 1; bt ¼ 0; ct ¼ 0 thus specifies a total of six
concepts with their corresponding /max

ce values, which, impor-
tantly, are identical to the ones reported in Oizumi et al. (2014).

Figure 3. Characterization of the exemplary discrete state system. The system is identical to that presented in Oizumi et al. (2014) (e.g. Figs. 1 and 4
therein). Panel A shows the system comprising three random variables that implement the logical operations OR, AND, and XOR. Panel B visual-
izes the corresponding marginal conditional probability distributions, with black tiles indicating a probability mass of 0 and white tiles indicating
a probability mass of 1. The product of these marginal conditional probability distributions yields the conditional distribution pðXtjXt�1Þ depicted
in panel C, i.e. the state transition probability matrix. By multiplication with a maximally uncertain distribution over past states, i.e. puðXt�1Þ, the
joint distribution pceðXt;Xt�1Þ of panel D is obtained. Here, dark gray tiles indicate a probability mass of 0.125. For the current example, puðXt�1Þ
corresponds to the uniform distribution over past system states. Based on the formulation presented herein, the joint distribution in panel D suffi-
ciently characterizes the system for the derivation of U. Moreover, conditioning pceðXt;Xt�1Þ on Xt yields the backward TPM pcðXt�1jXtÞ shown in
panel E. Here, white tiles indicate a probability mass of 1, gray tiles a probability mass of 0.5, and red tiles represent undefined entries. These
entries correspond to states of Xt that cannot have been caused by any of the states of Xt–1 due to the logical structure of the network.
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Note, however, that not all of the depicted distributions are the
same as in IIT 3.0. This is because all those distributions high-
lighted in red correspond to cases in which the maximally inte-
grated cause or effect repertoire is not unique, i.e. there are
several conditional distributions for the particular subset XPt
which yield the same maximal / value. Note first that in the
case of the effect repertoires over XPt ¼ fat; ctg, this is a logical
necessity. If any of the possible conditional distributions were
to specify a /e > 0, then that distribution would automatically
become the maximally integrated effect repertoire, or, more
generally, if /max

c ¼ 0 or /max
e ¼ 0, then the corresponding set of

repertoires is never unique. As we can see in Fig. 5, however,
there are also cases in which /c > 0 or /e > 0 and the corre-
sponding repertoire is not unique. These cases have several im-
portant implications for IIT, which we consider to some detail
in the example below.

On non-unique maximally irreducible cause and effect
repertoires

In the following, we will briefly focus on the reason why non-
unique maximally irreducible cause and effect repertoires are of
interest to the IIT framework. First, note that the original defini-
tion of conceptual information CI (Equation (51) and Oizumi et al.
(2014)) and integrated conceptual information U rests on the dis-
tance between the respective maximally integrated repertoire
and the maximum entropy distribution in the respective direc-
tion past or future. These distributions are depicted in the bottom
panels in Fig. 5. Due to the definitions in Oizumi et al. (2014), the
values of CI and U are thus not only dependent on the maximally

integrated cause–effect information /max
ce but also on the actual

distributions yielding these /max
ce values (cf. Equation (51)). In the

case of the highlighted distributions in Fig. 5, however, there are
multiple of these maximally irreducible distributions so it is
underdetermined which one to choose. As an example, consider
the cause repertoire over the system subset XS

t ¼ fatg (top left
panel indicated by an asterisk in Fig. 5). In this case, there are in
fact three distributions whose decomposition leads to the maxi-
mal value of /max

c ¼ 0:1667, which we visualize together with
their respective decompositions in Fig. 6. The distribution
p ct�1jat ¼ 1ð Þ in the top panel corresponds to the one depicted in
Fig. 5, and the bottom panel relating the distribution
p bt�1; ct�1jat ¼ 1ð Þ is identical to the one reported in Oizumi et al.
(2014). As a brief side note, first consider the decomposition of
p ct�1jat ¼ 1ð Þ, which is given by the MIP P1 ¼ fct�1g;P2 ¼ fatg. In
IIT 3.0, this is denoted as a factorization of conditionals over the
empty set, i.e. p ct�1j½	ð Þp ½	jatð Þ. With our decomposition rule in
Equation (31), we have z1 ¼ 0 and u2 ¼ 0, and thus the decom-
posed cause repertoire is given by p ct�1jatð Þ ¼ p ct�1ð Þp atð Þ

p atð Þ . The case
distinction in the methods section is thus mathematically iden-
tical to IIT’s implicit definition that p xj½	ð Þ ¼ p xð Þ and p ½	jxð Þ ¼ 1. In
any case, we can see from Fig. 6 that the respective partitions
all yield the same /max

c value. In contrast, the Earth Mover’s
Distance to the maximum entropy distribution in the past
(i.e. the uniform distribution pu Xt�1ð Þ, see Fig. 5) may of course
differ, depending on which distribution we choose. For p
ct�1jat ¼ 1ð Þ and p bt�1jat ¼ 1ð Þ, this evaluates to D¼ 0.1667, while

for p bt�1; ct�1jat ¼ 1ð Þ, D¼ 0.3333. Since this distance measure
directly contributes to the definition of conceptual informa-
tion in Oizumi et al. (2014), CI and U can change depending on
which distribution we label the maximally integrated cause
repertoire. Note that the definitions of CI and U we propose in
Equation (52) and Equation (55) are not sensitive to the actual
distributions but only depend on the value of /max

c and thus we
report them here.

A second but related aspect is that IIT interprets the maxi-
mally irreducible cause–effect repertoire as a ‘point’ in qualia
space. If this repertoire is underdetermined, however, then so is
the quale. It may thus be desirable to find a sensible criterion for
which repertoire to choose in these cases. To this end, consider
again the distributions in Fig. 5. Here, the distribution that is re-
ported in IIT 3.0 is of dimensionality 3, while the one reported
here only features two dimensions. In fact, this is true for all the
non-unique distributions in Fig. 5. This is due to the fact that the
computational implementation of IIT always chooses the distri-
bution over the higher-dimensional set (the ‘bigger purview’) be-
cause it ‘specifies information about more system elements’ (see
Supplementary Fig. S1 in Oizumi et al. (2014)). In contrast to this,
however, we suggest that a strict interpretation of the exclusion
principle should in fact favor the lower-dimensional distribu-
tions. Recall that the exclusion principle postulates that causes
and effects should not be multiplied beyond necessity. As such,
choosing the distribution p bt�1; ct�1jat ¼ 1ð Þ in Fig. 6 (over ‘two
causes’) thus seems less parsimonious than choosing one of the
lower-dimensional distributions over fewer causes. Throughout
the manuscript, we thus always enforce the lower dimensionality
in the cases of underdetermination, and return to this issue in
the discussion.

Integrated conceptual information U

We can now illustrate the computation of integrated conceptual
information U as defined by Equation (55). Recall that the defini-
tion of U requires unidirectional system partitions according to

Figure 4. Exclusion principle. Illustration of the computations neces-
sary for the evaluation of maximally integrated effect information
for the system subset XS

t ¼ bt in the state bt¼ 0. The maximally irre-
ducible effect repertoire corresponds to the conditional distribution
pðatþ1jbt ¼ 0Þ with /max

e ¼ 0:25, while all other conditional distribu-
tions of the system’s powerset are identically recovered by their re-
spective minimum information partitions (MIPs). The lower panels
depict one of these conditionals, pðbtþ1; ctþ1jbt ¼ 0Þ. Note that the cor-
responding distributions are expanded to the whole system’s states
Xtþ1 in order to compare conditional distributions of differing di-
mensionality. This is done by multiplication of the particular condi-
tional with the marginal distribution over the respective
complement with respect to Xtþ1, i.e. pðbtþ1; ctþ1Þ for the upper panels
and pðatþ1Þ for the lower panels. For the cause repertoires, this is
done in analogy for Xt–1.
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Equation (53) and Equation (54) in order to find the (system
state’s) MIP. For the given example state, this evaluates to the fac-
torization depicted in Fig. 7. The unidirectional MIP is given here
by factoring out p ctð Þ, which corresponds to noising the connec-
tions from a and b to c. Note the difference between the thus fac-
torized joint distribution and the original joint distribution in Fig.
3. Based on this joint distribution, we thus reiterate the presented
formulation and find that two out of the six original concepts are
identically recovered while the other four vanish to /max

ce ¼ 0. The
conceptual information over the unidirectionally partitioned sys-
tem is thus CI¼ 0.3333 according to Equation (52). Based on
Equation (55), we thus obtain U ¼ 1:333.

Maximally integrated conceptual information Umax

Finally, we briefly consider the evaluation of maximally inte-
grated conceptual information Umax. To this end, we evaluate U

as illustrated above for every subsystem of a set of D elements.
Recall from the methods section that only subsystems with at
least two elements are considered (because one-element sets
cannot be partitioned and are therefore not integrated by defini-
tion) and that the states of all elements outside of the subsys-
tem are fixed. This corresponds to defining a new transition
probability distribution according to Equation (4) and thus a
new joint distribution based on Equation (6). For the example
system, the possible subsystems are given by fa; bg; fa; cg; fb; cg,

Figure 5. The set of maximally irreducible cause and effect repertoires for the system state Xt ¼ ð1; 0; 0Þ. The figure visualizes the implementa-
tion of the composition principle, i.e. the computation of the maximally integrated cause and effect repertoires for every subset XPt in the
powerset of the system elements. All those subsets for which /max

ce > 0 form a ‘concept’, a maximally integrated cause–effect repertoire. As we
discuss in the main text, however, the distributions highlighted in red are not unique. These distributions differ from the ones reported in
Oizumi et al. (2014) as we enforce lower distribution dimensionality in underdetermined cases. The definition of conceptual information CI as
the sum over all /max

ce applied here is unaffected by non-unique repertoires. The bottom panels show the maximum entropy distributions in
the respective temporal direction past (puðXt�1Þ) and future (puðXtþ1Þ).
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and {a, b, c}. For a system state of interest, we thus obtain four U

values, the maximum of which yields Umax. In the current ex-
ample of system state at ¼ 1; bt ¼ 0; ct ¼ 0; Umax is found over {a,
b, c} and thus corresponds to the value depicted in Fig. 7. To il-
lustrate the above, we choose a different system state,
at ¼ 0; bt ¼ 0; ct ¼ 0, and compute U for each of the four subsys-
tems. For this state, the whole system {a, b, c} specifies four
maximally irreducible cause–effect repertoires and U ¼ 0:583.
The maximum U value for this system state, however, is found
over the subsystem {a, c}, depicted in Fig. 8. Note that for this
subsystem, the state of element b is fixed at b¼ 0, regardless of
time. On a computational level, this is conveniently

implemented by discarding all those states in which b¼ 1 from
the marginal conditional distributions in Fig. 3. With these new
marginal conditional distributions, we then form the new for-
ward TPM according to Equation (4) and find the joint distribu-
tion pce at�1; ct�1;at; ctð Þ with a maximum entropy distribution
over past states pu at�1; ct�1ð Þ based on Equation (6). The thus
specified system yields two maximally irreducible cause–effect
repertoires (concepts) which vanish to /max

ce ¼ 0 over the MIP.
Hence, we find that Umax ¼ 1.

Discussion

In the present work, we have developed a comprehensive gen-
eral formulation of IIT in the language of probabilistic models,
starting from its most recent instantiation as IIT 3.0 (Oizumi
et al. 2014). Specifically, we show that all necessary mathemati-
cal operations in the derivation of U are parsimoniously speci-
fied by a system’s joint probability distribution pce Xt�1;Xtð Þ over
two adjacent points in discrete time. We present a constructive
rule for the decomposition of the system into two disjoint sub-
sets, which corresponds to a flexible marginalization and factor-
ization of this joint distribution, and we show that, for a given
joint distribution, virtualization is identical to factorization. On
the implementational level, our formulation is readily applied
to non-parametric discrete state systems, as validated in the ex-
emplary system from IIT 3.0. Here, we also illustrate a previ-
ously unexplored theoretical issue, which regards the
underdetermination of U due to the occurrence of non-unique
maximally integrated cause and effect repertoires. We propose
that a strict interpretation of the exclusion postulate should fa-
vor lower-dimensionality probability distributions in these
cases, and we elaborate on this issue below. Related to this as-
pect is the sensitivity of U to qualia shape, which we account for
by defining U merely as a function of maximum integration, re-
gardless of which distribution is maximally integrated.

In the following, we focus on three major theoretical issues
for further refinement of IIT. This regards (i) the estimation of a
system’s causal structure, (ii) the definition of the MIP on the
system level, and (iii) quale underdetermination.

Causal structure and probabilistic inference

We first focus on the issue of causality. IIT argues that a system
element (or a subset of elements) can only contribute to con-
sciousness if it exerts cause–effect power on the system (i.e. it

Figure 6. Non-unique maximally integrated cause repertoires over
at¼ 1. All three conditional distributions depicted here lead to the
same maximal value of integrated cause information over their re-
spective MIPs. The top panel corresponds to the distribution shown
in Fig. 5, while the bottom panel corresponds to the distribution re-
ported by Oizumi et al. (2014). In these cases, it is underdetermined
which distribution to choose. However, the exclusion principle de-
mands that causes should not be multiplied beyond necessity. We
thus argue that exclusion favors the lower-dimensional distribu-
tions in these cases, i.e. the ones over fewer causes (cf. discussion).

Figure 7. Integrated conceptual information U for the discrete example system in state X ¼ ð1; 0; 0Þ. The joint distribution on the left corresponds
to the (system state’s) MIP. Here, the MIP is given by factoring ct out of the original joint distribution in Fig. 3, i.e. ‘noising the connections’ from
a, b to c (see network depiction in the center). Gray tiles refer to a probability mass of 0.0625. The thus factorized joint distribution recovers two
of the original six concepts in Fig. 5, while /max

ce for the remaining four reverts to zero. For the current system state, we thus find that U ¼ 1:333,
based on Equation (55).
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only then exists intrinsically). Thus, in order to apply the IIT
framework, the causal structure of a system under scrutiny
must be known. As we have pointed out above, herein the
causal structure of the system was assumed to be sufficiently
determined. This amounts to a definition of the marginal condi-
tional probability distributions in Equation (4), which can be re-
garded as a probabilistic translation of the logical operations
the system elements carry out and which in turn define the sys-
tem’s transition probability matrix (cf. panels B and C in Fig. 3).
In Oizumi et al. (2014), the causal structure of the system is de-
termined by system perturbations (Pearl 2009). In this regard,
note that the natural evolution in a deterministic system will
lead to a sparse transition probability matrix, unless all possible
system states are observed. In the example system, for instance,
none of the possible initial states allows for an observation of
all possible system states. While the perturbational approach
thus elegantly determines the system’s causal structure in de-
terministic discrete state systems, it may pose serious theoreti-
cal issues for ultimately transferring the integrated information
framework to the realm of continuous variables because there
are infinitely many possible states that the system would have
to be perturbed into. Generally speaking, the evaluation of a
theoretically derived measure from empirical data can be
achieved by estimating a parameterized probabilistic model
from the data, and applying the measure to the thus estimated
system model (e.g. Ostwald et al. 2010, 2014). Hence, our formu-
lation of integrated information could at least in principle facili-
tate progress toward evaluating U in empirical data, based on a
system’s estimated joint probability distribution. However, this
approach will only be theoretically equivalent to the current
framework if the estimated distribution adequately captures
the causal structure of the system. Essentially, the question is
then if and under which conditions it is possible to identify
causal effects within a system from observational data, a highly
active area of research in contemporary statistics, philosophy,
and artificial intelligence research (e.g. Spirtes et al. 2000;
Maathuis and Colombo 2015; Schaffer 2016; Mahmoudi and Wit
2016; Malinsky and Spirtes 2016). The causal structure of a sys-
tem is commonly represented by a directed acyclic graph (DAG),
and the system perturbations by means of the ‘do’ operator can
be regarded as a manipulation on these graphical models (Pearl
2009). For a known DAG, several criteria have been developed to

infer causal effects from observational data, such as back-door
and front-door adjustment (Pearl 2009; Maathuis and Colombo
2015). If the underlying DAG is unknown, it can be defined in
terms of its Markov equivalence class, and recent developments
show that it may be possible to estimate causal effects even in
these cases while also allowing for unmeasured variables, i.e.
without the assumption of causal sufficiency (Maathuis and
Colombo 2015; Malinsky and Spirtes 2016) and without the as-
sumption of Gaussianity (Mahmoudi and Wit 2016). While these
approaches are part of ongoing research on the estimation of in-
tervention effects, they may provide useful guidance for the
eventual transferral of the integrated information framework to
the realm of continuous variables.

System partitions and boundedness

As detailed in the methods section, partitioning a system is a
key aspect of the IIT formalism. First, it is useful to highlight
again a subtle but important distinction. The system decompo-
sition corresponds to bipartitioning the set of random variables
in order to compute a particular value of integrated cause–effect
information /ce, while the ‘unidirectional’ system partitions
yield the integrated conceptual information U (over many indi-
vidual evaluations of /ce). As we have shown above, a flexible
factorization of the system’s joint distribution parsimoniously
yields both types of partitions. The decompositions for the eval-
uation of /ce mainly suffer from the computational issues of
combinatorial explosion (see the Supplementary Material for a
derivation of the number of partitions k), discussed in Oizumi
et al. (2016); Tegmark (2016); Toker and Sommer (2016); and
Arsiwalla and Verschure (2016). In the following, we focus on
the unidirectional system partitions and some ensuing concep-
tual issues, which are linked to the lower bounds of integrated
information. In this regard, first note that /ce as presented
herein is bounded by zero because the EMD cannot be negative
(Levina and Bickel 2001; Cover and Thomas 2012). U as given in
Equation (55) would be generally expected to lie in the interval
between zero (if there is a unidirectional partition that identi-
cally recovers the concepts) and the conceptual information of
the unpartitioned system (if all concepts are destroyed by the
MIP) and could become negative if and only if the conceptual in-
formation of the partitioned system is in fact greater than that

Figure 8. Maximally integrated conceptual information Umax for the discrete example system in state Xt ¼ ð0; 0; 0Þ. The maximum value of U

over all possible subsystems is found in the subsystem {a, c}, highlighted in green in the network graph. Defining the subsystem corresponds to
computing the new joint distribution on the left, which is found by keeping the state of b¼ 0 fixed in the marginal conditional distributions
(Fig. 3 and Equation (4)). Here, gray tiles indicate a probability mass of 0.25. Again, the subsystem is fully characterized by this joint distribution.
For the state at ¼ 0; ct ¼ 0, the subsystem specifies two concepts (the distributions in red are not unique because /max

c ¼ 0 and /max
e ¼ 0). Both

these concepts vanish over the MIP, yielding Umax ¼ 1.
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of the unpartitioned system. This is counter-intuitive, of course,
because it would mean that we somehow generate information
by cutting the system. On a subtle note, however, the PyPhi re-
pository (Mayner et al. 2016) states that in rare cases this can ac-
tually occur, referred to as ‘magic cuts’. Formally, this
corresponds to the emergence of maximally integrated cause–
effect repertoires induced by a system partition. While this is
not the case in the results presented herein, it raises general
concerns regarding the current definition of the system parti-
tions. Recall that with unidirectional partitioning, we are look-
ing for the minimum information partition (MIP), i.e. the one that
makes the least difference to the original system. The emer-
gence of previously absent concepts due to a particular partition
should therefore strongly argue against that partition being re-
garded as the MIP because it obviously makes a profound differ-
ence to the unpartitioned system. Note that magic cuts also
violate the very basic intuition behind the theory, namely that
the whole is causally more than the sum of its parts, because in
some cases the sum of its parts can in principle be more than
the whole. In this regard, the PyPhi repository gives two useful
examples. In the first example, the MIP destroys one concept
but also creates a new one, while the amount of maximally inte-
grated conceptual information as given in Equation (55) de-
creases. In the second example, however, the MIP results in the
same number of concepts over the same system subsets, while
one particular subset specifies an increased value of /max

ce , re-
sulting in an increased total amount of maximally integrated
cause–effect information. In summary, the above essentially
amounts to the general question of whether the MIP on the sys-
tem level should be defined based on state space (i.e. the differ-
ence it makes to the set of maximally integrated cause–effect
repertoires) or integration (i.e. the difference it makes to the
conceptual information) or perhaps a combination of both. The
latter corresponds to the idea that the original system should be
an upper bound on the partitioned system over the MIP in both
a qualitative and a quantitative sense. The emergence of new
concepts due to a system partition can violate either, however,
and therefore requires a closer examination in the future.

Quale underdetermination

Finally, we return to the issue of non-unique concepts. Note that
this issue has direct consequences on IIT’s application to con-
sciousness. If the maximally integrated cause–effect repertoires
are underdetermined, then based on the distance measures in
Equation (51), so are the conceptual information CI, the integrated
conceptual information U, and the maximally integrated concep-
tual information Umax, which IIT postulates to be identical to the
quantitative consciousness of a system in a certain state.
Moreover, IIT interprets a maximally irreducible cause–effect rep-
ertoire as a ‘quale sensu stricto’ (Oizumi et al. 2014) and the partic-
ular set of concepts associated with Umax as a description of the
actual phenomenological experience (a constellation in qualia
space), which in turn is also underdetermined in these cases
(quale underdetermination). With the formal definitions in
Oizumi et al. (2014), IIT thus combines the measure of quantitative
consciousness, Umax, with the measure of qualitative conscious-
ness, the associated structure of concepts in qualia space, because
the value of the former depends on the actual arguments of the
latter. As the authors note themselves, however, the content of
phenomenological experience is not necessarily a prerequisite for
the degree of consciousness (e.g. in certain meditative practices
reaching high-level awareness with low phenomenological con-
tent (Oizumi et al. 2014)). In other terms, Umax should be sensitive

to whether or not there is a conscious experience and not to the
content of that experience. Formally, a quantitative measure of
consciousness based on information integration should thus be a
priori independent of ‘what’ the system in a state integrates and
only rely on ‘how much’ the system in a state is integrated, similar
to our definition in Equation (55).

In any case, we argue that the underdetermination is an as-
pect of the theory that requires further study. As we have
demonstrated in the discrete state example system, the com-
putational implementation in IIT currently chooses the
higher-dimensional repertoire in these cases. Due to the ex-
clusion postulate that causes and effects should not be multi-
plied beyond necessity, however, we argue that the more
parsimonious choice would in fact be the repertoire with the
lowest dimensionality, i.e. over the fewest possible number of
causes or, respectively, effects that are still maximally inte-
grated. As the reader can see in the example in Fig. 6, this cri-
terion would discard the distribution reported in Oizumi et al.
(2014) but still leaves two distributions with minimum dimen-
sionality. In order to find a sensible criterion of which distribu-
tion to label the maximally integrated cause repertoire in this
case, one approach would be to choose the distribution over
those system elements that contribute most to the constella-
tion of concepts as a whole (the ones that most ‘shape’ the
conceptual structure in the unique cases). Formally, this could
for instance be evaluated by the number of unique concepts to
which a particular subset contributes in the respective back-
ward or forward temporal direction. In the case of Fig. 6, bt�1

contributes more to the unique cause repertoires than ct�1

over all system subsets in the past. We would therefore choose
the distribution p bt�1jat ¼ 1ð Þ as the maximally irreducible
cause repertoire that most shapes the conceptual structure.
While, in the given example, this criterion uniquely identifies
the distribution we ought to choose, it is of course not guaran-
teed that this will always be the case, and surely further clari-
fication of this issue in terms of a comprehensive formal
criterion is required. On a phenomenological level, however,
choosing the element which most shapes the whole concep-
tual structure could perhaps make intuitive sense. Conscious
experience features a set of distinct, yet unified phenomeno-
logical aspects, where some — such as a blaring sound or a
blazing color — can seem to be in the foreground because they
shape the unified experience more than other aspects which
are also consciously experienced.

Conclusion

IIT is one of the leading theories in the study of consciousness,
not least because it is arguably the first rigorous attempt at a
formal description of what is necessary for a physical system to
have phenomenological experience. With the presented formu-
lation of integrated information in the language of probabilistic
models, we hope to make a constructive contribution to the
traceability, parsimony, and improvement of IIT.

Data Availability

Custom-written Matlab code (The MathWorks, Inc., Natick, MA,
USA) was used to implement the formulation of integrated in-
formation presented herein. The corresponding files are avail-
able from the Open Science Framework (https://osf.io/nqqzg/).
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