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Abstract

Background The spatial and temporal variability inherent in malaria transmission within

countries implies that targeted interventions for malaria control in high-burden settings and

subnational elimination are a practical necessity. Identifying the spatio-temporal incidence,

risk, and trends at different administrative geographies within malaria-endemic countries and

monitoring them in near real-time as change occurs is crucial for developing and introducing

cost-effective, subnational control and elimination intervention strategies.

Methods This study developed intelligent data analytics incorporating Bayesian trend and

spatio-temporal Integrated Laplace Approximation models to analyse high-burden over 32

million reported malaria cases from 1743 health facilities in Zambia between 2009 and 2015.

Results The results show that at least 5.4 million people live in catchment areas with increas-

ing trends of malaria, covering over 47% of all health facilities, while 5.7 million people live in

areas with a declining trend (95% CI), covering 27% of health facilities. A two-scale spatio-

temporal trend comparison identified significant differences between health facilities and

higher-level districts, and the pattern observed in the southeastern region of Zambia provides

the first evidence of the impact of recently implemented localised interventions.

Conclusions The results support our recommendation for an adaptive scaling approach

when implementing national malaria monitoring, control and elimination strategies and a

particular need for stratified subnational approaches targeting high-burden regions with

increasing disease trends. Strong clusters along borders with highly endemic countries in the

north and south of Zambia underscore the need for coordinated cross-border malaria

initiatives and strategies.
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Plain language summary
Malaria is an infectious disease that

is widespread in many African coun-

tries. Malaria transmission within a

country can vary between regions, so

tailored interventions for malaria

control and elimination targeted to

different regions are necessary. To

achieve this, it is important to mea-

sure and monitor the frequency of

malaria infections, its risk, and trends

at different geographic administrative

scales. This study analysed over 32

million reported malaria cases from

1743 health facilities in Zambia

between 2009 and 2015. The results

showed an increasing national trend

in malaria risk and malaria infection

frequency and identified differences

between health facility and district

trends. These findings support a

flexible approach when implementing

and expanding national malaria

monitoring, control and elimination

strategies, especially in areas bor-

dering countries where malaria is

widespread, cross-border movement

is common, and cross-border initia-

tives could be beneficial.
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Malaria remains one of the leading causes of death in
children and pregnant women in sub-Saharan Africa1.
With global progress in reducing incidence rates now

levelling off, malaria is generally rising, especially in some high-
burden African countries. As a result, most of Sub-Saharan Africa,
including Zambia, is pursuing malaria policies and strategies to
reduce case incidence. Reducing the population proportion living
in high-risk areas and pursuing local pre-elimination and sub-
sequent elimination status remains a priority goal for countries2.

As local and subnational malaria reduction depends on indi-
vidual exposure to infectious mosquito bites, local mosquito
density, and infectivity, tailored strategies are essential for various
local contexts to best use the limited resources available. The need
for strong health surveillance systems to inform appropriate
intervention programmes, fine-scale monitoring of patterns, and
adaptation of strategies as malaria transmission declines have
become critical.

This is especially true for most Sub-Saharan countries like
Zambia, which are pursuing multiple approaches targeted at local
malaria control in some settings and pre-elimination or elim-
ination in others. Targeted interventions, particularly in elim-
ination settings, aim to interrupt local transmission as it becomes
increasingly concentrated in small areas that are often very hard
and costly to reach3. Understanding the spatio-temporal scale
dynamics of prevailing malaria epidemiology is imperative to
facilitate and successfully target and control those remaining
residual reservoirs and infection hotspots4,5.

For Zambia, focal targeting of low-transmission settings,
alongside accelerated control of malaria in high transmission
settings, could help quicken the reduction of malaria burden
and hasten progress towards the malaria elimination goal.
Besides, the current funding pressure dictates that available,
often limited resources are more effectively directed at targeting
those areas and populations where the most impact can be
achieved6–8. With considerable spatial and temporal variability
generally inherent in malaria transmission within endemic
countries4,9, targeted interventions across the transmission
spectrum that operate at much finer resolutions than before
are a practical necessity for understanding, monitoring, and
ensuring effective control8,10–14.

Like many sub-Saharan African countries, Zambia’s local
malaria policy decisions are primarily based on routinely col-
lected data from its national Health Management Information
Systems (HMIS), the District Health Information System
(DHIS2). While such sources continue to experience data quality
issues such as incompleteness and accuracy and often lack the
equivalent scale of treatment-seeking information necessary for
making adjustments, they are still the best available sources for
strategic and operational planning. Over time, continued
improvements in the quality of this data make it highly valuable
in everyday decision-making as it requires less and less adjust-
ments for analytical purposes.

As Zambia is one of those countries concurrently pursuing
intensified control strategies along with pre-elimination and
elimination strategies, approaches targeted at the health facility
level have gained momentum, particularly following the WHO’s
recommendation to use a malaria continuum measure rather than
a uniformly applied strategy15,16. This entails identifying and tar-
geting the hardest-to-reach malaria hotspots in the all-important
elimination phase or high-burden areas in the intensified control
phase. Such an approach supports the design, monitoring, and
adaption of appropriate intervention programmes as malaria
transmission declines further.

This study uses data at the lowest administrative (health
facility) level to investigate the spatially structured temporal
trends that characterise fine-scale malaria burden in Zambia. We

compare spatio-temporal trends within the health facility and
district-level models to identify key differences that could provide
policymakers and disease surveillance experts with relevant
operational-level evidence to help them develop and plan more
cost-effective, targeted, multi-scale intervention strategies. Our
findings will help improve the geospatial identification and stra-
tification of areas with high or increasing burdens and improve
targeting efficiency in allocating health service resources for
malaria intervention planning.

Methods
Malaria datasets used in the study. Authorisation for the study
in Zambia was obtained from the Zambia National Health
Research Authority, and overall permission to use routine malaria
data was granted by the Ministry of Health. Ethical approval to
perform the study was granted by the Zambian ethical review
board—ERES Converge IRB (Ref: 2017-Sept-011). The require-
ment for individual consent was also waived by the ethical review
board, given that all the data were already aggregated to
administrative units and contained no individual identifiers.

We obtained aggregated monthly reported malaria case data
for 2531 operational health facilities from the Zambian HMIS/
DHIS2 from 2009 to 2015. Of the total, 612 (24.2%) are new
health facilities that typically reported zero malaria cases
throughout the study period and are therefore excluded. The
absence of these health facilities was verified against a detailed
government health facility census of 201217.

Another 76 facilities, randomly spread across the country, are
excluded from the analysis because of incomplete malaria data
and/or lack of baseline population information as a denominator
in calculating incidence rates and standardised risk ratios (here
referred to as risk). Of those health facilities excluded, eight had
complete malaria data from 2009 to 2015, ten only had data for
2014 and 2015, and the remaining 58 had data for 2015 only and
data collection only started in the second half of the year. The
reported malaria case data for 76 health facilities accounted for
0.8% of all recorded cases over the study period. Finally, 100
referral hospitals where severe malaria cases are admitted and
treated are separated from the dataset. This separation helped
avoid double counting of malaria cases already captured at the
lower-level health facilities.

For the same reason, all hospital-affiliated health centres
(HAHCs) in this analysis are considered and included as separate
health centres/units offering services similar to those of normal
health facilities not affiliated with any hospital. All private
hospitals are included because they also provide services offered
by lower-level public health facilities. The remaining 1743
facilities comprised the complete dataset analysed (see Fig. 1 and
Supplementary methods). Our final working dataset includes
146,000 monthly health facility reports (from 1743 facilities),
capturing over 32 million cases in seven years (January 2009 –
December 2015). It is worth noting that the exclusion of the eight
health facilities could be a potential source of unknown bias in
the data by slightly underestimating any effects in the results
presented.

The numerator consisted of positive malaria cases diagnosed
and confirmed using RDTs, microscopy slides, and adjusted
clinically diagnosed cases. Although data are reported in available
age categories of <1, 1–4, and ≥5 years, the study population
included all ages at risk of malaria, from infants to adults. The
facility service base populations, used as denominators in
calculating malaria rates, are derived in consultation with the
programme and are based on recalculated census health facility
service catchment data or reported facility headcounts. Priority is
given to headcounts over census estimates.
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Spatial and temporal models implemented. We implemented a
Bayesian trend model and a spatio-temporal Integrated Laplace
Approximation (INLA) model to analyse spatio-temporal trends
over the 7-year study period18,19. We used the Integrated Laplace
Approximation (R-INLA) package approximation strategy18, as
implemented in the R programme version 3.520. Given the
extensive number of observations in the dataset, we chose the
simplified Laplace approximation, which is relatively less com-
putationally intensive than the full Laplace but still retains similar
accuracy18.

Spatio-temporal model description of integrated nested
Laplace approximations. The study area is divided into health
facility catchment areas. We used the observed number of malaria
cases (Oit) in a health facility area i at time point t, the total
population at risk of malaria is Ni, and the expected number of
cases (Eit) for a health facility area i at time point t to estimate the
malaria incidence ratio. A simplified equation of the standardised
incidence ratio (SIR) calculation is shown by the equation:

SIR ¼ Oit=Eit ð1Þ
The SIR is calculated to estimate the risk of malaria at the

health facility. In this study, risk and incidence denote the
estimated polygon risk or rate, and the population denominator is
the population at risk within that facility unit polygon or facility
point (as opposed to the true health-centre catchment area).

In our analysis, we implemented a re-parameterised Besag,
York, and Mollié model21 (BYM) model, which is called BYM222,
with the spatial random effect parameter, presented as

ξ ¼ 1
ffiffiffiffiffi

τξ
p

ffiffiffiffiffiffiffiffiffi

λξu�
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λξV

q� �

; ð2Þ

Where u* denotes the scaled intrinsic Conditional Autoregressive
(iCAR) model with a generalised variance = 1, and V are
unstructured random effects. To avoid identifiability problems, a
sum-to-zero constraint ∑n

i¼1 ξi ¼ 0 must be imposed. The
expression of a weighted average covariance of matrices to the

structured and unstructured spatial components comprises the
variance of the overall random effect23.

The prior spatial distribution implemented through the
BYM2 model fits the spatio-temporal model with a random
temporal effect and is implemented with a temporal structured
random walk of second-order (RW2). For a temporary
structured random effect ðγ1; ¼ ; γTÞ, we assume a prior
distribution to be γ � Nð0;½τγRt ��Þ where Tγ is the precision
parameter, and Rt is the structure matrix of RW2 (T x T) taking
after an iCAR prior to the spatially structured variability.
We assumed a Gaussian exchangeable prior distribution
to model unstructured heterogeneity for the space-time
interaction random effect δ ¼ ðδ11; ¼ ; δ1T ; ¼ ; δn1; ¼ ; δnT Þ
as γ � N 0; τδRδ

� ��� �

, where, Tδ is the precision parameter,
while Rδ represents the corresponding spatial and temporal
structure matrix of nT x nT for the full interaction effects.
For more details about the BYM2 model implemented, refer to
refs. 22,24,25.

The incorporated iCAR prior distribution is represented by

ξ � N 0; τξRs

� ��� �

; ð3Þ

Where Tξ denotes a precision parameter, and Rs represents the n ×
n spatial neighbourhood matrix known by a diagonal of elements
equal to the sum of neighbours of each area. The non-diagonal
elements (Rs)ij is equal to −1 whenever i and j are neighbouring
areas; otherwise, (Rs)ij= 0, and N is the number of neighbours with
the joint distribution. Two areas are defined as neighbours if they
share a common border or edge. Here the neighbourhood structure
is defined by the matrix of nonzero elements, given by extracting
the structure directly from the shapefile.

We also leveraged computation power from the shiny
SSTCDapp26 to run several comparative model fitting perfor-
mance tests to determine and select the model with the best fit,
using comparisons of deviance information criterion (DIC). We
applied spatio-temporal models with prior distribution for the
spatial random effect of the BYM2. The BYM2 model contains
both an intrinsic conditional autoregressive (ICAR) component
and an ordinary random effects component for spatial auto-
correlation and non-spatial heterogeneity27. The model allows all
parameters to have clear reading and a straightforward selection
of hyperpriors27. The models are implemented with a random
walk of order 2 (RW2) prior distribution for the random
temporal effect and an unstructured temporal random effect. We
added a space-time interaction of type (ii) random effect term to
account for spatial and temporal autocorrelation.

We computed a spatial neighbourhood matrix from an ESRI
shapefile within which two health facilities are considered
neighbours if they share a common border or edge. We used the
queen criterion to compute the adjacency binary matrix W of
spatial polygons, defined as w_ij= 1 where area “i” and “j” share a
common border or edge, and 0 otherwise. We then fitted health
facility Voronoi polygons to generate a unique geographic area
with an associated year ID for the temporal variable with RW2. The
RW2 assumes that variables take periodic random steps away from
previous values, using independently and identically distributed
(iid) size steps. While other studies may apply probability measures
to density metrics to define populations within catchments of a
public health facility28, catchment areas in this study had
populations assigned from a census estimate or headcount and
are only used for mapping, visualisation of trends, and cluster
analysis purposes. The Voronoi polygons represent arbitrary
exclusive facility delineations that do not reflect the true catchment
extent and do not contribute to the definition of catchment
populations or incidence estimates.

612 facilities non-
existent in 2015 / with 
0 cases 2009-2015 

1919 facilities with 
cases > 0 (2009-
2015) 

2531 facilities with 
cases ≤ 0 (2009-
2015) 

1843 facilities 
considered for the 
full analysis 

100 Public Hospitals 
(operate as referral 
units) 

Available monthly malaria count data from HMIS/DHIS2 
Health Facility monthly Dataset (2009-2015) 

1743 facilities 
considered for the full 
final analysis (Jan-
2009 to Dec-2015) 

58 had
data for 
2015 only 

10 had data 
for (2014 & 
2015) only 

8 had data for 
(2009-2015) but 
No Population 

76 facilities with cases 
>0 (2009-2015) but 
Incomplete cases or 
No base populations 

Facilities Excluded 

Fig. 1 Summary schema of final health facility-level analysis. A workflow
of the process of cleaning the dataset and the exclusion/inclusion criteria
applied to arrive at the final dataset analysed.
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Bayesian trends model in a Markov Chain Monte Carlo envir-
onment. Finally, we implemented a separate Bayesian Poisson trend
mixed model with change point parameters to detect health facility-
specific malaria trends over the study period. This is built on
methods and models previously implemented for the district-level
trend values to compare the health facility and district-level scales29.
The models are implemented in a Markov Chain Monte Carlo
(MCMC) environment, with a burn-in of 10,000, a sample of
110,000, and four parallel chains, with a thinning of the degree of 10.
We used Gelman’s trace plots and visual diagnostics to determine the
convergence of the models30,31. The model structure and equation of
the temporal model are denoted by:

Ykt � pðμktÞ; k ¼ 1; ¼ ;K; t ¼ 1; ¼ ;N;

gðμktÞ ¼ Okt þ XT
kt βþ ϕk þ ∑

s

s¼1
ωks f sðtjγsÞ

ð4Þ

Where malaria trends fs(t|γS) estimated in the study are represented
by (a) Constant trend—β1; (b) Linear increasing trend—β1 + γ1t,
with γ1 > 0; and (c) Linear decreasing trend—β1+ γ2t, with γ2 < 0. A
more detailed description of this model is given elsewhere in32,33. We
also used ESRI’s ArcGIS 10.6 for the optimised hotspot analysis.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Spatio-temporal patterns of health facility-level malaria rates and
risk. There is an increase in the national average trend inmalaria risk
ratio (Fig. 2), and incidence (Supplementary Fig. 1) at the health
facility level between 2009 and 2014, with only a slight decline in
2015). Figure 3 shows the spatio-temporal trends presented through

posterior median estimates of malaria incidence. The temporal
pattern shows a southwards shift and an evident shrinking of the
number of areas of low malaria. Meanwhile, the mean spatial dis-
tribution pattern (see also Supplementary Fig. 2) mimics that of
malaria risk presented in Fig. 4, where large areas of low malaria risk
ratios (RR) are observed in the country’s southern parts with pro-
gressively increasing incidence rates as one moves northwards.

High-risk patterns in border areas—the potential of cross-border
malaria initiatives. High malaria risk is observed in the north-
eastern parts of Zambia, mostly around the Luapula province,
with the high-risk pattern spatially extending in a southeastern
direction towards the Mozambique border. This high-risk area
follows the national boundary with the Democratic Republic of
Congo (DRC), covering the North-Western, Luapula, Central and
Copperbelt provinces. Other noticeable high-risk health facilities
areas are further southeast along the Mozambique border.

Using optimised hotspot detection methods, we further
find consistent statistically significant malaria high-risk cluster
hotspots comprising 578 (33%) health facilities and relatively
low-risk cold spot clusters comprising 484 (27%) health facilities
(Fig. 5). Based on cluster size, intensity, and statistical
significance, the two most notable consistent hotspot clusters
follow Zambia–DRC and Zambia-Mozambique borders, while
some distinct areas of relatively lower-risk (cold spots) compared
to their surrounding areas are in the northeast and southeast
of the country. Within both the hot and cold spot clusters,
minimal variability is detected through outlier detection tests
(see Supplementary Fig. 3).

Regional and facility-level spatial, temporal and spatio-temporal
malaria incidence trends. Detailed results from the model indi-
cate that at least 5.7 million people from 27% of health facilities
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Fig. 2 Posterior mean temporal trend of the risk ratio from 2009 to 2015. The solid line shows the posterior mean risk ratio (RR) over the study period.
The dashed lines show 95% credible intervals (CI) of RR.

Fig. 3 Annual posterior median estimates of malaria incidence per 1000 population, 2009–2015. Deeper green shading indicates lower posterior
median estimates while light green - yellowish-brown and red show progressively higher median incidence posterior estimates.
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(469/1743) live in areas with a significant average (linear)
declining trend, and 5.4 million people from 47% (826/1743) of
health facilities live in areas with a significant average (linear)
increasing trend. Only 4.4 million people from 26% of health
facilities (448/1743) live in areas with no significant trend
change (see Supplementary Table 1 for significance levels).
Health facilities with a decreasing trend are more likely to be
located in urban areas with much larger catchment populations
than those with increasing trends that tend to be more rural
with smaller populations (hence the differences in health facility
percentages and population numbers).

The results from our R-INLA model using posterior means of
incidence rates (Supplementary Fig. 4) and posterior exceedance
probabilities show strong spatial, temporal, and spatio-temporal
patterns in the data. Fifty cases per 1000 population is the
threshold set by the Zambian national malaria elimination
programme to denote areas targeted for intensified control
intervention measures, whereby areas with annual cases <50 are
considered appropriate for malaria elimination. Further details of
the posterior marginal distribution summary statistics using
variance and precision scales are given in Supplementary Tables 2,
3, respectively.

The posterior exceedance probabilities are the likelihood that
areas have a higher incidence than expected, as shown in Fig. 6.
Higher exceedance probabilities occur predominantly in the
northern regions, similar to the pattern of mean incidence
rates presented in Fig. 3. Of note, however, is the unique and

continuous statistically significant (95% credible intervals) annual
increase in the number of health facilities reporting higher
than expected rates over the seven years with an equally distinct
north-south spatial drift. The decrease in spatial heterogeneity
observed might imply that while the 50/1000 cut-off makes the
starting point for identifying what areas have low malaria suitable
for pre-elimination interventions, it may not accurately represent
any variations currently experienced in areas of higher or
increasing malaria.

The modelling of incidence trends indicates a strong spatial
context to the stratification of areas moving from increasing to
decreasing trends and vice versa (Fig. 7). Generally, southern
Zambia exhibits a declining trend. These areas are adjacent to
other parts of south-western Zambia with a mix of no significant
trend (no change), partially declining, or increasing trends. In
northern Zambia, many areas with no significant trend change in
malaria tend to be contiguous with areas of increasing trends. At
the same time, there are few areas with declining trends in this
region. Further modelling of the seven-year trends using the year
2011 as the baseline change point produced a detailed five-class
stratification, namely: continuous yearly Increase, continuous
yearly Decrease, Constant/not change, change from Increase to
Decrease, and change from Decrease to Increase.

The continuous yearly increasing trend category accounted for
the highest proportion of health facilities (31%), followed by areas
from an increase to a decrease (19%). Those facilities with a
decreasing or constant/no change trend accounted for 18%, while

Fig. 4 Standardised malaria mean risk ratio, 2009–2015. The colour indicates the mean standardised incidence ratio. Lighter shades indicate lower risk
ratio values, while darker shades indicate a higher value.
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Fig. 5 Statistically significant malaria high-risk (hotspot) clusters and low-risk (cold spot) clusters. Colours indicate different types of clusters: brown
colour—hotspot clusters of health facilities with higher risk surrounded by areas of relatively lower risk; light to blue—cold spot clusters of lower risk than
the surrounding areas. Shades of each colour represent the corresponding significance of results (i.e. white—non-significant); progressively darker
depending on how small their p values are.

Fig. 6 Posterior exceedance probabilities (greater than a threshold of 50 cases per 1000 population). The posterior exceedance probability threshold is
50 based on stratification used by the country at the time. Light shades indicate a lower posterior exceedance probability or a lower likelihood that the area
has a higher incidence than expected, while darker shades indicate a higher than expected probability.
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the proportion of areas moving from a decrease to an increase
accounted for 12%. There is a clear continuum of spatial
transitioning of regions from being areas of declining malaria to
areas of increasing malaria. For instance, in the southern province,
the concentration of areas with declining malaria (blue) is encircled
by areas whose trend is moving from declining to increasing
(hatched) (Fig. 7). In the Eastern province and along the north-
western border, there is a strong geographical clustering of areas
transitioning from increasing trends to declining trends (dots)
adjacent to substantial areas with increasing trends.

Figure 8 shows both the pooled magnitude and rate of change
by trend category of those health facilities that experience a
declining trend and those with an increasing trend. While it is
observable that areas with declining malaria had relatively lower
and rapidly declining RR, averaging from 75% as of 2009 (as the
most notable decline precedes 2009) to about 25% (~50% reduced
risk) by 2011. During the same period, areas with increasing
malaria have a relatively higher magnitude of RR increase (60%,
from 15 to 75%). Between 2011 and 2015, however, a further
decline of only 25% in RR can be observed, while areas of
increasing trends experienced a 2.5 times magnitude of increase

in RR. However, the magnitude of RR and transmission is only
measured by the trend across regions and not measured or
examined for individual facilities independent of their regional
trend. Further, the models do not account for any seasonal or
monthly signal; therefore, the study does not show or consider
their effects on observed patterns or trend variations.

Comparison of health facility and district-level malaria trends. A
comparison of health facility results with those at the district-
level29 (Supplementary Fig. 5) examined the influence of spatial
scale on malaria trends to evaluate the potential and relative value
as an optimal operational scale for malaria control and elimina-
tion efforts. Supplementary Fig. 6 shows the mean spatial varia-
tion of malaria trends at the health facility level. If we consider the
increasing trend= 3, no change= 2, and decreasing trend= 1, we
observe that 18% (13/72) of the districts have at least one health
facility catchment with a higher trend in malaria, e.g. increase
instead of no change or no change instead of decline. Similarly,
37.5% (27/72) of districts have at least one health facility with a
malaria trend lower than the parent district, e.g. decline instead of
no change or no change instead of increase. Only a few districts

Fig. 7 Health facility malaria incidence trends between 2009–2015 (95% credible interval). Colours indicate different temporal trends of areas: Orange
shades—areas with continuous increasing malaria trend; blue shades—clusters of areas with declining trends; hatches—areas with a trend changing from
declining to increasing after a change point; interlaced black dots—areas with trends changing from increasing to declining; and plain white—areas where
no statistically significant linear trend is present.
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have a substantial mix of health facility-level trends different to
the overall district trend (cross-scale), or specific differences
between the two absolute trends (decrease as opposed to
increasing, or vice versa) (see Supplementary Fig. 7).

Table 1 shows that 67% of health facilities exhibit the same
trend as that observed in the district in which they are located.
Just over 15% of health facilities have an increasing trend where
the associated district has no change. In comparison, only 1.4%
(24/1743) of facilities have a trend difference from a decline to an
increase or vice versa. There is a statistically significant (p < 0.001)
positive correlation (Kendall Tau_b= 0.66) between District-level
trends and Health facility trends. The range of coefficients of
association across several tests is from 0.51 (Cohen’s kappa) to
0.86 (Goodman and Kruskal Gamma) (Supplementary Table 4).
The Bartlett test comparing variances shows an observed
χ2= 1.29, critical value= 3.84, and a computed p value= 0.26,
showing no significant difference. This further indicates inade-
quate evidence to suggest that the variances between the two
trends are significantly different.

Comparison of district and health facility-level malaria trends by
population. Using Zambia’s 2015 district-level population
estimates34, 37% (5.8 million) of people live in districts with
declining malaria, 34% (5.2 million) live in districts with no trend
change, and 29% (4.5 million) live in districts that have an
increasing malaria trend.

At the heath facility level, the recorded total population is 13.73
million compared to the district-level total of 15.46 million,

before applying a raking ratio estimation. After raking, we find
similar proportions and populations living in areas with a
declining trend, 37% (5.72 million) but differences in the
proportions of the population with no change and those with
an increasing trend, 28% (4.33 million) and 35% (5.41 million),
respectively. The initial total recorded health facility-level
population is 10% lower than the estimated district-level total,
which could imply that the reported malaria burden and risk may
not fully capture the spatio-temporal changes in treatment-
seeking during the study period. For example, we may be
underestimating the true community malaria burden in some
areas because of the lack of population adjustments for treatment-
seeking rates or overestimating due to the exclusion of the health
facilities with incomplete malaria data and/or those without
reliable denominators. Nonetheless, this does not affect or change
the malaria trends for health facilities and districts reported or
discussed, as we use a consistent method of establishing the
denominator populations throughout the study period.

Discussion
We assessed the utilisation of routine malaria surveillance data
reported from health facilities to help guide local operational
decision-making for intervention implementation. Spatio-temporal
patterns are assessed using simplified methodologies that local
malaria officers can replicate with limited modelling skills.

Nearly 70% of all health facility trends presented the same trend
pattern as those of their parent district. This initially suggests that
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Fig. 8 Malaria risk ratio magnitude of trend-change over time in health facilities that experienced a declining, no change or increasing trends. Colours
indicate different risk ratio temporal trends: blue lines—declining linear trends; red lines—increasing linear trends, black lines—constant/ no significant
change in trend; dashed lines—credible intervals at 95%, and the y-axis shows the risk ratio.

Table 1 Trend variation between district and health facility-level trend models.

Facility trend District trend # of facilities % Total change

Decline Increase 10 0.6%
1.4%Increase Decline 14 0.8%

Increase Increase 524 30.1%

67.5%No change No change 276 15.8%
Decline Decline 377 21.6%

Decline No change 58 3.3%

31.1%
No change Decline 82 4.7%
Increase No change 272 15.6%
No change Increase 130 7.5%

The table shows that there is little cross-trend variation in malaria risk between the district and health facility levels, with at least 67% of health facilities exhibiting the same trend observed in the district
in which it is located.
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pursuing intensive malaria control or elimination efforts at the sub-
district (i.e. health facility) level may not yield additional benefits
vis-à-vis the additional increase in logistical and operational costs.
However, health facility-level trends (Fig. 7) reveal highly relevant
patterns for monitoring and planning intervention strategies going
forward. We suggest that those health facility areas (>30%) where
trends may be substantially different (especially higher) than the
average trend of their district would be more suitable for targeted
interventions. Strategies such as focal Mass Drug Administration
(MDA) or reactive test and treat community strategies35 could help
eliminate the residual foci, especially in pre-elimination and
elimination areas.

The observed trends in the country’s eastern region show a
very distinct geographical clustering of areas that are transitioning
from increasing rates to decreasing rates. These areas are con-
tiguous with other areas that are continually increasing, and they
are predominantly along the eastern border region of the country.
This is significant as this region has received intensive interven-
tions from the government and other malaria partners as part of a
targeted intervention strategy since 2013. Here we see the first
evidence that a recent sub-district targeted strategy and pro-
gramme implemented in the eastern region may have delivered
positive, tangible outcomes even in a relatively short period of
time. Nonetheless, they also highlight the importance of forging
cross-border partnerships with neighbours like Mozambique to
maintain this decreasing trend.

The patterns found in the southern part of the country showed a
significant cluster of areas with relatively lower incidence rates
transitioning from a decreasing to an increasing trend. Similar to
the eastern region, these areas are contiguous with areas that have
a contrasting continuous declining trend. The results show a
substantial reduction in the number of areas where malaria is
declining, and there may well be a deterioration in the general
malaria situation that is not evident at the district level but is very
obvious at the health facility level. These areas require enhanced
surveillance through continuous monitoring of trends at the facility
level, alongside behavioural change campaigns to encourage the
population not to relax its use of malaria interventions such as nets.
As the deterioration of partial immunity to malaria declines due to
low exposure to the malaria parasite, these areas become more
prone to outbreaks and could easily return to their former levels if
care is not taken.

Our results imply that some areas of decline, as measured at the
sub-district level, are experiencing a change in trend but not
receiving adequate attention or appropriate levels of intervention.
These areas of persistent increasing trends should be the focus of
qualitative studies to understand why current interventions are not
working. Further assessment of the efficacy of current tools could
equally help identify where the problems lie. Our findings would
also suggest that, in support of the current National Malaria
Elimination Programme’s intervention strategy, a sub-district
health facility-level operational programme is urgently required
to stop the changing trend from decreasing to increasing rates in
the southern region. The point being made here is important,
especially in the context that no major national malaria policy
changes were implemented during the study period, other than the
consolidation of intervention scale-ups to strengthen case man-
agement, enhanced malaria testing, improved IPTp supplies, and a
ramp-up of bed net distribution and IRS coverage29.

Given that the limitations of current tools available to health
authorities are quite possibly compounding the problem, a first
step would be the creation of a near real-time health facility level
comparative and predictive toolset, using extant data sources, that
can provide scalable spatio-temporal analyses of trends in malaria
risk and rates with the capability to evaluate the impacts of
localised risk factors and intervention programmes.

It is argued that as countries move closer toward elimination,
more symptomatic cases may be expected to seek care, and a
temporary shift in the age distribution profile is the first sign that
transmission is declining36. Elsewhere, the authors report the
opposite, finding a consistent declining trend in children <5 years
but absolute increases among those aged ≥5 years37. Furthermore,
despite the reported increases in community health worker
(CHW) testing activities alongside the administration of malaria
medication29, where we would have expected to see an increase in
malaria rates, we, in fact, found significant declines in rates in
both rural and urban areas. Hence, those areas where we observed
actual increases in rates clearly signify a trend worth considering
to prevent possible spill-overs to neighbouring areas that cur-
rently exhibit declining trends.

Our study has shown that malaria trend patterns vary depending
on the measured spatial scale. Adopting a single-scale level
approach (e.g. administrative districts) to monitor and implement
intervention strategies may not be as efficient as a multi-scale level
approach (e.g. using district and health facility service catchment
areas). Our analysis suggests that, in general, district-level strategies
may well be appropriate for those areas where incidence rates are
high and trends are increasing. However, health facility catchment
area strategies may be more efficient and effective in areas with low
rates and stable or decreasing trends.

These findings are consistent with many recent findings from
other studies that underscore the importance of scale and
transmission setting5,10,38,39. For example, Bousema et al.5 sup-
port the contention that areas with widespread malaria transition
would benefit from high-level untargeted community-wide
approaches5,40. On the other hand, micro-scale targeting of
interventions at the sub-facility level would be most effective at
the “nucleated” household level, as any benefits from spill-over
into the surrounding local community are limited. This approach
is only suitable for areas with isolated stable hotspots and low
rates but exhibiting a rising trend. Here, focused interventions
like MDAs could reduce transmission without creating full-scale
community-wide drug pressure. High-resolution strategies of
spatially mapping vector population distributions, ecological
suitability, breeding, and insecticide resistance could provide a
better insight into vector-based solutions. Additionally, evalua-
tion of new tools, drugs, vaccine pilots, and behaviour change
trials will be necessary to derive new information and under-
standing of the complex interactions of malaria and interventions
ongoing in these areas.

While approaches for spatially targeting malaria are attractive
and effective in capturing residual foci of transmission and
optimising the sensitivity of surveillance41, there is often a strong
urge to target interventions at more granular levels to fast-track
malaria elimination in low-transmission settings4. However, evi-
dence supporting the concept of micro-hotspot intervention
targeting, especially when undertaken at the individual or
household levels, shows mixed results,10. Among other things,
such as population movement, inconsistencies in observed
impacts may be due to time delays between ‘hotspot’ identifica-
tion and intervention deployment. This, in turn, may affect the
size (geographical scope) and possibly the timing of deployments,
not to mention potential problems with follow-up evaluations of
hotspot stability and intervention efficiency5,10,42. A critical
review by Stresman et al.10 also cautions against blind targeting of
interventions simply based on the availability of granular data
and encourages a combination with other additional transmission
dynamics43.

Recent evidence shows that some contemporary spatial
techniques and malaria metrics used to define micro-hotspots
regularly miss important high-burden households10. This may
partially explain why observed impacts are often not sustained
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or remain limited and is supported by our Supplementary
Fig. 3, which highlights statistically significant cold spot clusters
within broader regions of high malaria. This is also observed in
the southern region among areas with low malaria, where cold
spot clusters indicate a relatively lower malaria risk than
the surrounding areas. Therefore, we propose that the health
facility level is the optimal operationally unit for fine-scale
interventions in these areas. This is because, even where reactive
case detection may not be suitable (e.g. in unstable hotspots
with adequate access to care44), health facility-level targeted
interventions should still be cost-effective. Such an approach
could accommodate non-endemic, hypoendemic, pre-elimina-
tion, and small-scale hotspot foci with enough coverage
for a spectrum of areas ranging from large villages down
to the household level for both stable and unstable scenarios
(as shown in Fig. 5).

This could also have considerable implications for resource
efficiency and savings through adaptive scaling and targeting
interventions where they are most needed. For example, priority
must be given to areas with the highest rates and increasing
trends, particularly districts in Northern, Luapula and Muchinga
provinces, followed by those where substantial gains have already
been made, and rates are low, but they are now in a negative
transition phase and at risk (i.e. Eastern, Central and parts of
Lusaka provinces). This is because maintaining recent gains
against malaria should be equally as important in countries like
Zambia, where the primary goal is to extend those regions cur-
rently designated for malaria elimination. Doing so, however,
requires consistency in both strategy and the application of
interventions.

Our study also suggests that the relative increase in Zambia’s
malaria incidence is mostly characterised by a north-south
transmission pattern and one that is closely associated with
proximity to the borders of higher incidence neighbouring
countries such as the Democratic Republic of Congo (DRC) and
Mozambique, both of which are in the top five highest malaria
incidence countries globally45–50 during 2011–2019.

These observations demonstrate the importance for countries
to actively pursue collaborative cross-border malaria initiatives
with highly endemic neighbouring countries. For Zambia, this is
essential as parts of the country progress towards eliminating
malaria. Strong cross-border collaborations exist along Zambia’s
southern border, funded through regional initiatives of the
Elimination 8 (E8)51,52, but evidence of similar initiatives with the
DRC has yet to be seen. Functioning bilateral operational initia-
tives must be pursued if Zambia must make significant headway
with its control efforts in these border regions. As the E8 states, 'a
country will never achieve or sustain malaria elimination as long
as transmission continues in neighbouring countries53' because
mosquitoes do not respect political boundaries.

With the ever-improving quality and increasing availability
of routinely collected malaria data, health facility level reporting
provides a unique opportunity for Zambia and other endemic
malaria countries to gain greater insights into pre/elimination
transmission dynamics and offers alternative operationalisation
strata for malaria programmes at the health facility level.
We encourage countries to take advantage of health facility-
level data granularity to test new strategies that previously
were deemed operationally unfeasible. Nonetheless, this does
not preclude the need for adaptive scaling, especially where the
transmission scenario is favourable and supports residual
foci investigations. Household-level investigations could collect
relevant additional information on the nature of infections,
case transmission dynamics (such as imported vs local, relap-
sing vs recrudescent), parasite species monitoring and serology
studies.

Potential limitations of this study include those relating to the
population denominators used to standardise malaria counts and
calculate incidence rates. Although the population used here for
calculating malaria incidence rates at the health facility level is
official estimates from district census figures, they have accuracy
issues. A combination of health facility population headcounts
and official census estimates are the primary sources of popula-
tion data. However, the health facility-level catchment areas are
not part of the regular census or officially recognised population
count administrative units for data collection. Thus, there is an
inherent potential limitation with the accuracy of denominator
service populations, which may be imprecise, and may influence
some of the observed facility-level variations in incidence rates,
causing under or overestimations54.

Nonetheless, the population denominators used in this study
represent the best available official dataset currently used by the
Ministry of Health for their day-to-day decision-making, and the
results obtained here remain comparable to those generated by
the programme. It remains challenging to accurately ascertain the
true catchment areas of the population attending specific health
facilities, as many geographic and other treatment-seeking
behaviours influence the choice of health facility55,56.

We acknowledge that, while not the focus of this paper, adding
covariates that are strongly associated with malaria transmission,
such as environmental and socio-demographic factors37,57–59,
including intervention scale-up, would have enabled us to
quantify their influence on overall malaria trends in many parts
of the country37,60–62. Based on previous studies57,58, climatic
variability and change showed a strong association with
increasing trends, while high intervention coverage of IRS and
ITNs was associated with declining malaria in Zambia. Although
we believe that the effects of covariates are already accounted for
in the data and, along with any confounding effects, should have
been captured by the non-spatial random effects component in
the model, uncertainty on the estimates of this influence from
covariates remains. Additionally, the available scale level of most
relevant covariates, such as rainfall and interventions, would have
rendered them unusable63 in this fine-scale analysis without
substantial additional preparatory work or moving to pixel-level
analysis. Nonetheless, it remains an opportunity for further study
to understand the interactional effects of interventions with the
physical and social-environmental variables and how these
implicitly influence the observed trends. This is the focus of a
follow-up paper.

Conclusion
Our study has demonstrated the value of contemporaneously
establishing national-level monitoring and reporting of malaria
incidence and trends at both the district and health facility levels.
We have shown that the health facility level could provide the
most relevant and operationally viable option for capturing key
malaria dynamics, such as the underlying spatio-temporal inci-
dence rates, risk trends, and hotspot clusters that support an
adaptive scaling approach to intervention planning. We would
suggest that countries re-assess and carefully reconsider their
malaria programmes and strategies in this regard. Using the
approach and methods presented here, governments can quickly
identify the most appropriate scale levels (i.e. district, facility, or
household) for more efficient planning and operationalisation of
intervention strategies.

The importance of border effects on rates, trends, and observed
malaria burden64 for malaria elimination strategies in countries
like Zambia cannot be overemphasised. Our nationwide health
facility-level analysis in Zambia identified significant clusters of
sub-district-level variations in malaria trends that are negative in
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some regions in the northeast, south-central, and southwest but
positive in northern regions, typically concentrated along border
areas with Mozambique and the DRC. The clear message is that
pursuing malaria elimination alongside neighbours with a poorer
malaria epidemiological status calls for the urgent formation of
meaningful bilateral cross-border malaria initiatives. In the case
of Zambia, the DRC, Angola and Mozambique border areas must
be an immediate priority.

Data availability
The data used is considered the property of the Republic of Zambia and, therefore,
subject to ethical and legal restrictions. This means that although it can freely be
requested through the Ministry of Health, it cannot be shared without prior approval
from the Ministry. Permission to use or access the district-level malaria datasets for
mortality and morbidity used in the manuscript can be obtained from the National
Malaria Elimination Centre (NMEC) through The Ministry of Health, Ndeke House,
Haile Selassie Avenue, P.O Box, 30205, Lusaka (Zambia); Email: ps@moh.gov.zm.
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