
1Scientific Reports |         (2019) 9:11136  | https://doi.org/10.1038/s41598-019-47630-6

www.nature.com/scientificreports

Defibrotide enhances fibrinolysis 
in human endotoxemia – a 
randomized, double blind, 
crossover trial in healthy volunteers
Christian Schoergenhofer1, Nina Buchtele1, Georg Gelbenegger1, Ulla Derhaschnig1, 
Christa Firbas1, Katarina D. Kovacevic1, Michael Schwameis2, Philipp Wohlfarth3, 
Werner Rabitsch3 & Bernd Jilma1

Defibrotide is approved for the treatment of sinusoidal obstruction syndrome after allogeneic stem cell 
transplantation. The exact mode of action of defibrotide is unclear and human in vivo data are scarce. In 
this randomized, double blind, crossover trial we included 20 healthy volunteers. Four were randomized 
to receive placebo, while 16 received a 2 ng/kg bodyweight bolus of lipopolysaccharide (LPS). Infusion 
of 6.25 mg/kg defibrotide or placebo was started one hour before the injection of the LPS bolus. Plasma 
levels of prothrombin fragments F1 + 2, thrombin-antithrombin complexes, von Willebrand factor, 
E-selectin, tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), plasmin-
antiplasmin complexes (PAP), tumor necrosis factor-α, interleukin 6, and C-reactive protein were 
measured. Thromboelastometry was performed. Infusion of defibrotide did not reduce the LPS-induced 
activation of coagulation, the endothelium or the release of pro-inflammatory cytokines. However, 
defibrotide increased t-PA antigen levels by 31% (Quartiles: 2–49%, p = 0.026) and PAP concentrations 
by 13% (−4–41%, p = 0.039), while PAI-1 levels remained unaffected. Moreover, defibrotide reduced 
C-reactive protein levels by 13% (0–17%, p = 0.002). A transient increase in the clotting time in 
thromboelastometry and a decrease in F1 + 2 prothrombin fragments suggests modest anticoagulant 
properties. In conclusion, defibrotide infusion enhanced fibrinolysis and reduced C-reactive protein 
levels during experimental endotoxemia.

Defibrotide is a highly complex polydisperse mixture of single-stranded phosphodiester oligodeoxyribonucleo-
tides derived from the controlled depolymerization of porcine intestinal mucosal DNA1. Defibrotide is approved 
for use in sinusoidal obstruction syndrome, which mainly occurs after high dose chemotherapy in the setting of 
allogeneic hematopoietic stem cell transplantation2. In the pivotal trial defibrotide improved 100-day survival 
in patients with sinusoidal obstruction syndrome compared to historical controls from 25% to 38%3. In a ran-
domized, placebo-controlled phase 3 trial defibrotide was effective in the prophylaxis of sinusoidal obstruction 
syndrome and reduced its incidence from 20% to 12%4. Interestingly, in this trial defibrotide also reduced the 
development of acute graft versus host disease (GVHD) from 52 to 34%4.

However, the mode of action of defibrotide remains largely unknown and it was reported to induce multi-
ple anti-inflammatory, pro-fibrinolytic and anticoagulant effects5. Defibrotide dose dependently increased t-PA 
activity and antigen, but reduced PAI-1 and tissue factor expression in vitro6. Furthermore, defibrotide reduced 
tumor necrosis factor (TNF)-α expression in lipopolysaccharide (LPS)-stimulated dendritic cells and it atten-
uated the prothrombinase activity, platelet and complement activation in in vitro malaria models7. In healthy 
volunteers, combined infusion of defibrotide and heparin significantly enhanced the effect of heparin alone and 
prolonged the activated partial thromboplastin time and increased antithrombin III levels8. Moreover, defibrotide 
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inhibited factor Xa, increased tissue factor pathway inhibitor and decreased tissue factor in healthy volunteers9. 
However, human in vivo data are scarce and the exact mode of action remains to be elucidated.

The human endotoxemia model is an established model of a tissue-factor driven, self-limiting, acute inflam-
matory reaction in healthy human volunteers10,11. After a bolus infusion of LPS pro-inflammatory cytokines 
increase, which is accompanied by an activation of the coagulation system, fibrinolysis and of the endothelium10,12.

The aim of the current trial was to better define the effects of defibrotide in vivo using approved doses in an 
established model of acute inflammatory response in healthy volunteers10,11. The ascribed profibrinolytic and 
antithrombotic properties of defibrotide are mostly based on (i) in vitro experiments6,7, in which exceedingly 
high concentrations of defibrotide have been used compared to those concentrations found after infusion of 
approved doses13,14, (ii) non-randomized studies in patients undergoing hematopoietic stem cell or bone mar-
row transplantation15,16, or (iii) studies in healthy volunteers using bolus infusions or much higher doses than 
currently approved8,9,17. However, currently no such data exist for the approved doses and therefore it is unclear 
whether these effects are translatable in full extent. Moreover, in contrast to in vitro studies, human in vivo trials 
allow investigating the effects of defibrotide in the complex interplay of inflammation, coagulation, fibrinolysis 
and endothelial activation.

We hypothesized that defibrotide diminishes the pathophysiological changes caused by experimental 
endotoxemia.

Results
Twenty healthy volunteers, two females and 18 males, were included in this trial with a median age of 28.5 years 
(Quartiles: 24–34 years), a median height of 177 cm (174–183 cm), and a median weight of 72 kg (66–84 kg). 
One person randomized to the placebo group did not participate in the second period due to unexpected una-
vailability. In one person in the placebo period infusion of defibrotide was stopped due to the development of an 
urticarial rash.

Ex vivo study.  The addition of defibrotide to whole blood did not affect the results of thromboelastometry. 
No dose dependent effects were measured with regards to clotting time or maximum lysis (Fig. 1).

Coagulation.  As expected, endotoxemia increased in vivo thrombin generation (prothrombin fragments 
F1 + 2 and TAT complexes), and thromboelastometry confirmed shortened clotting times (Fig. 1).

Figure 1.  Changes in Coagulation Specific Parameters. Left upper panel: Results of ex-vivo spiking study: 
clotting time was measured in whole blood spiked with various concentrations of defibrotide (0 µg/mL,  
25 µg/mL, 50 µg/mL and 100 µg/mL; n = 8); right upper panel: clotting time measured by thromboelastometry 
during experimental endotoxemia; left lower panel: prothrombin complex F1 + 2 concentrations during 
experimental endotoxemia; right lower panel: fold-change in thrombin antithrombin complex levels during 
experimental endotoxemia and in the placebo period (n = 16 for LPS, n = 4 for placebo); Presented are 
medians ± interquartile range.
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There was no difference in prothrombin fragments F1 + 2 between both study periods. The ratio of the AUCs 
for both periods showed a numerical 13% reduction in the defibrotide period (median 0.87, quartiles: 0.75–1.1, 
p = 0.38, n = 16). Also TAT levels did not differ between both trial periods. The ratio of the AUCs was 0.83 
(0.56–0.9, p = 0.15, n = 16) indicating a numerical reduction (Fig. 1). Defibrotide infusion did not prevent the 
shortening in the clotting time compared to placebo during endotoxemia. This parameter reflects the activation 
of coagulation. Interestingly, in an exploratory analysis the clotting time increased transiently 1 h after start of 
the defibrotide infusion by a median of 12% (quartiles: 0–30%, p = 0.003, Fig. 1, n = 16). This is also reflected by 
a small 8% decrease in F1 + 2 prothrombin fragments from baseline (p = 0.036). Of note, in the placebo period 
a trend to an increased clotting time could also be observed 1 h vs. 2 h after start of the infusion. Defibrotide did 
not prevent the LPS-induced decrease in platelet counts, which decreased in both periods by approximately 20% 
(Supplementary Information, Figure S1). 

Maximum concentrations of F1 + 2 correlated with maximum TAT concentrations (r = 0.59, p < 0.001, 
n = 16).

Fibrinolysis.  Infusion of LPS activated the fibrinolytic system in both trial periods (Fig. 2).
PAP complexes were higher in the defibrotide period (p = 0.039). The ratio of the AUC was 1.13 in the defi-

brotide period (quartiles: 0.96–1.41, Fig. 2, n = 16). This was accompanied by a more pronounced increase of 
t-PA antigen in the defibrotide period (p = 0.026, n = 16). The median ratio of the AUC of both periods was 1.31 
(1.02–1.49, Fig. 2). There was no difference in PAI levels between both study periods with a median ratio of the 
AUC of 1.03% (0.32–1.58, p = 0.92; Fig. 2, n = 16). Maximum lysis in thrombelastometry did not differ between 
both study periods.

The relationship between fibrinolysis parameters and inflammation was examined by correlation analysis. 
Maximum values of ML correlated well with maximum PAP concentrations (r = 0.65, p < 0.001). Likewise ML 
correlated with maximum levels of tPA concentrations (r = 0.41, p = 0.02) and with maximum TNF-α concen-
trations (r = 0.52, p = 0.02). Maximum tPA concentrations correlated well with maximum TNF-α concentra-
tions (r = 0.68, p < 0.001). Maximum TNF-α concentrations also correlated with maximum PAP concentrations 
(r = 0.45, p = 0.009) and with maximum PAI concentrations (r = 0.45, p = 0.011).

Inflammation.  There was no difference in pro-inflammatory cytokines IL-6 (median ratio 163% (64–231%), 
p = 0.33, n = 16) and TNF-α (median ratio 107% (72–138%), p = 0.5; Fig. 3, n = 16). Interestingly, C-reactive pro-
tein levels were lower in the defibrotide period (median ratio 0.87, quartiles 0.83–1, p = 0.021, n = 16). Defibrotide 
did not prevent the LPS-induced increase in total leukocyte counts, which increased approximately two-fold in 
both study periods (Supplementary information, Figure S1).

Maximum concentrations of IL-6 correlated well with C-reactive protein levels after 24 h (r = 0.57, p = 0.001) 
and with maximum TNF-α concentrations (r = 0.63, p < 0.001). Maximum TNF-α concentrations correlated also 
well with C-reactive protein levels after 24 h (r = 0.61, p < 0.001).

Endothelium.  There were no differences in biomarkers of endothelial activation. The ratio of the AUCs was 
in median 100% (80–116%, p = 0.88, n = 16) for vWF and 100% (77–114%, p = 0.8, n = 16) for E-sel (Fig. 3).

Maximum levels of E-sel correlated with maximum levels of vWF (r = 0.41, p = 0.019). Maximum TNF con-
centrations correlated with maximum levels of vWF (r = 0.58, p < 0.001) and of E-sel (r = 0.5 p = 0.004).

Adverse events.  Thirteen subjects (81%) in the defibrotide/LPS period reported a total of 29 adverse events, 
while in the placebo/LPS period 15 subjects (94%) reported 33 adverse events. The most frequent adverse events 
included headache (13 in defibrotide, 11 in placebo period), flu-like symptoms (6 in defibrotide, 6 in placebo 
period), arthralgia (2 in defibrotide, 7 in placebo period), chills or feeling cold (3 in defibrotide, 6 in placebo 
period), nausea (2 defibrotide, 1 placebo) with single episodes of impaired concentration (placebo), fatigue 
(placebo), precollapse (defibrotide), dizziness (defibrotide), vertigo (defibrotide). In the LPS periods subjects 
regularly received paracetamol for symptom relieve (17 × 500 mg defibrotide, 18 × 500 mg placebo), one sub-
ject received 10 mg of metoclopramide for nausea (defibrotide and placebo period), one subject received one 
tablet of metamizol 500 mg (defibrotide), and one subject received a combination of paracetamol 450 mg and 
orphenadrincitrate 35 mg for arthralgia. All adverse events were graded mild or moderate. There were no obvious 
differences in frequency or severity of adverse events between both trial periods.

In the placebo/placebo period one subject reported to have headache and received 500 mg paracetamol as 
treatment. One subject developed an urticarial rash during the defibrotide infusion in the placebo period, the 
infusion was stopped and she was treated with 30 mg diphenhydramine and 50 mg aprednisolone after which the 
rash resolved.

Discussion
This was the first trial that investigated the effects of defibrotide on acute inflammatory responses in healthy 
human volunteers. The approved dosing regimen (infusion of 6.25 mg/kg bodyweight over 2 h) was used in our 
trial, which allows translation of the observed effects to the patient situation.

In the first part of the trial we investigated the effects of defibrotide on thromboelastometry ex vivo, while the 
second part studied the effects of defibrotide on experimental endotoxemia in healthy human volunteers in vivo. 
Our major findings were that (i) ex vivo defibrotide had no effects on thromboelastometry; (ii) in vivo, defibrot-
ide enhanced fibrinolysis, as indicated by increased PAP complexes and increased levels of tPA, (iii) defibrotide 
reduced C-reactive protein levels although pro-inflammatory cytokines remained unaffected, (iv) defibrotide 
did not impact on the activation of coagulation assessed by F1 + 2 prothrombin complexes, TAT complexes, and 
thromboelastometry, and (v) defibrotide did not reduce endothelial activation.
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In our trial defibrotide infusion increased t-PA antigen levels by 30% and PAP complexes by 13% during 
endotoxemia, while PAI-1 levels remained unchanged. The induction of fibrinolysis is commonly attributed to 
treatment with defibrotide, although this is based only on few in vivo data. Coccheri et al. demonstrated the profi-
brinolytic effects of defibrotide in 1988 showing that defibrotide infusion in healthy human volunteers decreased 
PAI-1 levels by 80%, while t-PA increased almost five-fold. However, similar changes occurred in the placebo 
period raising concerns about the real effect of defibrotide in this trial. Noteworthy, in that earlier trial a defibro-
tide dose of approximately 15 mg/kg bodyweight was used, which was >2-fold higher compared to the dose used 
in our trial18. However, dose dependent effects of defibrotide on plasmin activity, the release of t-PA and reduc-
tions in PAI-1 were also shown in vitro19–21. In a model of endothelial cells stimulated with LPS defibrotide also 
induced profibrinolytic changes. However, PAI-1 and t-PA antigen showed marked responses only at defibrotide 
concentrations exceeding 200 µg/mL6. According to several pharmacokinetic studies, maximum concentrations 
in humans do not exceed 100 µg/mL using the approved dose of 6.25 mg/kg bodyweight13,14. Thus, although in 
principal our findings confirm these data, the fibrinolytic response may be more pronounced at higher doses. 
Clinical data report that PAI-1 antigen levels decrease over time in patients with sinusoidal obstruction syndrome 

Figure 2.  Fibrinolysis Specific Parameters. Upper panel: fold-change in plasmin-antiplasmin complex levels 
(n = 16 for LPS, n = 4 for placebo); middle panel: fold-change in tissue-type plasminogen activator levels 
(n = 16 for LPS, n = 4 for placebo); lower panel: fold-change in plasminogen activator inhibitor-1 levels 
during experimental endotoxemia and after placebo (n = 16 for LPS, n = 4 for placebo); Presented are 
medians ± interquartile range.
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who are successfully treated with defibrotide, whereas in patients who do not respond to treatment, PAI-1 levels 
remained stable or even increased15,22. No clinical data are available for using higher defibrotide doses in patients 
who do not respond to treatment according to PAI-1 concentrations, although in vitro data support such an 
approach.

Fibrinolysis is regulated by TNF-α in human endotoxemia: reduction or inhibition of TNF-α results in a 
shutdown of fibrinolysis23,24. In our trial TNF-α concentrations were only numerically higher in the defibrot-
ide period compared to placebo. Thus, our findings contrast in vitro studies, in which defibrotide significantly 
reduced TNF-α concentrations upon LPS stimulation already at concentrations of 30 µg/mL7,25. Furthermore, 
the observed increases in PAP and t-PA are relatively small with uncertain clinical relevance. However, our trial 
was performed in healthy volunteers and not in severely ill patients with impaired coagulation parameters and 
thrombocytopenia26,27. Moreover, treatment of sinusoidal obstruction syndrome is usually performed over weeks 
and not only for a couple of hours3,15,22. Thus, although the observed effects on fibrinolysis are small, they may be 
of clinical relevance in patients with sinusoidal obstruction syndrome.

TNF-α is also critically involved in the regulation of E-sel expression and the release of vWF from endothelial 
cells. Inhibition or reduction of TNF reduced or blunted the endothelial response assessed by vWF or E-sel23,28,29. 
Defibrotide did not reduce TNF-α concentrations, therefore no differences in vWF or E-sel were found. 
Furthermore there was no difference in IL-6 levels between both trial periods. C-reactive protein is an inflamma-
tory marker and is largely IL-6 dependent in this model30. Thus, this may reflect decreased IL-6 dependent effects 
and consequently reduced production of C-reactive protein by liver cells31. However, the observed difference in 
C-reactive protein levels is small and may also be due to chance.

Defibrotide had no impact on the LPS-induced activation of coagulation assessed by thromboelastometry 
ex vivo regardless of the dose. In additional in vitro experiments concentrations up to 1000 µg/mL had no direct 
effects on coagulation (data not shown). Thus, we assume that any effects of defibrotide on the coagulation are not 
direct, but are dependent on mediators released from the endothelium or other cell types not present in whole 
blood. Defibrotide had no influence on coagulation parameters during experimental endotoxemia in vivo. The 
transient prolongation of the clotting time of ~12% may reflect modest actions of defibrotide on coagulation 
also observed in the ~8% decrease in F1 + 2 concentrations. In patients who receive defibrotide for sinusoidal 
obstruction syndrome we have performed thromboelastometry to monitor its effects and we have observed more 
pronounced prolongations in the clotting time by approximately 15 to 35% between trough levels (before next 
infusion) and at maximum concentrations (at the end of the infusion, data not shown). Noteworthy, in our trial 

Figure 3.  Endothelium specific parameters and pro-inflammatory cytokines. Left upper panel: fold-change in 
E-selectin concentrations during experimental endotoxemia (n = 16 for LPS, n = 4 for placebo); right upper 
panel: fold-change in von Willebrand factor levels during experimental endotoxemia (n = 16 for LPS, n = 4 
for placebo); left lower panel: fold-change TNF-α concentrations during experimental endotoxemia and after 
infusion of placebo (n = 16 for LPS, n = 4 for placebo); right lower panel: fold-change in interleukin-6 levels 
during experimental endotoxemia (n = 16 for LPS, n = 4 for placebo); Presented are medians ± interquartile 
range.
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these effects were quite variable with a coefficient of variation of 128% between baseline and after an infusion 
time of 1 h. In five subjects we measured a >20% prolongation of the clotting time compared to baseline. The LPS 
induced activation of coagulation completely blunted this observed effect. Interestingly, bolus infusion of 400 mg 
defibrotide increased tissue factor pathway inhibitor approximately 2-fold, reduced tissue factor by 27% and 
showed pronounced anti-Xa activity in healthy volunteers, which is comparable to low molecular weight hepa-
rins9. However, the tissue-factor driven activation of coagulation during endotoxemia remained unaffected in our 
trial, which is in contrast to danaparoid32. Thus, we assume only modest effects of defibrotide on coagulation. The 
present data are insufficient to draw conclusions on dose-dependency of these effects. Thromboelastometry may 
be of value to monitor the effects of defibrotide, to identify patients at risk of bleeding in case of an overshooting 
response, but maybe also identify effective doses. However, clinical data are required to support this hypothesis.

Limitations.  The endotoxemia model involves healthy human volunteers and a bolus infusion of LPS to 
induce an acute inflammatory response, which naturally differs from the pathogenesis and the patient character-
istics of sinusoidal obstruction syndrome. We have only used the authorized dose of defibrotide, although some 
of the effects may be dose-dependent and higher doses may be required in some subjects. The sample size was 
rather small and therefore small effects may not have been detected. We only infused a single dose of defibrotide, 
which contrasts the continuous treatment of patients for a period of three weeks. The chosen endothelial param-
eters reflect only part of the activation of endothelial cells during inflammation. We cannot exclude that we have 
missed effects related to other activation pathways.

In conclusion, defibrotide induced fibrinolysis during experimental endotoxemia and had modest effects on 
coagulation in vivo.

Methods
The trial was conducted in accordance with the Good Clinical Practice guidelines and the principles set forth in 
the Declaration of Helsinki. The National Competent Authority (Austrian Agency for Healthy and Food Safety) 
and the independent ethics committee of the Medical University of Vienna approved the trial before its ini-
tiation. The project was conducted at the Department of Clinical Pharmacology at the Medical University of 
Vienna between April 28th 2017 and February 12th 2018. The trial was ended after the last subject performed the 
follow-up visit. The trial was registered at the EudraCT database with the public identifier 2016-001375-77 on 
March 24th 2016 and at Clinicaltrials.gov with the public identifier NCT02876601 on June 27th 2016. Written and 
oral informed consent to participate in the trial was obtained from all healthy volunteers before any trial-related 
activity was performed. The protocol is available upon request to the corresponding author.

Population
Eight healthy volunteers ≥18 years of age were included in a pre-study. Exclusion criteria comprised intake of 
medication deemed relevant by the investigators, acute illnesses and known coagulation disorders.

For the main trial twenty healthy volunteers ≥18 years of age, <90 kg body weight, with normal findings in 
their medical history and their physical examination, normal baseline laboratory results were included. Exclusion 
criteria comprised intake of any drugs that may interfere with the trial’s endpoints: acute illnesses with systemic 
inflammatory reactions, positive HIV or hepatitis tests, known allergies, hypersensitivities or intolerances to any 
of the used substances, acute or recent bleeding episodes, participation in an endotoxemia trial within six weeks 
of the trial start, pregnancy or breastfeeding.

Trial Design
The pre-study was an ex-vivo spiking study using increasing concentrations of defibrotide performed in whole 
blood obtained from healthy human volunteers. Thromboelastometry was performed in these samples to detect 
any direct effects of defibrotide on this testing system.

The main trial was a prospective, block-randomized, double blind, placebo-controlled, two-way crossover trial 
in healthy volunteers. First, healthy volunteers were randomized to receive placebo or LPS. Sixteen patients were 
randomized to receive LPS, while four patients were randomized to receive placebo. In a second step, all subjects 
were randomized to receive defibrotide at a dose of 6.25 mg/kg bodyweight or placebo during the first study 
period. They received the respective other substance in the second study period (Fig. 4).

On the trial days subjects reported to the ward in the morning after an overnight fast. Baseline blood sampling 
was performed. Thereafter the infusion of 6.25 mg/kg bodyweight defibrotide or placebo was initiated for a period 
of 2 h. To ensure blinding defibrotide and placebo were filled in colored syringes and colored infusion lines. One 
hour after the start of the infusion a 2 ng/kg bodyweight LPS bolus was infused via a separate intravenous catheter. 
Following the infusion of LPS all subjects received a continuous infusion of 100 mL/h 0.9% saline solution until 
discharge. The timing of the LPS bolus was chosen to ensure relevant defibrotide levels for the critical time of the 
inflammatory response. To alleviate potential LPS-triggered flu-like symptoms paracetamol (500 mg tablets) was 
available for all subjects, which reportedly did not impact on endpoints33. Blood samples were drawn by fresh 
venipunctures at baseline (=pre), 0 h (=time of LPS bolus), 1 h, 2 h, 4 h, 6 h and 24 h thereafter. Subjects received 
a standardized meal four hours after infusion of LPS and were discharged from the study ward six hours after 
infusion of LPS. The next morning, 24 h after the LPS bolus another visit was planned. After a washout period of 
six weeks subjects received the alternative treatment, defibrotide or placebo. All procedures were repeated in the 
second study period.

Coagulation, fibrinolysis, endothelial activation and inflammatory cytokines.  Differential blood 
counts were performed by the ISO9002 accredited central laboratory of the General Hospital of Vienna using the 
Sysmex XE-2100/XE-500034. To measure the effects of defibrotide on the activation of coagulation and fibrinol-
ysis in the endotoxemia model we performed commercially available enzyme linked immunoassays (ELISA) to 
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measure levels of prothrombin fragment F1 + 2 (F1 + 2) (Enzygnost® F1 + 2, Siemens), thrombin-antithrombin 
complexes (TAT) (Enzygnost® TAT, Siemens), plasmin-antiplasmin complexes (PAP) (PAP Elisa, DRG® 
International Inc., New Jersey, USA), tissue-type plasminogen activator (Technozym t-PA Combi Actibind Elisa 
kit, Technoclone, Vienna, Austria) levels and plasminogen activator inhibitor-1 (Technozym PAI-1 Actibind 
Elisa Kit, Technoclone, Vienna, Austria) levels. To investigate the influence of defibrotide on endothelial acti-
vation during endotoxemia we measured soluble E-Selectin by ELISA (sE-Selectin/CD62E Quantikine, R&D 
Systems, Minneapolis, MN, USA) and vWF antigen levels (REAADS VWF:Ag ELISA, Corgenix, Broomfied, CO, 
USA). Furthermore we measured pro-inflammatory cytokines including tumor necrosis factor (TNF)-α (Human 
TNF-α Quantikine HS, R&D Systems, Minneapolis, MN, USA) and interleukin-6 (IL-6) (human IL-6 quantikine 
HS, R&D Systems, Minneapolis, MN, USA). C-reactive protein levels were measured as described previously35. 
All assays were performed according to the manufacturers’ instructions.

Thrombelastometry.  Thromboelastometry (ROTEM; Pentapharm GmbH, Munich, Germany) was per-
formed as previously described36. Thrombelastometry is sensitive to infusion of 2 ng/kg bodyweight LPS36. First, 
in an ex-vivo spiking study we investigated the concentration-dependent effects of defibrotide on the results of 
thromboelastometry at the doses 0 µg/mL, 25 µg/mL, 50 µg/mL and 100 µg/mL. The concentrations were chosen 
based on a previous publication13. The parameters of interest comprised the clotting time and maximum lysis.

Endpoints
The primary endpoint of this trial was the change in plasma levels of prothrombin fragments F1 + 2. Secondary 
endpoints included TAT complex levels, t-PA levels, PAI-1 levels, soluble E-selectin levels, vWF antigen lev-
els, TNF-α levels, Il-6 levels, C-reactive protein levels and differential blood counts. Furthermore we analyzed 
parameters of thromboelastometry: the clotting time [sec] and the maximum lysis [%] were analyzed. Safety 
assessments included vital parameters, documentation of adverse events and intake of concomitant medication.

Randomization and blinding.  First healthy volunteers were randomized to receive placebo or LPS. In a 
second step, they were randomized to receive defibrotide or placebo first. Randomization lists were generated by 
an independent statistician applying block randomization with block sizes of 8. Individual randomization codes 
and treatment allocation were concealed until immediately before administration. An unblinded study nurse 
under supervision of an unblinded physician who had access to treatment allocation codes prepared study drugs. 
They were not otherwise involved in the conduct of the trial. Participants, investigators and laboratory staff were 
blinded. Since defibrotide has a yellow color, both study drugs were filled in colored syringes and colored infusion 
lines were used to make them indistinguishable from each other. Subjects, treating physicians and other study 
staff who were involved in the study conduct were blinded.

Sample size.  For the ex vivo trial a formal sample size calculation was not performed, since no data was 
available for the effects of defibrotide on thromboelastometry. Therefore, a first analysis was performed after eight 
subjects in order to re-evaluate the sample size for the main trial based on these results.

The sample size calculation for the main trial was based on the experience with prior trials using 
anti-coagulants in the human endotoxemia model. Ten to 15 subjects in each group were sufficient to detect 
significant differences in the primary outcome parameter (F1 + 2 levels) between treatment groups in a 

20 healthy 
volunteers

Randomization

8 healthy volunteers

Washout Period 6 weeks

Period B: LPS/Placebo

Infusion of 2ng/kg bodyweight LPS bolus or placebo

Placebo: 0.9% NaCl solution

 16 healthy volunteers 
to receive LPS

 4 healthy volunteers 
to receive LPS

Randomization Randomization

8 healthy volunteers

Period A: LPS/Placebo

Washout Period 6 weeks

2 healthy volunteers

Period A: Placebo/Placebo

Washout Period 6 weeks

2 healthy volunteers

Washout Period 6 weeks

Period B: Placebo/Placebo

rash. 
One subject did not participate in the second study period due to 
unforeseen unavailability

Figure 4.  Flowchart of the trial.
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parallel-group study37–39. There were no data on the expectable effect size of defibrotide in the same model. In 
a prior LPS trial F1 + 2 levels of approximately 819 ± 173 (Standard deviation) pmol/ml were measured40. This 
corresponds to an approximate six-fold increase in F1 + 2 levels and was similar in other endotoxemia trials10,12,41. 
The median intra-individual coefficient of variation was 15% in a recent study, the mean was 25%41. Thus, a sam-
ple size of 16 volunteers was deemed sufficient to detect a 25% lower increase in the defibrotide period. The pla-
cebo group consisting of four healthy volunteers formed an additional control group, which also allows to assess 
the effects of defibrotide in healthy volunteers without LPS. However, this analysis is exploratory and no sample 
size calculation for this group was performed.

Statistical analysis.  Demographics and baseline data are presented with descriptive statistics (median and 
quartiles).

For the analysis of the above-mentioned endpoints area under the curves (AUC) of each period normalized 
to the baseline (as fold increase) were calculated and compared with the non-parametric Wilcoxon test, for rea-
sons of robustness. For the analysis of clotting time in thromboelastometry ratios compared to baseline, and in a 
second step deltas (difference between baseline and measuring time point) compared to baseline were calculated. 
Similar to other parameters, AUCs were calculated and compared. C-reactive protein levels were only measured 
at baseline and after 24 hours, therefore the 24 hours value was compared by the Wilcoxon test. The ratio of the 
AUC was calculated for both trial periods to determine effect sizes (AUC defibrotide divided by AUC placebo, 
medians and quartiles based on the individual ratios). Correlations were calculated by the Spearman Ranks cor-
relation test. Adverse events and concomitant medication were documented and are reported by descriptive sta-
tistics. As this trial was of an exploratory nature, no corrections for multiple testing applied. As no corrections 
for multiple testing were done, even though exploratory, inferences of significance should not be made, rather 
p-values should be noted as nominal. Missing data were not imputed, outliers were removed from analysis.
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