
royalsocietypublishing.org/journal/rsob
Review
Cite this article: Tang M, Tang H, Tu B, Zhu
W-G. 2021 SIRT7: a sentinel of genome

stability. Open Biol. 11: 210047.
https://doi.org/10.1098/rsob.210047
Received: 26 February 2021

Accepted: 5 May 2021
Subject Area:
biochemistry/molecular biology

Keywords:
SIRT7, genome stability, DNA repair, ageing,

cancer
Author for correspondence:
Wei-Guo Zhu

e-mail: zhuweiguo@szu.edu.cn
†These authors contributed equally to this

study.
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
SIRT7: a sentinel of genome stability

Ming Tang1,†, Huangqi Tang2,†, Bo Tu3 and Wei-Guo Zhu2

1Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai First
Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People’s Republic of China
2Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University
International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and
Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, People’s Republic of China
3Fred Hutchinson Cancer Research Center, Seattle, WA 98101, USA

MT, 0000-0002-6786-3201; HT, 0000-0003-3297-6545; BT, 0000-0001-6633-0844;
W-GZ, 0000-0001-8385-6581

SIRT7 is a class III histone deacetylase that belongs to the sirtuin family. The past
two decades have seen numerous breakthroughs in terms of understanding
SIRT7 biological function.We now know that this enzyme is involved in diverse
cellular processes, ranging from gene regulation to genome stability, ageing and
tumorigenesis.Genomic instability isonehallmarkof cancerandageing; it occurs
as a result of excessive DNA damage. To counteract such instability, cells have
evolved a sophisticated regulated DNA damage response mechanism that
restores normal gene function. SIRT7 seemsto have acritical role in this response,
and it is recruited to sites of DNA damage where it recruits downstream repair
factors and directs chromatin regulation. In this review, we provide an overview
of the roleof SIRT7 inDNArepairandmaintaininggenomestability.Wepaypar-
ticular attention to the implications of SIRT7 function in cancer and ageing.
1. Introduction
The integrity and stability of the genome are constantly challenged by both intrin-
sic or extrinsic insults such as replication stress, oxidative damage, ultraviolet
light, ionizing radiation and various genotoxic reagents, which can ultimately
lead to DNA damage [1]. If DNA damage is not properly repaired, it can result
in diseases such as cancer, or pathologies associatedwith ageing [2,3]. To counter-
act DNA damage, cells have evolved an elaborate mechanism—a tightly
regulated DNA damage response (DDR) that detects, signals and repairs DNA
lesions. Both normal and malignant cells depend on various DDR pathways to
protect their genomes [4]. Depending on the cell cycle stage, genetic background
and types of DNA damage, there are five major repair pathways, including non-
homologous end joining (NHEJ), homologous recombination (HR), mismatch
repair (MMR), base excision repair (BER) and nucleotide excision repair (NER) [5].

Post-translational modifications have a crucial role in mediating the cellular
response to DNA damage, providing a means of changing protein activity
without the necessity of de novo protein synthesis [6]. The most common
post-translational modifications include phosphorylation, ubiquitination, acety-
lation, methylation and sumoylation [6]. These modifications are reversible due
to their regulation by two opposing enzymes. For example, lysine residues are
acetylated due to the activity of acetyltransferases that attach acetyl groups and
deacetylated due to the activity of histone deacetylases (HDACs) [7].

In higher eukaryotes, HDACs can be divided into four classes. Class I Rpd3-
like enzymes are comprised of HDAC1, 2, 3 and 8. Class II Hda1-like enzymes
are composed of HDAC4, 5, 6, 7, 9 and 10. Class III Sir2-like enzymes consist of
seven sirtuins, SIRT1-7, which depend on NAD+ as a coenzyme. Class IV con-
tains only HDAC11 [7–9]. Sirtuins are a class of deacetylases that are
homologous to Sir2 (silent information regulator 2), seven members of this
family, SIRT1-7, all have a conserved catalytic domain (figure 1). In addition
to homology, sirtuins have different types of enzyme catalytic activities, such
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Figure 1. Sirtuin family protein structures and subcellular localizations.
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as ADP ribosyl transferase, desuccinylase and demalonylase,
the diverse enzyme activities endow sirtuins with diverse
biological functions [10–12].

Among the sirtuins, SIRT7 is the least studied protein, but
recent breakthroughs have shown that it is also involved in
multiple cellular processes and its biological function is
gradually becoming clear. In this review, we outline the cur-
rent studies regarding the role of SIRT7 in DDR and its
potential therapeutic role in disease.
2. SIRT7 structure and function
SIRT7 encodes a 400 amino acid protein and in humans’ func-
tions as an NAD+-dependent class III histone deacetylase
[13]. Compared with other nuclear-localized sirtuins (SIRT1
and SIRT6), SIRT7 exhibits deacetylase, desuccinylase and
deglutarylase activities [14–16]. Over the past two decades,
several SIRT7 substrates have been identified (table 1).
The wide variety of SIRT7 substrates suggests that SIRT7
participates in diverse biological processes.

In chromatin, SIRT7 selectively deacetylates histone H3
lysine 18 (H3K18Ac), which serves to maintain the cellular
transformation ability of human cancer cells and tumour for-
mation in vivo [14]. SIRT7 also functions as a desuccinylase of
histone H3 lysine 122 and a deglutarylase of histone H4
lysine 91 to promote chromatin compaction [15,16]. Despite
its prominent roles regulating chromatin, SIRT7 also deacety-
lates several non-histone proteins, including U3-specific
protein U3-55 k and nucleolar organizer polymerase-associ-
ated factor 53 (PAF53) that is involved in the precursor ribose
RNA (pre-rRNA) processing [19,24]. SIRT7 also deacetylates
GA-binding protein β1 (GABPβ1) to regulate mitochondrion
function and phosphoglycerate kinase 1 (PGK1) in regulating
glycolysis [21,22]. In addition, SIRT7 participates in ageing pro-
cesses and breast cancer lung metastasis by deacetylating
nucleophosmin (NPM1) and SMAD4 [20,30]. SIRT7 also
serves as a key activator of the telogen-to-anagen transition
in cycling hair follicles; here, it acts as the deacetylase of
NFATc1, which helps activate dynamic hair follicle stem cells
[39]. To further widen the range of SIRT7 deacetylation targets,
our laboratory conducted stable isotope labelling in SIRT7
knockout cell line coupled with quantitative mass spec-
trometry. We found a comprehensive list of candidates
involved in avarietyof functions, ranging fromgene regulation
to chromatin architecture homeostasis and metabolism [41].

Moreover, multiple studies reveal that SIRT7 regulates
proteostasis/endoplasmatic reticulum (ER) stress, mitochon-
drial protein folding stress and mitochondrial metabolism
[17,22,23,42]. SIRT7 is recruited to the promoters of ribosomal
protein genes via transcription factor Myc to repress gene
expression and to alleviate ER stress [42]. In addition, SIRT7
inactivation caused reduced quiescence, increased mito-
chondrial protein folding stress, and expression of SIRT7 is
reduced in aged haematopoietic stem cells (HSCs) [23]. The
same phenomenon was observed in human haematopoie-
tic cells [43]; conversely, SIRT7 upregulation significantly
improved the regenerative capacity of aged HSCs [23]. This
is the first report linking stem cell ageing and SIRT7, giving
the hope for targeting the dysregulated cellular programme
to reverse HSC ageing. SIRT7 deacetylates GABPβ1, an impor-
tant role of regulator of nuclear-encoded mitochondrial genes,
which impacts mitochondrial function [22]. SIRT7 arginine
methylation, which inhibits its H3K18 deacetylase activity,
mediated glucose sensing and signalling with mitochondria
biogenesis to maintain energy balance [17].

Most notably, SIRT7 is a crucial player in the DDR: it has
histone deacetylase activity at DNA damage sites and exhibits
other catalytic activities towards proteins involved in DNA
damage and repair [15,35,44]. We discuss these processes in
more detail below.
3. SIRT7 in maintaining genome stability
3.1. SIRT7: guardians of genome integrity and stability
Numerous studies support a role for SIRT7 in genome
stability and organismal viability. Much support has come
from the use of Sirt7 knockout mice (figure 2). Vakhrusheva
et al. [17] found that Sirt7-deficient mice suffer from degen-
erative heart hypertrophy, accompanied by inflammatory
cardiomyopathy and decreased resistance to cytotoxic and
oxidative stress. In female Sirt7 knockout mice, Vazquez
et al. [45] found that Sirt7−/− females exhibit reduced fertility
without an effect on oocyte meiotic maturation. Multi-
systemic mitochondrial dysfunction is also observed in
Sirt7-deficient mice.



Table 1. SIRT7 targets.

substrate activity functions

p53 deacetylation apoptosis, heart hypertrophy and inflammatory cardiomyopathy [17]

H3K18 deacetylation oncogenic transformation [14]

DAF-16 deacetylation stress response [18]

PAF53 deacetylation pre-rRNA processing [19]

NPM1 deacetylation ageing [20]

PGK1 deacetylation glycolysis [21]

GABPβ1 deacetylation mitochondrial homeostasis [17,22,23]

U3-55k deacetylation pre-rRNA processing [24]

H3K122 desuccinylation chromatin compaction [15]

FOXO3 deacetylation monocyte apoptosis [25]

FKBP51 deacetylation Akt activity [26]

CDK9 deacetylation RNA polymerase II transcription [27]

DDB1 deacetylation activity of the CUL4B/DDB1/DCAF1 E3 ubiquitin ligase complex [28]

DDX21 deacetylation transcription elongation and genome stability [29]

SMAD4 deacetylation breast cancer metastasis [30]

OSX deacetylation bone formation [31]

WDR77 deacetylation transmethylase activity of the WDR77/PRMT5 complex [32]

Fibrillarin deacetylation rRNA synthesis [33]

H3K36/K37 deacetylation heterochromatin silencing [34]

ATM deacetylation DNA repair [35]

Ran deacetylation nuclear export of NF-κB p65 [36]

H4K91 deglutarylation chromatin structure [16]

GATA4 deacetylation stress-induced cardiac hypertrophy

STRAP deacetylation p53 activity and stability [37]

CRY1 deacetylation circadian phase coherence and glucose homeostasis [38]

Nfatc1 deacetylation hair growth [39]

USP39 deacetylation hepatocellular carcinoma development [40]

cardiac hypertrophy and
inflammatory cardiomyopathy [17,22]

reduced fertility without
affecting oocyte meiotic maturation [45]

decreased bone formation [31]

hepatic microvesicular steatosis [22,46]

delayed hair growth [39]

defective embryogenesis resulting in shorter
lifespan [23,68,70,71]

hearing loss [22]Sirt7–/– mice

Figure 2. SIRT7 knockout mice phenotypes.
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SIRT7 functions at chromatin to suppress ER stress and
prevents fatty liver disease, and SIRT7-deficient mice develop
chronic hepatosteatosis resembling human fatty liver disease,
and liver-specific reconstitution of SIRT7-deficient mice
reversed the fatty liver phenotype. Strikingly, SIRT7
overexpression in the livers of high-fat, diet-fed mice sup-
pressed ER stress and rescued the fatty liver phenotype
[42]. Sirt7−/− pups are born at sub-Mendelian ratios, indicat-
ing a defect in embryogenesis. Mutant mice that survive to
adulthood exhibit a shortened lifespan with signs of
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accelerated ageing such as premature (6 months), kyphosis
and decreased gonadal fat pad content [44]. Sirt7−/− mice
exhibit elevated blood lactate levels, exercise intolerance,
cardiac dysfunction, microvesicular steatosis and age-related
hearing loss. In addition, in the liver-specific Sirt7 KO
(Sirt7hep−/−) mice display the same hepatic mitochondrial dys-
function and represents SIRT7 activity in a cell-autonomous
effect on mitochondria function [22]. SIRT7 expression is
reduced in aged HSCs, which are characterized by increased
apoptosis, loss of quiescence and decreased reconstitution
capacity, features resembling those observed in Sirt7−/−

mice, and in mice reconstituted with Sirt7−/− HSCs improved
their regenerative capacity [23].

Using hair follicle stem cell-specific Sirt7 knockout mice,
Li et al. [39] found that loss of Sirt7 impedes the follicle
life cycle transition from telogen to anagen phase and delays
hair growth. In addition, in response to pressure overload, the
cardiomyocyte-specific Sirt7 knockout mice show severe cardi-
omyocyte hypertrophy [46]. Osteopenia-specific Sirt7 knockout
mice showed decreased bone formation that occurred via acyla-
tion of SP7/Osterix (OSX)—a transcription factor that activates
genes involved in osteoblast differentiation [31]. Finally, Fang
et al. [47] reported that Sirt7-deficient mice show increased
Sirt1 activity, resulting in inhibited PPARγ expression and
thus restrained adipocyte differentiation and diminished
white fat accumulation. The phenotypic consequences of
SIRT7 deficiency could be explained by the functional link of
SIRT7 with the maintenance of genome stability.

3.2. SIRT7 regulates DNA double-strand break repair
DNA double-strand breaks (DSBs) constitute the most toxic
type of DNA lesion. As such, they must be efficiently repaired
to maintain genome stability. DSBs are mainly repaired by
NHEJ, which is predominant in non-cycling cells exposed to
genotoxic stress, and HR, which functions in proliferating
cells as it requires the pairing of sister chromatids [48]. Regard-
ing HR, data from a previous report suggested that SIRT7
might regulate HR-mediated repair [49]. However, the detailed
mechanism remains largely unknown and requires further
investigation. For this reason, we explain how SIRT7, which
is efficiently recruited to DSBs, is involved in mediating
NHEJ. Whether SIRT7 is involved in other forms of DNA
repair is largely unknown.

Upon DSBs, driven by a signalling cascade, which is
initiated by ataxia-telangiectasia mutated (ATM)-mediated
phosphorylation of histone 2A variant H2AX to generate
γ-H2AX, this process is followed by the recruitment of the
mediator of DNA damage checkpoint protein 1 (MDC1)
and activation of RNF8–RNF168-dependent ubiquitination.
Following the ubiquitination of H2A at lysine 13 and lysine
15 (H2AK13ub and H2AK15ub), and histone H4 lysine 20
dimethylation (H4K20me2) and histone H4 lysine 16 mono-
methylation (H4K16me1), 53BP1 is rapidly recruited onto
chromatin surrounding the DSBs where it serves as an
effector of the NHEJ pathway [50–54].

Interestingly, Vazquez et al. [44] found that 53BP1 foci are
remarkably reduced in SIRT7−/− cells, and that DNA damage,
mutations and replication stress accumulate. The resulting
genome instability leads to compromised NHEJ (figure 3a).

SIRT7 is, in fact, recruited to DSBs, but at a relatively slower
rate compared with SIRT1 and SIRT6 [44]; its recruitment
depends on poly (ADP-ribose) polymerase (PARP) activity,
which ensures the recruitment of several DNA damage repair
proteins to damaged sites [44,55,56]. A direct interaction
between SIRT7 and PARP1 has been reported [15], but the
detailed mechanism and function of SIRT7–PARP1 interplay
is unknown.

Consistent with the previous report regarding the effects of
SIRT7 on NHEJ, Chen and coworkers identified the Dicer
protein in the regulation of SIRT7 localization upon DNA
damage. They find that DNA damage agents can induce
Dicer expression and results in increased trapping of SIRT7 in
the cytoplasm and increases H3K18 acetylation at sites of
damaged DNA and facilitates NHEJ repair pathway [57,58].
Growing evidence supports the importance of chromatinmodi-
fication at or around DNA-damaged sites in DDR [59,60].
Again, data provided by Vazquez et al. [44] showed that
SIRT7-mediatedH3K18deacetylation affects 53BP1 recruitment
to DNA damage sites. H3K18Ac is directly involved in DNA
repair, andH3K18Ac levels are fine-tuned by SIRT7 in response
to DNA damage. Meanwhile, Li et al. [15] showed that SIRT7 is
recruited to DSBs and catalyses the desuccinylation of histone
H3 lysine 122, thereby promoting chromatin condensation
and efficient DSB repair. Bao et al. [16] demonstrated that
endogenous Sirt7 functions as a histone deglutarylase to regu-
late histone H4 lysine 91 glutarylation dynamics. In response to
DNA damage, Sirt7 depletion hindered the removal of
H4K91glu. Similar to SIRT7-mediatedH3K122 desuccinylation,
the removal of H4K91 glutarylation also aims at promoting
chromatin condensation for the DNA repair process [16]
(figure 3a). It is of great interest that all three sites—H3K18Ac,
H3K122succ and H4K91glu—are mediated by SIRT7 during
DNA damage repair. Whether these sites function indepen-
dently or in a synergistic manner is largely unknown. Further
studies arewarranted to shed light on howSIRT7-mediated epi-
genetic regulation collaborates with the functions of other
repair proteins recruited to DSBs and the underlying regulatory
network. However, based on the above findings, it is clear that
SIRT7 is required during the early phase of DNA repair and
that a signalling mechanism is deployed that links histone
modification to DSB repair.

These findings establish the role of SIRT7 in the early
phase of DNA repair and elucidate novel signalling that
links histone modification and DSB-related repair. During
the process of DNA damage and repair, the proteins recruited
to DNA damage sites are gradually displaced and inacti-
vated, which make the cells return to the normal state and
ensure faithful DNA repair. Among the numerous key
DNA damage response factors, ATM has been reported to
be an apical kinase in response to DSBs. Through exposure
to DNA damage, ATM is activated through a series of
highly organized machineries [61–65]. Acetylation and phos-
phorylation are two key post-translational modifications
involved in activation of ATM in response to DSBs, both
are dynamically regulated. Our research fills the gap of the
dynamic regulation of ATM acetylation, and we find that
SIRT7 is gradually recruited to chromatin in the late phase
of repair and deacetylate ATM, which is required for the
dephosphorylation of ATM by the phosphatase WIP1, and
thus ensure the faithful DNA repair [35] (figure 3b). How
SIRT7 regulates the downstream of ATM signalling needs
more exploration.

Interestingly, re-localization of SIRT7 from the nucleolus
to DNA damage sites affects ribosomal transcriptional repres-
sion [44,66,67]. This finding suggests that SIRT7-mediated
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DNA repair might have consequences on genome-wide tran-
scriptional regulation under conditions of chronic DNA
damage, plausibly the restoration of transcriptional profiles.

On the other hand, R-loop is a three-stranded nucleic acid
structure; its aberrant formation and persistence cause DNA
damage. Song et al. [29] showed that SIRT7-mediated deace-
tylation of DDX21 deacetylation cooperates which helps to
prevent R-loop accumulation and DSBs, thus safeguarding
genome integrity.

3.3. Role of SIRT7 in cancer and ageing
Increased genome instability is a common hallmark of
both ageing and cancer. Consequently, any defect in DNA
repair can contribute to genomic instability and sub-
sequently lead to accelerated ageing or tumorigenesis
[68,69]. DNA damage accumulates with age, and defects in
DNA repair can cause phenotypes of premature ageing.
Below, we describe the emerging data that suggest defects
in SIRT7-mediated genome stability can affect ageing.

A longevity function has been proved for mammalian
sirtuins. Indeed, Sirt7-deficient mice exhibit a reduction in
mean and maximum lifespans, which indicates the role of
SIRT7 in the ageing process [17]. By performing a compara-
tive interactomics study associated with DNA repair,
chromatin assembly and ageing, Lee et al. [20] found
that SIRT6 and SIRT7 regulate NPM1 during the ageing
process.
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As mentioned earlier, researchers offered insights into
the role of SIRT7 in the ageing process, showing that SIRT7
protects adult hair follicle stem cells from ageing by ensuring
their progression through the hair growth cycle [39,70]. Bi
et al. [71] also delineated the mechanisms of human stem
cell ageing, showing that SIRT7 can form a complex with
the nuclear lamina and heterochromatin proteins to maintain
a repressive heterochromatin state and regulate the innate
immune response during stem cell ageing. Moreover, Liu
et al. [72] showed that SIRT7 deficiency leads to lowered his-
tone acetyltransferase 1 (HAT1) activity and decreased H4K5
and H4K12 acetylation, which affects chromatin assembly.
They also obtained evidence that SIRT7 ablation results in
aneuploidy and ageing phenotypes, including senescence
and nucleolar expansion [72].

Genomic instability in rDNA repeat sequences is an
underlying cause of cell ageing [68]. Paredes et al. [73] uncov-
ered an important role for SIRT7 in guarding against rDNA
instability and protecting against senescence through associ-
ation with SNF2H. Taken together, it seems that SIRT7
serves as an important regulator of mammalian longevity
and might act as a molecular bridge between ageing and
genome stability, paving the road for use. These preliminary
findings offer support to investigate the value of targeting
SIRT7 in the treatment of age-related diseases.

Based on the studies of SIRT7 in cancer, Kiran et al. [74]
demonstrate that SIRT7 plays an important role in cell survi-
val of osteosarcoma (U2OS) under DNA damage-induced
stress. Specifically, the researchers showed that SIRT7 attenu-
ated the effects of genomic stress, as SIRT7 knockdown cells
showed increased susceptibility to the DNA damaging agent
doxorubicin. Mechanistically, the cell cycle of SIRT7-overex-
pressing cells is temporarily halted at the G1/S phase when
DNA damage is detected, probably to ensure DNA repair.
SIRT7 resulted in reduced accumulation of γ-H2AX, p53
and the attenuation of stress-activated protein kinases (p38
and JNK) to maintain the genome integrity [74]. Beside the
role of SIRT7-mediated H3K18 deacetylation in maintaining
a malignant phenotype, Pandey & Kumar [75] provided evi-
dence that HBx-dependent accumulation of SIRT7 favours
H3K18 deacetylation and downregulation of RPS7, which is
involved in the DDR and cancer cell transformation. Finally,
data from our laboratory support that SIRT7 has degraded
in response to 5-fluorouracil treatment and renders colorectal
cancer cells sensitive to radiation [76]. The identification of
SIRT7 inhibitors could thus be of great importance with
respect to cancer treatment.
4. Conclusion
SIRT7 is involved in diverse cellular processes, including
energy homeostasis, chromatin regulation, gene regulation
and ribosome biogenesis. Here, we have highlighted the
roles of SIRT7 in maintaining genome stability through its
involvement in the DDR and the repair of DSBs. While it is
clear that SIRT7 serves to promote DNA repair and ensure
genome stability, how SIRT7 might interact with HR, MMR,
NER and BER are still unclear.

While we know that SIRT7 regulates chromatin conden-
sation in response to DNA damage via the desuccinylation
of H3K122 and deglutarylation of H4K91 [15,16]. As a
master epigenetic regulator, there are no doubt more epige-
netic marks regulated by SIRT7 need to be studied for a
comprehensive understanding of epigenetic regulation.

The importance of SIRT7 in DNA damage repair suggests
that this enzymemight function as a tumour suppressor. How-
ever, SIRT7 is overexpressed in various cancers. Thus, SIRT7
might have opposing effects on cancer initiation and pro-
gression [14,32,76–78]. More systematic research is necessary
to delineate how SIRT7 function might change across cancer
evolution and development. A deeper understanding of
SIRT7 function in genome stability at the molecular and
physiologic levels may enable us to develop novel cancer- or
ageing-related therapeutic targets. Such targets will be essen-
tial for conceptualizing the translation of SIRT7 biology into
clinical applications.
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