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Abstract. Hepatic encephalopathy (HE) is regarded as a 
complication of liver cirrhosis, and 50-75% of patients who have 
been diagnosed with cirrhosis have HE syndrome. The aim of 
this study was to identify genes and pathways associated with 
HE alcoholics. Human protein-protein interactions were down-
loaded from the STRING database. Gene expression data were 
downloaded from EMBL-EBI. Combined score and Pearson's 
correlation coefficient were calculated to construct differential 
co-expression networks. Graph-theoretical measure was used 
to calculate the module connectivity dynamic score of multiple 
differential modules. In total, 11,134 genes were obtained after 
mapping between probes and genes. Then, 501,736 pairs and 
16,496 genes were obtained to form background protein-protein 
interaction networks, 1,435 edges and 460 nodes were obtained 
constituting differential co-expression networks. Twenty-three 
seed genes and 10  significantly differential modules were 
identified. Four significantly differential modules which had 
larger connectivity alternation were observed. The identified 
seed genes and significantly differential modules offer novel 
understanding and molecular targets for the treatment of HE 
alcoholics.

Introduction

Hepatic encephalopathy (HE) is a complication of liver 
cirrhosis  (1), and 50-75% of patients who have been 
diagnosed with cirrhosis have the HE syndrome (2,3). The 
HE also has other types classified according to the standard 
constituted at the World Congress of Gastroenterology in 
1998, including encephalopathy associated with acute liver 
disease and encephalopathy without liver disease  (4). It is 

reported that the damage of astrocytes triggers disturbance 
of neurotransmission and induces development of HE (5). 
Astrocytes play an important role in the central nervous system 
(CNS) and constitute about a third of brain cortical volume (6). 
Astrocytes act  as the main regulators in neurotransmitters, 
such as transition of amino acids (7). Glutamine synthase, 
which maintains an ammonia balance in the human body, 
converts glutamate and ammonia into glutamine. Glutamine 
synthase is mainly contained in astrocytes (8).

Ammonia is known as a main cause of HE. It is reported that 
most of HE is associated with high a concentration of ammonia (9). 
Ammonia is mainly produced in the gut and synthesized by 
bacteria. High levels of ammonia disturb the  neural system 
function and neurotransmission. Up to now, the main treatment 
for HE focuses on reducing the production and concentration of 
ammonia (10). It is reported that sodium benzoate and sodium 
phenylacetate are used as ammonia cleaners in patients who are 
diagnosed with hyperammonemia or urea cycle disorder (11). 
Glycerol phenylbutyrate is used to treat HE through the regulation 
of ammonia metabolism. Glycerol phenylbutyrate is a pro-drug 
of phenylacetate and decomposes nitrogen to urinary phenyl-
acetylglutamine (12). Polyethylene glycol 3350 is used to clean 
the intestine and has proven to be a more effective therapy than 
lactulose (β-1, 4-galactosido-fructose) (13). Bass et al reported 
rifaximin significantly decreased the risk of HE compared with 
placebo and approximately 90% of patients were treated with 
lactulose (14). Lactulose, a disaccharide, cannot be digested by 
human intestinal disaccharidases (15). Lactulose is digested into 
small molecular organic acids, such as acetic acid and lactic acid. 
The osmotic effect produced by these acids induces fermentative 
diarrhoea (16). Lactulose was first reported to be used as treat-
ment for HE in 1966 (17). Rahimi et al reported that lactulose 
caused more acute electrolyte imbalance and loss than PEG (18). 
Besides that, hepatic encephalopathy occurs as a complication of 
alcoholic liver disease mainly found in the most advanced stage 
(19). And while hepatic encephalopathy  occurs in earlier stages, 
it is usually a consequence of excessive alcohol consumption 
before the onset of encephalopathy.

In addition, substantial molecular research is associ-
ated with HE. Protein-protein interactions (PPIs) processed 
by bioinformatic algorithms have been used to search for 
biomarkers and biological pathways in various types of 
cancer, such as breast cancer (20), lung cancer (21,22), colon 
cancer (23), ovarian cancer (24) and glioma (25).
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In the present study, we downloaded all human PPI 
networks and gene expression data associated with HE 
alcoholics. Differential co-expression networks (DCNs), which 
comprise 1435 edges and 460 nodes were constructed based 
on PPI networks and gene expression data. Twenty-three seed 
genes and 13 multiple differential modules (M-DMs) were 
identified. Ten differential modules were found when P-values 
were <0.05. Four differential modules had major connectivity 
alternation using the graph-theoretical measure method.

Materials and methods

Gene expression data. Gene expression data associated with HE 
alcoholics E-GEOD-53808 were downloaded from the European 
Molecular Biology Laboratory at European Bioinformatics 
Institute (EMBL-EBI). The data contained 9 control samples, 
15 non-HE alcoholic samples and 8 HE alcoholic samples.

PPI networks. All human PPI networks were downloaded from 
the String database. There were 787,896 pairs of PPI networks 
and 16,730 genes. PPI network pairs were selected when the 
combined scores were >0.2. Then, 501,736 pairs and 16,496 genes 
were obtained, and these genes and networks formed background 
PPI networks. Expression profiling was chosen if they contained 
genes belonging to background PPI networks. The new expres-
sion profiling data contained 9,608 genes.

Construction of DCNs. The PPI networks were selected from 
background PPI networks if they contained genes belonging 
to the new expression profiling. The Pearson's correlation 
coefficients of HE and non-HE alcoholics were calculated 
respectively. Edges were observed when absolute values of 
Pearson's correlation coefficient were greater than δ (δ=0.9). 
P-values of genes in the DCNs of two groups were calculated 
using one-side t-test algorithm. Weight value between gene i 
and gene j was calculated as:

V denotes a node set of DCN.

Identification of M-DMs. M-DMs were identified from DCNs. 
The process comprises of three steps: ⅰ) seed prioritization, 
ⅱ) module search and ⅲ) refinement of M-modules. Importance 
value (score value) of each gene in DCNs was calculated as:

Each network had an adjacent matrix. Nk(i) represents adjacent 
nodes of gene i in Gk network, A'k represents adjacent matrix 
which was weighted by normalized degree; g(i) equals z-score. 
The z-score of each gene in the DCNs was averaged and 
ranked. One seed gene was regarded as differential module C. 
Then, gene u, which was adjacent to gene v, was joined into 
module C to form module C'. The entropy of the two modules 
was calculated as:

Lk(i) denotes total weight between gene i and other nodes in 
modules C. Lk

-(i) represents weight between gene i and other 
nodes in modules C.

The candidate modules which had <4 nodes were eliminated. 
Two modules were merged into one module if the overlapped 
degree of two modules was >0.05. In total, 13 modules were 
identified.

Significant statistical test of candidate modules. One thou-
sand, four hundred and thirty-five edges were selected from 
178,888 edges and regarded as the random network. Module 
search processing was done following the above methods. 
Construction of random networks was repeated 100 times and 
3,696 modules were generated. The P-value of the candidate 
module was calculated as the probability of the module, which 
has the observed score or smaller by chance. The Benjamini-
Hochberg method (26) was used to correct the P-value. Ten 
modules were identified as significantly differential modules 
as P-values were ≤0.05.

Quantification of M-DMs connectivity and significance anal-
ysis. Graph-theoretical measure method was used to calculate 
module connectivity dynamic score (MCDS). MCDS between 
two adjacent modules was calculated as:

C denotes one differential module, AiC presents adjacent 
matrix of C. The total MCDS of differential module C equals 
the average of MCDS of all adjacent modules.

Differential modules were regarded as significantly differen-
tial modules of connectivity alternation at P-value <0.05.

Results

Gene expression data and PPI network processing. Gene 
expression data E-GEOD-53808 were downloaded from 
the EMBL-EBI database, and 11,134 genes were obtained 
following mapping between probes and genes. The human 
PPI networks were downloaded from the STRING database. 
Networks comprised of 787,896 pairs of PPI networks and 
16,730 genes.

PPI network pairs were selected if their combined scores 
were >0.2. Pairs (50,1736) and 16,496 genes were obtained to 
form background PPI networks. The new expression profiling 
data identified contained 9,608 genes.

Identification of DCNs. Interaction pairs (178,888) which 
contained genes of new expression profiling were identified. 
These pairs were selected from background PPIs. The edges 
were selected if absolute values of Pearson's correlation coef-
ficient were >0.9. One thousand, four hundred and thirty-five 
edges and 460 nodes were obtained and constituted DCNs. 
Two DCNs, constituting the non-HE alcoholics and HE alco-
holics groups, were identified. Two DCNs had the same node 
sets and different edge sets.
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Identification of M-DMs. The important value (z-score) of 
each gene was calculated. The z-score of each gene in all the 
DCNs were averaged and ranked. Top 5% genes were selected 
as seed genes and 23 seed genes were identified (Table I).

Modules were searched based on each gene. Entropy of two 
modules and change of entropy were calculated. Candidate 
modules were eliminated if nodes were <5. Two modules 
were merged into one module if the overlap degree was ≥0.5. 
Finally, 13 modules were identified.

Significant test of candidate modules. One thousand, 
four hundred and thirty-five edges were chosen from 
178,888 edges randomly to constitute one random network. 
The random networks were constructed 100 times, and gene 
rated 3,696 modules. After P-values were corrected by the 
Benjamini-Hochberg algorithm, 10 significant differential 
modules were identified.

Quantification of connectivity dynamics of M-DMs and statis-
tical significant test. Graph-theoretical measure algorithm 
was used to calculate MCDS. MCDS between two modules 
and total MCDS were calculated. Four significant differential 
modules, which had larger connectivity alternation were found 

(P<0.05) (Fig. 1). Module 1 contains 80 nodes and 478 edges; 
module 2 comprises 36 nodes and 119 edges; module 3 contains 
42 nodes and 145 edges; module 4 comprises of 25 nodes and 
64 edges.

Discussion

Alcohol damage on hepatic cells impairs enzyme activities 
and detoxification of liver. In addition, impairment of hepatic 
cells disturb brain functions  (27). Hepatic encephalopathy 
(HE) is a serious complication of alcoholic-associated hepatic 
disease  (19). HE has various clinical syndromes, such as 
nausea, malaise, asterixis and coma (28,29).

In the present study, we obtained all the PPI networks and 
gene expression data from international databases. We identi-
fied 23 seed genes and 10 significant differential modules 
associated with HE alcoholics. Four differential modules, 
which had lager connectivity alternations, were obtained by 
calculating the module connectivity dynamic score of M-DMs.

The 23 genes identified in this study included PSMA3, 
RPS13, RPL8, PSMA2, AHSA1, RPS5, EEF1B2, PSMC2, 
ATP5B and NDUFV2. PSMA3 is one subunit of 20S protea-
some and interacted with ROA1, PCBP2 and IREB2. These 

Figure 1. Four significant differential modules with larger connectivity alternation: (A) 80 nodes and 478 edges; (B) 36 nodes and 119 edges; (C) 42 nodes and 
145 edges and (C) 25 nodes and 64 edges.
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proteins function in RNA processing, such as splicing (30). 
PSMA3 (rs2348071) GG homozygote is related to children with 
asthma, and children with GG homozygotes are susceptible to 
disease in Taiwan (31). The potential function of PSMA3 was 
analyzed in HE alcoholics.

Proteasome 26S subunit ATPase 2 (PSMC2) is an impor-
tant component of 26S proteasome. The complex processes 
substrates into 20S pivotal component (32). PSMC2 expression 
level is increased in osteosarcoma and silencing of PSMC2 
suppresses cell growth and migration (33). In a further study, 
we will investigate the function of PSMC2. The 26S protea-
some may play a role in HE alcoholics.

ATP5b is one subunit of ATP synthase complex. α2/δ1 
interacts with ATP5b and constitute a complex in intracellular 
membrane. The complex is capable of regulating calcium 
metabolism and promotes a decreasing rate of calcium tran-
sients (34). The ATP5b expression level was markedly increased 
in colorectal tumor tissues compared with normal tissues, but 
the expression level of ATP5b has no association with tumor 
location (35). ATP synthase complex can generate energy and 
the energy supply may affect the treatment of HE alcoholics.

Activator of 90KD heat shock protein ATPase homolog 1 
(AHSA1) is an important factor that can activate ATPase of 
HSP90, which also is a chaperone of HSP90 (36). In osteo-
sarcoma, AHSA1 promotes cell proliferation, migration, and 
invasion by regulating Wnt/β (37). In a further study, we will 
clone the AHSA1 sequence, and investigate its effect on cell 
proliferation and treatment of HE alcoholics.

In eukaryotic cells, Rps5/uS7 is a subunit of 40S protein 
complex, which plays an important role in recognition of initi-

ated codon. Substitution in C-terminal residues and β-strand 
of Rps5 subunit reduces initiation rate and recognition accu-
racy (38). There is no study of Rsp5 on HE alcoholics.

It is reported that EEFIB has four loci, including EEF1B1, 
EEF1B2, EEF1B3 and EEF1B4. Three of them are func-
tional  (39). EEF1B2 is mapped to chromosome 2 by PCR 
method (40). EEF1B2 is related with retrotransposition func-
tion and capable of transcriptional activity (41).

NADH dehydrogenase ubiquinone f lavoprotein  2 
(NDUFV2) encodes one 24  kDa component of NADH-
ubiquinone oxidoreductase complex and is involved in electron 
transportion (42). NDUFV2 is involved in neuronal mobility 
and psychiatric dysfunction  (43). The 3542G>A polymor-
phism, which is located at the promoter region of NDUFV2, is 
associated with bipolar disorder (44). Therefore, we suggested 
that NDUFV2 may play an important role in HE progression.

In conclusion, we identified 23 seed genes and 10 signifi-
cantly differential modules associated with HE alcoholics. 
Four  modules were identified as they had relatively larger 
connectivity alternations. The newly identified seed genes and 
modules offer understanding of the potential mechanisms and 
biomarkers for the therapeutic target of HE alcoholics.
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