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Abstract

The human immunodeficiency virus type | (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one
transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion
channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is
still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this
study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to
exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized a-helical representation of the TM
domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried
out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully
hydrated lipid bilayer environment on representative structures obtained from the above approach showed the
pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability
of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The
structural features of the pentamer models are consistent with existing experimental information on the ion channel
activity, existence of a kink around the lle17, and the location of tetherin binding residues. Ser23 is proposed to play
an important role in ion channel activity of Vpu and possibly in virus propagation.
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Introduction

The human immunodeficiency virus type-1 (HIV-1) employs
a range of viral proteins to successfully establish and
propagate infection in the host. These include the structural
envelope (Env gp120, gp41), capsid (p24°*) and matrix (p17“4)
proteins, the enzymes reverse transcriptase, ribonuclease H,
integrase and protease, two regulatory proteins (Rev, Tat), and
four accessory proteins (Nef, Vif, Vpr and Vpu) [1]. Of these,
the accessory proteins are not required for viral replication in
vitro but are indispensable for the establishment and
persistence of HIV infection and pathogenesis [2]. The viral
protein U (Vpu) is an 81-amino acid transmembrane (TM)
protein encoded by HIV-1 that increases virus release from
host cells [3,4]. The protein, however, is not encoded by the
less virulent human immunodeficiency virus type-2 (HIV-2) and
simian immunodeficiency virus (SIV) [4]. Knowledge of the
three-dimensional structure of the oligomeric form of Vpu is
expected to further our understanding of its functional
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mechanisms, and this can possibly be exploited as a drug
target [5-7].

Vpu is a type | integral membrane protein with an N-terminal
TM domain and a C-terminal cytoplasmic domain [8]. The
cytoplasmic domain contains two alpha helices [9,10] and is
involved in the degradation of CD4 molecules at the
endoplasmic reticulum [11,12]. Between the alpha helical
domains are two serine residues, Ser52 and Ser56 [13], which
must necessarily be phosphorylated for Vpu to exhibit its CD4
degradation activity [14]. The TM domain helps in viral release
from host cells [12], which is brought about by the degradation
of tetherin, an antiviral protein encoded by host cells that
causes retention of virions on the cell surface [15]. Three
residues in the Vpu TM domain, Ala14, Ala18, and Trp22, have
been shown to be important for this activity [16]. The ability of
Vpu to oligomerize [8] allows it to form cation-selective ion
channels [17]. Such channels can form both in planar lipid
bilayers and in the plasma membrane of Escherichia coli in
vivo [17], and they are known to facilitate viral release [5]. The

November 2013 | Volume 8 | Issue 11 | e79779


http://dbtindia.nic.in

ion channel activity ascribed to the TM domain of Vpu [5]
appears to be rather weak and the characteristics of the
channel almost resemble those of a pore [18]. Gel permeation
chromatography studies show Vpu to be a pentamer [19], but
recent photo-induced cross-linking studies indicate that a
variety of oligomeric states might exist [20].

Solution NMR studies in lipid micelles on Vpu,;, a truncated
form of Vpu containing the N-terminal TM domain, showed an
a-helix spanning residues 9 to 29 [21]. Similar studies on
Vpu,.s, a peptide containing residues 2 to 30 from Vpu with a
6-residue solubility tag, revealed an a-helix spanning residues
8 to 25 [22]. The helix has a kink around lle17, and is tilted at
an angle of 13° with respect to the membrane. Fourier
transform infrared (FTIR) spectroscopy on the first 31 N-
terminal residues of Vpu indicate an a-helix with a tilt of
(6.5£1.7)° and a rotational pitch angle of (283+11)° around
Val13 [23]. Simulated annealing with restrained molecular
dynamics on rotationally symmetrical tetramers, pentamers,
and hexamers of Vpu shows that only a pentamer has a
rotational pitch angle for Val13 close to the experimental value
[23]. Molecular dynamics (MD) simulations restraining the
motion of ions to the axis of the pore show that the
conductance of the pentamer is closer to the experimentally
observed value than either the tetramer or the hexamer [24].
MD simulations performed using an octane layer for mimicking
the properties of a lipid bilayer have shown that a helix is
expelled from a hexameric arrangement; the same was not
observed for a pentamer [25,26]. A number of modeling and
simulation studies have been carried out by modeling the
channel as a homo-pentamer [27-32]. Pentamer models have
also been generated using pre-equilibrated monomers and
these show the lumen of the pore to be a hydrophobic stretch
[32]. However, all of the studies mentioned above were carried
out with the assumption that the native oligomeric state is a
pentamer. Notably, the modeling studies that originally
suggested Vpu to form a pentamer did not take into
consideration a fully hydrated lipid bilayer environment [24-26].
A systematic study of the Vpu TM domain tetramers,
pentamers and hexamers, taking into account the explicit lipid
environment would provide atomistic details on the oligomeric
structure, and the factors that determine the stability of the
native structure.

A useful approach for evaluating the stability of different
oligomeric states of a membrane protein is the use of replica-
exchange molecular dynamics (REX/MD) in an implicit
membrane environment [33,34]. REX/MD overcomes the
problem of entrapment in local minima [35], thereby making the
sampling of regions of phase space possible that are otherwise
not accessible to constant temperature molecular dynamics.
Implicit membrane models take into consideration the physical
environment in which a membrane protein finds itself without
having real membrane and solvent molecules, making the
approach computationally efficient [33,36]. Combining implicit
membrane models with REX/MD has made it possible to
estimate the stability of different oligomeric states in terms of
both potential energy and free energy [33,34]. This study was
carried out to model the possible oligomeric states of the Vpu
TM domain, and to understand the structural and energetic
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factors that make one oligomeric state more stable than others.
Briefly, REX/MD simulations have been used with an implicit
membrane model for sampling varied conformations of different
possible oligomeric states of Vpu. Representative structures
have then been selected for more extensive studies in fully
hydrated lipid bilayers. The pentameric state is shown to be the
most favored state, and structural features of the protein are
described that help explain its function.

Results and Discussion

Higher oligomers display reduced tilt

The implicit membrane model that was used for the REX/MD
simulations uses generalized Born electrostatics for modelling
the solvent on both sides of the membrane [36]. The
membrane hydrophobic core is represented using a low-
dielectric slab with a fixed thickness [33]. Thus, when there is
mismatch between the hydrophobic regions of a helical protein
and the continuum solvent region, the membrane cannot
respond by altering its thickness. The only mechanism by
which such a mismatch is minimized is by tilting of the helices
to ensure that as much of the hydrophobic part of the protein
lies in the membrane as possible. Figure 1A shows the
probability distribution of the tilt angles of different oligomers
over the last 9 ns of REX/MD. The tilt of the helices was seen
to decrease with an increase in the number of helices in the
system. In the higher oligomers (tetramer, pentamer and
hexamer), the helices are packed closely together, allowing
interhelical interactions to occur. These interactions are
stabilizing, so the helices are able to overcome the
destabilizing effect of hydrophobic mismatch. Thus, the protein
does not have to tilt too much to attain an energetically stable
conformation. In the dimer and trimer, however, interhelical
interactions are almost absent with hydrophobic mismatch
being the major factor affecting the orientation of helices, and
the protein tilts until most of its hydrophobic residues are buried
in the membrane core.

Tetramer, pentamer, and hexamer are possible
oligomeric states

The average molecular mechanical potential energy of the
TM domain in different oligomeric states relative to the
monomeric state is shown in Figure 1B. The energies of all the
states were comparable, with the average energy of any given
oligomeric form differing by less than 17 kcal/mol compared to
the monomeric form. Based on this analysis, no particular
oligomer could be identified as the native form. Bu et al. have
suggested the necessity of considering entropic factors due to
the assembly of helices [34]. The entropy loss accompanied by
the formation of a given oligomeric state was calculated by
taking the entropy term for the monomer as the reference. The
free energy values (Table 1 and Figure 1C), which were
obtained after taking into account entropy loss and stabilization
arising from solvation, indicate the tetramer and pentamer to be
stable oligomeric states. There is an increase in the free
energy from monomer to dimer, and from dimer to trimer; this is
followed by a remarkable decrease in the free energy in the
trimer-tetramer transition, and a slight increase in going from
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Figure 1. Replica-exchange molecular dynamics in an implicit membrane environment. (A) Probability distribution of the tilt
angle for the conformations sampled at 300 K from the last 9 ns of replica-exchange molecular dynamics. (B) Average potential
energy and (C) free energy of the different oligomeric states over the last 9 ns of replica-exchange molecular dynamics. The values
shown are relative to the monomer. (D) RMSD of the tetramer, the pentamer, and the hexamer in the REX/MD simulations.

doi: 10.1371/journal.pone.0079779.g001

Table 1. Entropy loss and free energies of the different oligomeric states in the replica-exchange MD simulations.

Potential energy

Solvation energy

Rotational entropy term, Translational entropy term, Vibrational entropy term, Free energy (kcal/

Oligomeric state (kcal/mol) (kcal/mol) TS0t (kcal/mol) TStrans (kcal/mol) TSvip (kcal/mol) mol)

Monomer 487.32 -295.42 0 0 0 191.90
Dimer 483.06 -195.19 1.81 0.62 -25.46 310.90
Trimer 490.65 -108.26 2.34 0.98 -63.03 442.10
Tetramer 504.56 -232.64 1.86 1.24 13.79 255.03
Pentamer 504.07 -207.78 2.16 1.44 10.29 282.40
Hexamer 493.24 -152.71 242 1.60 -11.15 347.66

doi: 10.1371/journal.pone.0079779.t001

tetramer to pentamer to hexamer. Figure 1D shows the RMSD
of the tetramer, the pentamer, and the hexamer in the REX/MD
simulations. The RMSD changes rapidly in the initial period
before being converged, indicating rearrangement of the
helices until a stable conformation is attained. It is important to
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note that the helices in the initial conformation were placed at
large separations to encourage rotation of the helices (Figure
S1in File S1).

Equilibration of the representative structures sampled from
REX/MD showed that the dimer and trimer do not form a
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Figure 2. Representative structures. The structures for the different oligomeric states before (top row) and after (bottom row) 10

ns simulation in an implicit membrane environment are shown.
doi: 10.1371/journal.pone.0079779.g002

compact structure, with the helices lying far apart (Figure 2).
Since the dimer and trimer are not feasible oligomeric
structures, the rest of this report is concerned with the tetramer,
pentamer and hexamer, unless stated otherwise. The use of
REX/MD ensures that much of the phase space of the various
oligomeric states, and a majority of all possible conformations
are sampled. As shown above, the tetramer and pentamer
were identified as stable oligomeric states using REX/MD with
an implicit membrane. Although it is able to model the physical
characteristics of the membrane hydrophobic core and bulk
solvent, a drawback of the generalized Born implicit membrane
model used here is that it does not take into account the
hydrophilic nature of the pore region, which is central to the
functioning of ion channels and strongly influences the
orientation and behavior of residues lining the pore. A more
realistic representation of the channel is therefore possible only
with accurate modeling of the pore region.Thus, a
comprehensive investigation of the stabilities of the tetramer,
the pentamer, and the hexamer has been carried out in a
hydrated lipid bilayer environment.

Explicit membrane MD simulations reveal the pentamer
to be the most stable oligomeric state

Two independent simulations were carried out for each of the
tetrameric, pentameric and hexameric states in the explicit
bilayer environment (see Methods section). In both sets of
simulations, visual inspection revealed that only the pentamer
retained the rotational symmetry necessary for forming an ion
channel (Figure 3A). Using root mean-square deviation
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(RMSD) values, the pentameric forms were observed to attain
equilibration in the first 2 ns adapting itself to the membrane
environment, but the tetramers and the hexamers become
distorted and completely lose their initial pore-like structure
(Figure 3B). Such distortion was seen in both the model
structures for the tetrameric and hexameric states. However,
model 1 of the tetramer exhibits RMSD values that are
comparable to the pentamer. Interestingly, in one of the
hexamer models (Model 1), a helix is expelled from the bundle,
leading to a pentameric structure. Such expulsion has been
reported by Lopez et al. in studies on a hexameric form of the
Vpu TM domain in an octane environment [26], and is
indicative of a propensity of the Vpu TM domain to exist in a
pentameric state. This is in agreement with earlier studies
which suggest that the oligomer exists in a pentameric form
[19,23]. The possible factors that favor the pentameric form
over the other forms are elucidated below.

The helices in the pentamer are held together by strong
van der Waals interactions

We looked at the van der Waals interaction energy between
neighbouring helices in the different oligomers. As can be seen
clearly, interhelical van der Waals forces greatly stabilize the
helices in the pentamer (Figure 4A and Table S1 in File S1).
The interhelical distances and rotational symmetry of the
pentameric state are probably better suited for van der Waals
interactions than other oligomeric states. The significance of
van der Waals interactions over other forms of nonbonded
interactions between adjoining helices can be attributed to the
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Figure 3. Molecular dynamics in an explicit membrane environment. (A) Models for the tetramer, pentamer and hexamer after
simulation in a fully hydrated lipid bilayer. The images for the pentamer are after 30 ns, and those for the tetramer and hexamer are
after 10 ns. The lipid bilayer and solvent molecules have been omitted for clarity. The pentamer retained a channel-like structure in

both the simulations. (B) RMSD of the different oligomeric states.

doi: 10.1371/journal.pone.0079779.g003

fact that the residues in the interface between adjoining helices
are non-polar, as apparent from the contact maps shown in
Figure 4B (contact maps for model 2 are shown in Figure S4A
in File S1). Since the structural features of models 1 and 2 are
similar, only the figures for model 1 are shown hereafter, with
images for model 2 shown in File S1. The non-polar residues
form close contacts, making effective interhelical interactions.
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Most interhelical contacts occur on the N-terminal side of the
channel, where the residues are all hydrophobic. A notable
exception to the non-polar nature of these contacts is a salt
bridge between Glu28 and Arg30 on neighboring helices, which
is seen in the top right corner of the contact maps (Figure 4B
and Figure S4A in File S1). One of the amino groups on the
Arg30 side chain faces the carboxyl group on Glu28, while the
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other amino group points towards a phosphate oxygen in a
nearby lipid molecule as shown in model 1 (Figure 4C and
Figure S4B in File S1, panel on extreme left). The salt bridge is
seen to occur between all pairs of neighboring helices (Figure
4C and Figure S4B in File S1), and it exists consistently in both
the simulations. Such a salt bridge satisfies the hydrogen bond
requirements for the two charged residues, thereby stabilizing
the residues in an otherwise hydrophobic environment. In the
tetramer and hexamer, however, the salt bridge is absent in
some pairs of adjacent helices; this might be an important
factor in stabilizing the oligomer.

The probability distribution for interhelical distances between
all adjoining helix pairs over the simulation was carried out,
with the distance between the centres-of-mass of adjacent
helices taken as the interhelical distance. The terminal residues
were not considered in calculating the centre-of-mass to avoid
high fluctuations due to these residues. The narrow distribution
for the pentamer suggests that the interhelical distance
remains stabilised at a given distance (Figure 5A and Figure
S3A in File S1). Furthermore, the occurrence of peaks
centered around the same point for all helix pairs in the
pentamer indicates that the interhelical distance is almost the
same in all helix pairs. However, for the tetrameric and
hexameric structures, the interhelical distances calculated for
the helical pairs and the broad nature of some curves indicate
structures that are not so stable (Figure 5A and Figure S3A in
File S1). These observations support highly symmetric nature
of the pentameric structure, but not the tetrameric or hexameric
structures.

The hydrophilic and basic residues in the TM domain
interact with lipid headgroups

We then estimated the average number of hydrogen bonds
between polar residues on the protein and the lipid headgroups
(the cutoffs used in calculating the number of hydrogen bonds
were 3.5 A for the donor-acceptor distance, and 45° for the
donor-hydrogen-acceptor angle). As described above, the
arginine residues within the TM domain have one of their
amino groups facing the lipid headgroup, allowing the formation
of hydrogen bonds between the side chain and the headgroup
oxygen atoms. The number of such interactions with the
headgroup is significantly higher in the pentamer (Figure 5B
and Figure S3B in File S1), and might play a role in adhering
the protein to the lipid bilayer. Tyrosine residues are also able
to form hydrogen bonds, although the number of bonds is
fewer in number than those due to arginine, especially in the
pentamer. This might be due to tyrosine side chains lying
slightly above the plane of the headgroup oxygens, while the
arginine side chains lie in the plane of these oxygens.
Moreover, the arginine side chains are oriented in a direction
perpendicular to the axis of the lipid molecules, thereby making
favorable hydrogen bond angles. Interactions between
positively charged residues and lipid headgroups have
previously been shown to be crucial in structures of ion
channels as reported by both experimental [37,38] and
computational studies [39,40].
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A hydrophobic region occurs around the middle of the
channel

The Ser23 residue faces the interior of the channel (Figure
6A and Figure S5A in File S1), providing a hydrophilic region in
the pore around that residue. Notably, the initial orientations of
the side chains were chosen to be random in which Ser23 was
facing the exterior of the pore in the beginning of the REX/MD
simulations (see Figure S1 in File S1). The explicit lipid bilayer
simulations were started with a conformation where the pore
was uniformly solvated, but most of the water molecules were
expelled within the first 50 ps of the equilibration period. At the
end of 30 ns of production run, much of the pore water was
concentrated around the serine residue and towards the ends
of the pore, near bulk water, rather than being spread uniformly
across the pore (Figure 6B and Figure S5B in File S1). This is
because the residues occurring in the middle of the protein are
all hydrophobic, and the part of the channel lined by these
residues, consequently, has a predominantly hydrophobic
environment. Furthermore, the pore is constricted towards the
N-terminal, leaving less room for the accommodation of water
molecules. As seen in a dynamical variation mapping of the
pore radius, the narrowest part of the pore occurs in the middle
around Val12 and lle16 (Figure 6C and Figure S5C in File S1).
The occurrence of hydrophobic residues along this narrow
stretch is likely to impose an energy barrier to the transport of
ions, and this region might play a role in controlling the kinetics
of ion conduction. It is possible that the channel is in a closed
conformation, since a large part of the pore is devoid of water
molecules.

The structural model

In the absence of an experimentally characterized structure
for the oligomeric Vpu TM domain, the proposed models offer
useful insights into structural features that govern channel
behavior, and into various intra- and intermolecular interactions
that explain why the channel adopts a given structure. The two
pentamer models discussed above are consistent with each
other, with the RMSD between them differing by less than 3 A
(Figure S2 in File S1). The van der Waals interactions appear
to be dominant between the helices, with the interhelical
interface being formed by nonpolar residues. The importance
of van der Waals forces in mediating helix-helix interactions in
the membrane environment has previously been emphasized
in solution NMR studies on the transmembrane peptide
glycophorin A [41]. Certain structural features of the modeled
structures are in remarkable agreement with available
experimental data for the channel. Importantly, the kink
observed in the helix around lle17 in our model (Figure 7A and
Figure S6A in File S1) is consistent with NMR studies [22]. The
initial structure for the simulations had idealized a-helices
without any kink, but this might be important for ion channel
activity, as suggested by modeling studies on wild-type and
mutant Vpu proteins [42]. Another important structural feature
we observed was that the three residues known to interact with
the tetherin transmembrane domain — Ala14, Ala18, and Trp22
[16] — all lie on the same face of the helix (Figure 7B and
Figure S6B in File S1); this is consistent with a pentameric
model generated using the structure reported in the above
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doi: 10.1371/journal.pone.0079779.g005

NMR study (PDB ID: 1PI7) [16,22]. It must be noted that the
reported structure was obtained from the monomer structure
followed by modeling the tetrameric and pentameric states on
the basis of rotational symmetry. Such orientation of the
residues is a necessary structural requirement, since, if tetherin
is to bind to Vpu, it must bind to all of these residues.
Moreover, the three residues lie on the exterior side of the
channel, and they face the membrane rather than the pore.
This has important implications. Firstly, the residues are
available for binding to the tetherin transmembrane domain.
Secondly, this allows the Trp22 residue to form hydrophobic
contacts with lipid tails. Such hydrophobic interactions are
important in stabilizing the protein in the hydrophobic lipid
bilayer environment.

The Vpu channel is equally selective towards K* and Na*,
and only weakly permeable to CI- [5,7]. The highly conserved
motif TTVGYGD that is seen in the selectivity filter of K*-
specific channels [43,44] is absent in Vpu. However, because
Vpu is able to discriminate cations over anions, it should have
some structural motif that is responsible for this selectivity,
which remains uncharacterized. Amino acids that differentially
interact with ions, and thereby determine the selectivity of a
channel, are likely to be charged/polar. The Vpu TM domain
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has five such residues — Ser23, Glu28, Tyr29, Arg30, and
Lys31. While Tyr29 faces the lipid headgroup, Arg30 is
stabilized via interactions with both Glu28 and the lipid
headgroup. Although Lys31 faces the pore, it is unlikely that a
positively charged residue will determine the selectivity of a
cation-specific channel like Vpu. Moreover, Lys31 lies on the
C-terminal side, where the pore is broader, and the density of
pore water is high enough to shield any electrostatic effect on a
permeating ion. The only other polar residue facing the pore is
Ser23, and we hypothesize that this plays an important role in
ion permeation. This finds support in conductance studies
showing that a mutant with the serine substituted for a leucine
does not exhibit any ion-conducting activity [18]. The Vpu
protein from HIV-1 subtype O and P viruses, however, has a
tryptophan in place of serine at position 23. Given the
importance of this serine residue, Vpu from these subtypes is
not expected to show ion channel activity. It is interesting to
note that assays on Vpu from these subtypes report poor virus
release from cells (NK and SJ; unpublished results). This
further supports a role for the Vpu ion channel activity in
promoting viral propagation. The occurrence of serine at
position 23, and the consequent channel activity, might offer a
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Pore radius (A)

Figure 6. Pore profile. (A) View along the pore axis from the C-terminal showing the Ser23 residue in “licorice” representation.
Serine faces the interior of the channel in the pentamer model. (B) Side view of the pentamer model showing the location of the
Ser23 residue (in “licorice” representation) and water molecules in the pore. The N-terminal side is on the top and the C-terminal is
at the bottom. (C) Pore radius across the axis of the pentamer model. The pore is constricted towards the N-terminal side (top half).

doi: 10.1371/journal.pone.0079779.g006

selective advantage to M-subtype viruses, thereby accounting
for the predominance of this subtype.

It is not clear whether the modeled channel is in an open or
closed conformation. Certain features of the model support a
closed state. The presence of a constricted region lined by
hydrophobic residues is not likely to encourage the passing of
an ion. Besides, the largely dehydrated nature of the pore is
characteristic of closed states. However, if the modeled
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channel represents an open conformation, the channel is likely
to show very weak ion-conducting activity, owing to the
structural features described above. This possibility cannot be
ruled out, since conductance studies on Vpu have shown that
the channel is indeed weakly conducting [18]. It is not possible
to determine whether the modeled channel is in an open state
or not unless the ion-conducting activity of the channel is
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Figure 7. Structural features of the pentamer model. (A) Kink around the lle17 residue in the pentamer model. (B) The three
residues known to interact with tetherin shown in van der Waals representation.

doi: 10.1371/journal.pone.0079779.g007

investigated. We are presently doing this through free energy
calculations.

Conclusion

This study comprehensively examines the possibility of the
Vpu TM domain to exist in different possible oligomeric states
in a hydrated lipid bilayer environment. The results suggest that
the pentameric form is the most stable state, with the
pentameric models possessing the symmetry that is typical of
homo-oligomeric channels. The tetrameric and hexameric
models, however, lose this symmetry over the course of the
simulations. The major force stabilizing the pentameric form
over the other forms is van der Waals interactions between
adjoining helices. The pentamer is further stabilised via a salt
bridge between Glu28 and Arg30, and via interactions between
polar residues on the protein and lipid headgroups. These
interactions are far weaker in the tetramer and hexamer, and
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might play a critical role in holding together the helical TM
domains to the membrane. The structural features of the
pentamer models from this study are able to account for much
of the activity of Vpu observed in previous experimental
studies. While the residues that bind to the tetherin
transmembrane domain face the exterior (and are hence
accessible), Ser23, which has been previously shown to be
crucial in ion transport, faces the pore. The Vpu protein from O-
and P-subtypes, however, is known to lack this serine at
position 23, and is thus likely to have reduced ion channel
activity. We hypothesize that the predominance of M-subtype
viruses might be facilitated by the ability of M-subtype Vpu to
conduct ions. lon channel activity, therefore, could possibly
have a role in enhancing the replication fitness of the virus.
Future studies should be able to elucidate the structural and
energetic factors governing ion selectivity and conductance in
the channel.
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Methods

Modeling of TM domain and replica-exchange
molecular dynamics

The TM domain of Vpu is important for its ion channel
activity, tetherin degradation and virus release, and hence only
this domain was considered for our modeling studies. Since the
TM domain is known to have a helical structure [21-23,45-47]
the first 32 residues of HIV-1 NL4-3 Vpu (MVPIIVAIVALVVAIII
AIVVWSIVIIEYRKI) were modeled as an idealized a-helix
using the molecular modeling program SYBYL7.2 (Tripos
International, St. Louis, Missouri, USA; http://www.tripos.com).
While previous studies have shown residues 5 to 29 to form the
TM domain [21,22,48] we have extended this by a few residues
on either side to ensure that there are no destabilizing effects
due to abrupt termination of the TM domain. Previous modeling
studies have shown that these TM domain extensions develop
a-helical conformation when modeled in a lipid bilayer
environment, and that these extensions play a role in stabilizing
the helix via nonbonded interactions with lipid headgroups [48].
Different oligomeric states of the TM domain were modeled
using the methodology described by Bu et al. [34]. The TM
domain was aligned along the z-axis, moved by a distance of
20 A in the positive direction of the y-axis, and then given two,
three, four, five, and sixfold rotational symmetries about the z-
axis using the IMAGE facility in CHARMM [49,50] to give a
dimer, trimer, tetramer, pentamer and hexamer, respectively.
For comparison, a monomer aligned along the z-axis was also
modeled. Although it is unlikely that the dimer or trimer will form
the channel, these forms were modeled to examine the
structural and energetic changes accompanying sequential
assembly from monomer to higher oligomeric states.

The oligomeric forms were first simulated in an implicit
membrane environment. The Generalised Born model with a
simple switching function (GBSW) module [33,36] was used
with a surface tension coefficient of 0.03 kcal mol" A2 An
implicit membrane with a hydrophobic core of thickness 35 A
was placed perpendicular to the z-axis. A smoothing region of
thickness 0.5 A was used on both sides of the hydrophobic
core for a smooth transition from the hydrophobic implicit
membrane to the hydophilic continuum solvent. REX/MD
simulations were carried out for each oligomeric state using the
CHARMM22 all-atom protein force field with CMAP corrections
[51,52]. A total of eight replicas were distributed over an
exponentially spaced temperature range from 300 K to 400 K.
Temperatures above 400 K were not used in the study to avoid
non-physical distortion of the structures. Since the oligomeric
TM domains have a cylindrical geometry, a cylindrical harmonic
restraint with force constant 1 kcal mol" A2 and radius 25 A
was applied, thereby limiting the drifting of the TM domains.
Langevin dynamics was used with a friction coefficient of 5 ps-!
for heavy atoms, and exchanges were attempted every 1 ps.
Simulations were run for 10 ns, with the first 1 ns being
considered as the equilibration period. The last 9 ns of the
trajectories from simulations at the lowest temperature (i.e.,
300 K) were used for analysis. The rotational and translational
entropy terms were calculated from the principal moments of
inertia, while the vibrational entropy was calculated by first
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removing rotation and translation from all the frames, and then
carrying out quasiharmonic mode analysis [53,54].

Selection of representative structures and further
equilibration

Two model structures for each of the oligomeric states
(tetramer, pentamer and hexamer) were chosen for further
consideration for explicit membrane simulations, details of
which are given in this section. The tilt angle of the helical
principal axis with respect to the membrane normal was
calculated for all the conformations sampled in the last 9 ns of
simulation. The range of tilt angle values that occurred most
frequently was determined from a probability distribution of tilt
angles. For selecting a representative structure that may
further be used in extensive MD simulations, a set of structures
was chosen that had tilt angles with a high probability of
occurrence. From this set for each oligomeric state, the
structure with the lowest molecular mechanical energy was
selected as the representative structure. Each of the
representative structures was then equilibrated for 10 ns in a
GBSW implicit membrane with the same parameters as given
above but without any constraints on any part of the protein.
The temperature was kept constant at 300 K using the Nose-
Hoover thermostat [55,56]. The configuration obtained after
these 10 ns implicit membrane simulation of each of the three
oligmeric states was taken as the other model. Since it is not
straightforward to choose a reliable model without a reference
structure as standard, we have considered the most sampled
conformations (on the basis of tilt angle) as two different
models for further calculations.

Molecular dynamics in a fully hydrated lipid bilayer

Since the representative dimer and trimer did not form a
compact structure after the above equilibration step (see
Results and Discussion), only the tetramer, pentamer and
hexamer were considered for further studies. To investigate the
stability of these oligomeric states in a membrane-like
environment, simulations were carried out in a solvated lipid
bilayer. For each of these three oligomeric states, two
independent simulations were carried out, one with the
representative structures after the 10 ns constant temperature
simulation in an implicit membrane (henceforth referred to as
“Model 1”), and the other with the structures before this 10 ns
simulation (“Model 2”). The protein-lipid-solvent system was set
up using the CHARMM-GUI Membrane Builder [57,58]. The
protein was first aligned along the z-axis and pore water was
generated. A homogeneous lipid bilayer of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) was generated around
all the oligomeric forms. The membrane was perpendicular to
the z-axis, with its center at z = 0 A. Bulk water of 15 A
thickness was placed above and below the membrane.
Potassium and chloride ions were added to attain a salt
concentration of 0.15 M KCI and a zero net charge on the
system. Details about the number of each component in all the
systems are shown in Table 2.

The CHARMM22 all-atom protein force field including CMAP
corrections [51,52], the CHARMMS36 all-atom lipid force field
[59], and the modified TIP3P water model [60] were used for
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Table 2. Number of each component in the systems studied.
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Lipid (POPC) Total number of

System Protein residues molecules Water molecules K*ions Cl-ions atoms System size along x-, y-, and z-axes (in A)
Tetramer, Model 1 128 94 5307 13 17 30735 62 x 62 x 82
Pentamer, Model 1 160 95 5496 13 18 31984 63 x 63 x 82
Hexamer, Model 1 192 105 6848 16 22 37934 67 x 67 x 86
Tetramer, Model 2 128 85 4755 12 16 27871 60 x 60 x 80
Pentamer, Model 2 160 99 6050 15 20 34186 64 x 64 x 84
Hexamer, Model 2 192 89 5657 13 19 32211 64 x 64 x 82
doi: 10.1371/journal.pone.0079779.t002
the simulations. Periodic boundary conditions were set up, and trajectory. (A) Model 1 vs Model 2 (B) Model 1 vs Model 1 (C)
the particle mesh Ewald method was used for calculating long- Model 2 vs Model 2. Figure S3, Interhelical distance and
range electrostatic interactions  [61]. Lennard-Jones protein-lipid interactions. (A) Probability distribution of
interactions were modulated by a switching function between interhelical distance in the explicit membrane simulations. The
10 A and 12 A, with all nonbonded interactions being truncated distance between the centres-of-mass of all helix pairs has
at 12 A. The covalent bonds involving hydrogen atoms were been calculated and then averaged. (B) Hydrogen bonds
constrained using SHAKE [62]. The system was equilibrated between polar residues and headgroups at different intervals
using the six-step equilibration scheme proposed by Jo et al. for Arg30 and headgroup (left panel), and Tyr30 and
[57]. Positional harmonic restraints were applied on the ions headgroup (right panel). Data shown is for model 2. Figure S4,
and the heavy atoms of the protein to hold them in place during Interhelical interactions. (A) Interhelical contact maps. Residue-
the initial equilibration simulations. Planar harmonic restraints residue distances have been averaged over time. (B) Arg30
were applied on water molecules to ensure that no water (orange) and Glu28 (mauve) shown in licorice representation.
molecule entered the hydrophobic region of the membrane. The phosphate group (“CPK” representation) on a nearby
Also, lipid head groups were retained close to the membrane- POPC molecule (“bonds” representation) is also shown. The
water interface using planar harmonic restraints. The harmonic orientations of Arg30 and Glu28 in the tetramer, pentamer and
restraints on the different components were gradually reduced hexamer are also shown. Figure S5, Pore profile, (A) View
during the equilibration. The first two equilibration steps were along the pore axis from the C-terminal showing the Ser23
carried out in the NVT ensemble (constant volume and residue in “licorice” representation. (B) Side view of the
temperature) and the last four in the NPT ensemble (constant pentamer model showing Ser23 (“licorice” representation) and
pressure and temperature), keeping the temperature at 303.15 water molecules. (C) Pore radius across the axis of the
K using the Nose-Hoover thermostat [55,56]. Production runs pentamer model. Figure S6, Structural features of the
were carried out in the NPT ensemble for 10 ns with a timestep pentamer. (A) Kink around the lle17 residue in the pentamer
of 2 fs. The pentamer models were simulated for 30 ns to model. (B) The three residues known to interact with tetherin
investigate the stability of the models. The molecular shown in van der Waals representation.
visualization program VMD [63] was used for rendering images (PDF)
and analyzing hydrogen bond interactions. Pore radius was
measured using the HOLE2 program [64]. All MD simulations Acknowledgements
and other analyses were performed using the CHARMM
program [49,50]. We thank Harjinder Singh for his encouragement, and S.
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