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ABSTRACT
Introduction  Blood oxygen saturation is low compared 
with healthy controls (CONs) in the supine body position 
in individuals with type 1 diabetes (T1D) and has been 
associated with complications. Since most of daily life 
occurs in the upright position, it is of interest if this also 
applies in the standing body position. In addition, tissue 
oxygenation in other anatomical sites could show different 
patterns in T1D. Therefore, we investigated blood, arm 
and forehead oxygen levels in the supine and standing 
body positions in individuals with T1D (n=129) and CONs 
(n=55).
Research design and methods  Blood oxygen saturation 
was measured with pulse oximetry. Arm and forehead 
mixed tissue oxygen levels were measured with near-
infrared spectroscopy sensors applied on the skin.
Results  Data are presented as least squares means±SEM 
and differences (95% CIs). Overall blood oxygen saturation 
was lower in T1D (CON: 97.6%±0.2%; T1D: 97.0%±0.1%; 
difference: −0.5% (95% CI −0.9% to −0.0%); p=0.034). 
In all participants, blood oxygen saturation increased 
after standing up (supine: 97.1%±0.1%; standing: 
97.6%±0.2%; difference: +0.6% (95% CI 0.4% to 0.8%); 
p<0.001). However, the increase was smaller in T1D 
compared with CON (CON supine: 97.3%±0.2%; CON 
standing: 98.0%±0.2%; T1D supine: 96.9%±0.2%; T1D 
standing: 97.2%±0.1%; difference between groups in the 
change: −0.4% (95% CI −0.6% to −0.2%); p<0.001). Arm 
oxygen saturation decreased in both groups after standing 
and more in those with T1D. Forehead oxygen saturation 
decreased in both groups after standing and there were 
no differences between the changes when comparing the 
groups.
Conclusion  Compared with CON, individuals with T1D 
exhibit possible detrimental patterns of tissue oxygen 
adaptation to standing, with preserved adaptation of 
forehead oxygenation. Further studies are needed to 
explore the consequences of these differences.

INTRODUCTION
Individuals with short duration of type 1 
diabetes (T1D) have a low blood oxygenation 
compared with healthy controls (CONs) as 
measured with pulse oximetry.1 2 The differ-
ence was subclinical, corresponding to only 

0.7%, but considering the dissociation curve 
of hemoglobin, even a small difference in the 
arterial blood oxygen saturation within the 
normoxic range implies a large difference 
in the oxygen partial pressure of the arterial 
blood.3 A low blood oxygen saturation in T1D 
has been observed only in the supine body 
position. Since most of daily life occurs while 
standing, it is important to assess whether this 
difference can be confirmed in the standing 
body position. If not, then it might not be as 
clinically important as previously assumed.

Several studies investigating postural 
changes in oxygenation in healthy individ-
uals were found, but the number of studies 
in T1D was low. In healthy individuals, blood 

Significance of this study

What is already known about this subject?
►► Individuals with type 1 diabetes (T1D) have a low 
blood oxygen saturation in the supine body position 
but it is unknown if the same difference is present in 
the standing body position.

What are the new findings?
►► We confirmed that blood oxygenation is lower in T1D 
compared to healthy controls (CONs) in the supine 
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cantly reduced blood oxygenation in the standing 
position compared to CONs.

►► We observed a more significant drop from the supine 
to the standing position in the arm oxygen satura-
tion in T1D and forehead oxygen saturation dropped 
similarly from the supine to the standing position 
between groups.
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research or clinical practice?

►► Detrimental patterns of blood oxygen adaptation in 
diabetes could play an important role in the patho-
genesis of diabetic complications, and our findings 
could lead to new treatments targeting low blood ox-
ygen levels to prevent or treat diabetic complications.
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oxygenation was observed to increase from the supine to 
the upright sitting body position.4 5 The transcutaneous 
oxygen tension in the foot also increases from the supine 
to the upright sitting body position in CONs, but even 
more so in persons with type 2 diabetes.6 7 The upper 
arm skin oxygenation (biceps muscle) was observed in 
CONs to decrease from the supine to the upright body 
position using a tilt table.8 Finally, cerebral oxygenation 
measured with near-infrared spectroscopy of the skin 
has been observed in CONs to decrease when changing 
position from the supine or the sitting position to the 
standing position.9 We found no studies in T1D investi-
gating postural changes in blood or tissue (cerebral, arm, 
leg, and foot) oxygenation.

This exploratory study was based on five research ques-
tions. The main hypotheses were (1) that individuals with 
T1D exhibit lower oxygen saturation in the blood than 
CONs and (2) to the same extent in both the supine and 
the standing body position. Exploratory hypotheses were 
(3) that oxygenation levels were also lower in T1D in the 
arm and forehead, (4) to the same extent in both body 
positions and finally (5) that low oxygen levels were asso-
ciated with diabetes risk factors such as albuminuria. We 
aimed to test our hypotheses with an acute study design 
in individuals with T1D compared with healthy individ-
uals without diabetes.

METHODS
Study population
Data used in the present study were derived from two 
different studies. The Rubinaut study was carried out 
in Copenhagen in 2017 and investigated the effects of 
increasing blood oxygen saturation on autonomic func-
tion in 54 individuals with T1D.10 Participants were >18 
years of age and with a diagnosis of T1D (WHO criteria). 
Main exclusion criteria were the presence of (1) non-
diabetic kidney disease and (2) end-stage renal disease 
(estimated glomerular filtration rate<15 mL/min/1.73 
m2), dialysis or kidney transplantation. All participants 
in the Rubinaut study gave informed consent before 
participating. From the FinnDiane cohort, 95 individ-
uals with T1D and 55 CONs participated in a similar 
study, also investigating the effects of increasing blood 
oxygen saturation on autonomic function.11 All partic-
ipants were between 18 and 35 years old at the time of 
inclusion. T1D was diagnosed based on a measure of 
C-peptide in plasma of <0.03 nmol/L and initiation of 
permanent insulin treatment within 1 year after the diag-
nosis of diabetes. The main exclusion criteria were clin-
ical signs of cardiovascular disease. All participants with 
T1D had normal serum creatinine, indicating preserved 
kidney function.

In both studies, measurements of orthostatic blood 
pressure (one supine and three standing) were 
performed, while continuous oxygen saturation levels 
were measured. Continuous data (one datapoint per 

second) on oxygen levels during the 6 min of examina-
tion per participant were collected and analyzed post hoc 
in the current study.

Clinical characteristics
HbA1c was measured by high-performance liquid chro-
matography in Rubinaut, and by an immunoturbidi-
metric immunoassay (Medix Biochemica, Kauniainen, 
Finland) in the FinnDiane cohort. Plasma creatinine was 
measured by an enzymatic method (Hitachi 912, Roche 
Diagnostics, Mannheim, Germany). The urinary albu-
min:creatinine ratio (UACR) was measured by an enzy-
matic immunoassay in three consecutive morning urine 
samples. Three measurements of brachial blood pres-
sure were obtained after 5 min in sitting position with 
an oscillometric blood pressure monitor (um201; A&D 
Medical, Tokyo). Height and weight were measured, and 
Body Mass Index was calculated as weight (kg)/height 
(m).2 A detailed medical history was obtained from all 
participants and cross-referenced with electronic hospital 
records. Current smoking was defined as one or more 
cigarettes/cigars/pipes a day.

Experimental protocol
The participants were permitted a light meal 2 hours 
before the testing but were requested to take no medi-
cation and to abstain from tobacco from midnight the 
day before the visit and were also asked to refrain from 
strenuous exercise 24 hours prior to the examination. 
Testing was performed in a quiet, temperature-controlled 
room at 20°C–26°C, between 8:00 and 14:00 hours. The 
experimental protocol included simultaneous measure-
ment of oxygenation in the peripheral blood (left hand 
index finger), the tissue of the left forearm (sensor size: 
1.5 cm×4 cm, volar side, starting 2 cm distally for caput 
radii, ending 6 cm distally from caput radii, direction 
parallel with the radial bone) and the left part of the 
forehead (sensor size: 1.5 cm×4 cm, placed 2 cm supe-
rior of the left eyebrow, direction horizontal), first for 
1 min in the supine position and consecutively for 5 
min in the standing position. The position of the arm 
was not controlled or measured during the experiment, 
but participants were instructed in lying and standing 
with the arms relaxed and alongside the body and not 
to move during measurements, except when changing 
body position. Participants were instructed in changing 
body position from supine to standing in approximately 
1–2 s. Peripheral blood oxygen saturation was measured 
with pulse oximetry (Cosmo; Novametrix, Wallingford, 
Connecticut, USA), and tissue oxygenation was measured 
with near-infrared spectroscopy skin sensors on the arm 
and forehead used in a previous study.12 This battery-
operated, portable near-infrared spectroscopy device has 
an emitter section consisting of two wavelengths (750 and 
850 nm) generated by a single two-wave LED (Roithner, 
Vienna, Austria). The receiver section consists of two 
infrared sensors, each containing a transimpedance 
amplifier, positioned 35 and 38 mm from the emitting 
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LED. The spatially resolved spectroscopy method were 
used for obtaining the relative concentration of oxygen-
ated hemoglobin and deoxygenated hemoglobin.13 The 
sensitivity and precision of this device in the arm and 
forehead was validated against a commercially available 
device (NIRO 300 Hamamatsu, Japan) (paper submitted 
for publication). Signals were simultaneously acquired 
on a laptop, using a battery-operated analogue-to-digital 
converter with a 12-bit precision at a sampling rate of 
400 Hz per channel connected via Bluetooth to a laptop 
(Software: DataloggerControl-205-BT). The baroreflex 
sensitivity is defined as the extent to which the heart rate 
changes when blood pressure changes and is considered 
a sensitive measure of cardiovascular autonomic func-
tion.14 Baroreflex sensitivity was determined from spon-
taneous fluctuations in the ECG-derived time elapsed 
between two successive R-waves of the QRS signal (RR 
interval) and systolic blood pressure. Previous studies have 
shown a poor correlation between different methods of 
measuring baroreflex sensitivity15 so we used an average 
of seven different tests for calculating baroreflex sensi-
tivity. This approach has previously been described in 
detail.11 16 In short, the seven tests include the positive 
and negative sequence methods,17 the alpha coefficient 
in the low-frequency and high-frequency bands and its 
average,18 the transfer function technique19 and finally, 
the SD method.16 The average of these tests is a contin-
uous variable with the unit ms/mm Hg.

Statistical analysis
Clinical characteristics of participants are presented as n 
(%), mean±SD or if skewed distributions, as medians with 
IQR (quartile 1–quartile 3). χ test and Fisher’s exact test 
were used for categorical data, and Student’s t-tests were 
used for quantitative data. Means for each minute passed 
were calculated by taking a simple average of the 60 
consecutive measurements from each time period. The 
first minute was in the supine position and the remaining 
five were in the standing position. This resulted in one 
mean oxygen saturation per outcome in the supine posi-
tion and five mean oxygen saturations per outcome in 
the standing position. To test group differences, a linear 
mixed-effects model was fitted with oxygen saturation 
as outcome and T1D=yes/no as exposure, adjusted for 
sex, age and smoking (model 1), with a participant-
specific random intercept to account for the correlation 
of repeated measures within participants. To investigate 
the influence of body position on outcomes, the same 
model was used, but with a binary exposure variable for 
standing (yes/no). This approach was chosen to increase 
statistical power and interpretability of the results. To 
compare the effect of standing between T1D and CONs, 
the same model was used, but with the interaction term: 
T1D×standing as exposure. A second level of confounder 
adjustment was also tested by further adjusting for Body 
Mass Index, heart rate, systolic blood pressure, HbA1c, 
hemoglobin and baroreflex sensitivity (model 2). The 
analyses of changes in oxygen saturation from the supine 

to the standing body positions were adjusted for barore-
flex sensitivity to adjust for differences in cardiovascular 
autonomic function between participants. Results are 
presented as estimated mean differences with 95% CIs and 
p values. Estimates are on original scale. For arm oxygen 
saturation levels, normality of model residuals could not 
be obtained. Thus, for this outcome, oxygen levels were 
compared at each timepoint using t-tests. To reduce the 
false discovery rate, p values from linear mixed-effects 
models and t-tests were corrected for multiple testing 
using the Benjamini-Hochberg procedure.20 Corrected 
p values are reported as ‘p-BH’. To test which variables 
were associated with low oxygenation in T1D, a subanal-
ysis only in participants with T1D was performed: a linear 
mixed-effects model with two confounder levels was 
fitted, first with oxygen saturation as outcome and age as 
exposure, adjusted for sex, smoking and standing=yes/
no (model 1), and with further adjustment for diabetes 
duration, albuminuria=normoalbuminuria/microalbu-
minuria/macroalbuminuria and the UACR (model 2).

RESULTS
Clinical characteristics
Twenty participants were excluded from analysis due to 
missing data or poor data quality (malfunction of the 
equipment at the time of measurement), significant arti-
facts in the raw data (eg, signal noise due to movement) 
or lack of patient compliance during measurements. 
Fifty-five CONs and 129 subjects with T1D were included 
in the analyses. Participants with T1D had a mean±SD 
diabetes duration of 26±11 years, a mean HbA1c of 64±12 
mmol/mol. In the T1D group, 100 (77%) had normoal-
buminuria; 5 (4%) had microalbuminuria; and 24 (19%) 
had macroalbuminuria (table 1).

Comparing the groups, participants with T1D had a 
higher heart rate (CONs: 59±8 beats/min vs T1D: 65±12 
beats/min, p=0.001), systolic blood pressure (CONs: 
125±14 mm Hg vs T1D: 132±17 mm Hg, p=0.008), 
diastolic blood pressure (CONs: 62±9 mm Hg vs T1D: 
78±9 mm Hg, p<0.001) and Body Mass Index (CONs: 
25.1±3.6 kg/m2 vs T1D: 26.7±4.4 kg/m2, p=0.027) and a 
lower blood hemoglobin and baroreflex sensitivity than 
CONs. Age, gender distribution and smoking status were 
not significantly different between groups (table  1). 
Baseline characteristics for the separate cohorts from 
the Rubinaut and FinnDiane studies can be seen in the 
online supplemental table S1). Orthostatic blood pres-
sure measurements measured in the two studies can be 
seen in the online supplemental table S2.

Oxygen saturation levels
For an overview of oxygen saturation levels, see figure 1, 
and for details, see table 2. Least squares means±SEM in 
blood oxygen saturation were 97.0%±0.1% for CONs and 
97.6%±0.2% for T1D, corresponding to a difference of 
−0.5% (95% CI −0.9% to −0.0%, p=0.034, p-BH=0.041), 
but the significance was lost after full adjustment in 

https://dx.doi.org/10.1136/bmjdrc-2020-001944
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model 2. Blood oxygen saturation was 97.1%±0.1% for 
the supine position and 97.6%±0.1% for the standing 
position, corresponding to a difference of +0.6% (95% 
CI 0.4% to 0.8%, p<0.001, p-BH<0.001), and the differ-
ence was still significant after full adjustment. The 
increase in blood oxygen saturation after standing up was 
significantly smaller in T1D (CONs supine: 97.3%±0.2%, 
CONs standing: 98.0%±0.2%, T1D supine: 96.9±0.2, T1D 
standing: 97.2%±0.1%) corresponding to a difference 
between CONs and T1D in the change from supine to 
standing of −0.4% (95% CI −0.6% to −0.2%, p<0.001, 
p-BH<0.001). The difference was still significant after full 
adjustment in model 2 (table 2).

The arm oxygen saturation in supine position was 
higher in the T1D group than in the CONs (p=0.022, 
p-BH=0.026), but all standing arm oxygen saturation 
levels were lower in the T1D group (p<0.05, p-BH<0.05) 
(table 3).

Although the forehead oxygen saturation was numer-
ically lower in T1D, it was not significant in model 1 
(−0.7% (95% CI −1.6% to 0.2%), p=0.149 (p-BH=0.224)) 
(table 2). After full adjustment in model 2, the difference 
was still insignificant (−1.5% (95% CI −3.0% to 0.1%), 
p=0.058 (p-BH=0.116)). Forehead oxygen saturation 
changed after standing up by −0.9% (95% CI −1.2% to 
−0.7%) and the difference kept significance after full 
adjustment in model 2. There was no difference between 

T1D and CONs between the changes in forehead oxygen-
ation from supine to standing (table 2).

Subanalyses
All results presented in the following are from subanal-
yses performed only in participants with T1D (n=129). 
Low blood oxygen saturation was associated with high 
age, adjusted for sex, smoking and body position (model 
1) (p<0.001), and remained significant after further 
adjustment for diabetes duration, albuminuria status and 
UACR (model 2) (p<0.001). Macroalbuminuria (with 
normoalbuminuria as reference) was associated with 
lower blood oxygen saturation (−0.9% (95% CI −1.7% to 
–0.2%), p=0.018), adjusted for age, sex, smoking, body-
position, diabetes duration and UACR. High arm oxygen 
saturation was associated with high age, adjusted for sex, 
smoking and body position (model 1) (p<0.001), with loss 
of significance after further adjustment for diabetes dura-
tion, albuminuria status and UACR (model 2) (p=0.062). 
Female sex was associated with higher arm oxygen satu-
ration in model 1 (p<0.001) and after full adjustment in 
model 2 (p=0.013).

DISCUSSION
The blood oxygen saturation was lower in T1D compared 
with CONs, and more significantly reduced in the standing 

Table 1  Participant characteristics by diabetes status

Control T1D P value

N 55 129 –

Age (years) 43±13 47±12 0.054

Women 23 (42) 53 (41) 1

Diabetes duration (years) – 26±11 –

Normoalbuminuria – 100 (77) –

Microalbuminuria – 5 (4) –

Macroalbuminuria – 24 (19) –

Urine albumin:creatinine ratio (mg/g creatinine) – 0.8 (0.3–5.3) –

Non-smokers 35 (80) 114 (91) 0.074

Body Mass Index (kg/m2) 25.1±3.6 26.6±4.4 0.027

Heart rate (beats/min) 59±8 65±12 0.001

Systolic blood pressure (mm Hg) 125±14 132±17 0.008

Diastolic blood pressure (mm Hg) 62±9 78±9 <0.001

HbA1c (% (mmol/mol)) 5±0 (33±2) 8±3 (64±12) –

Hemoglobin (mmol/L) 8.9±0.8 8.4±1.3 0.012

Creatinine (µmol/L) 78±14 77±32 0.763

Cholesterol (mmol/L) 4.8±0.9 4.6±0.8 0.131

Baroreflex sensitivity (ms/mm Hg) 13 (8–18) 9 (5–15) 0.003

Data are presented as n (%), mean±SD and median (quartile 1–quartile 3). Categorical data were analyzed with χ2 test and Fisher’s exact 
test when appropriate. Quantitative data were analyzed with Student’s t-test. Normoalbuminuria was defined as urine albumin of <30 mg/24 
hours or <30 mg/g creatinine in two out of three consecutive measurements. Microalbuminuria was defined as urine albumin between 30 and 
300 mg/24 hours or between 30 and 300 mg/g creatinine in two out of three consecutive measurements, and macroalbuminuria was defined 
as urine albumin of >300 mg/24 hours or >300 mg/g creatinine in two out of three consecutive measurements.
HbA1C, hemoglobin A1c; T1D, type 1 diabetes mellitus.
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position. The blood oxygen saturation increased after 
standing, but less in T1D than in CONs. Individuals with 
T1D might therefore have impaired physiological adap-
tations in blood oxygenation after standing. Arm and 
forehead oxygen saturation were not lower in T1D in the 
supine position, but arm oxygen saturation was lower in 
the standing position. Arm oxygen saturation decreased 
when standing and more in T1D than in CONs. Forehead 

oxygen saturation decreased after standing and to the 
same extent in both groups. The blood oxygen satura-
tion was lowest in the subjects with macroalbuminuria, 
indicating a possible link with microvascular dysfunction.

Low blood oxygen saturation in T1D
A low blood oxygen saturation measured with pulse 
oximetry in the peripheral blood has been demonstrated 
in the supine position in individuals with T1D, but these 
studies did not account for changes in body position or 
included any individuals with macroalbuminuria.1 2 The 
difference between T1D and CONs was similar in magni-
tude to what we observed in the present study. In type 2 
diabetes, there is to our knowledge, only one study on 
the matter, showing no evidence of a low blood oxygen 
saturation.21 There are several possible explanations why 
the peripheral blood oxygen saturation might be lower 
in T1D:
1.	 The supply of oxygen could be altered by an impaired 

breathing efficiency due to generalised autonomic 
dysfunction as seen in the T1D group in our study with 
a low baroreflex sensivity.

2.	 The transport of oxygen from the lungs to the blood 
could be impaired. Patients with diabetes have a re-
duced pulmonary diffusion capacity, and this is asso-
ciated with a long diabetes duration.22 23 A reduced 
pulmonary diffusion capacity in diabetes could be 
caused by pulmonary microvascular damage, which is 
supported by our finding that macroalbuminuria was 
associated with low blood oxygen saturation. In addi-
tion, glycosylation of the basal membrane is suggested 
to impair pulmonary oxygen diffusion, and this could 
also play a role in T1D.24

3.	 The transport of oxygen from the blood to the periph-
eral tissue could be altered by cardiovascular adapta-
tions in T1D such as atherosclerosis or an impaired 
microcirculation.25 26 This question should be adressed 
in future studies.

Postural changes in oxygenation
The blood oxygen saturation increased with standing 
but the oxygen saturations in the arm and forehead both 
decreased. These changes are in accordance with previous 
studies in CONs, even though blood oxygenation in these 
studies were investigated the upright sitting position and 
not the standing position, and the arm oxygenation study 
was in the upper arm (skin above the biceps muscle) and 
not the forearm.4 5 8 9 We speculate that the physiological 
mechanisms behind this response with opposite direc-
tions of the changes in oxygenation might be a combina-
tion of the following: (1) increased ventilation, increasing 
the blood oxygen saturation, induced by a sympathetic 
response; (2) a redistribution and centralization of blood 
flow to the vital organs and active muscles in the lower 
body, decreasing the arm skeletal muscle tissue oxygen-
ation; and (3) gravity redistributing blood to the lower 
body, thus decreasing the forehead oxygen saturation 

Figure 1  Mean (95% CI) oxygen saturation levels in the 
supine and standing body positions. (A) Blood oxygen 
saturation. (B) Arm oxygen saturation. (C) Forehead oxygen 
saturation.
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and theoretically also increasing the oxygenation in the 
feet as previously shown.6 7

Participants with T1D had an impaired blood 
oxygen response to standing. This phenomenon 
could be caused by a combination of a reduced 

pulmonary diffusion capacity and autonomic dysfunc-
tion with sympathetic overactivity and reduced 
chemoreflex sensitivity.27 28 Of note, the T1D group 
had lower baroreflex sensitivity, showing autonomic 
dysfunction.

Table 2  Linear mixed effects models on outcomes

Oxygen 
saturation Test

Model 1 Model 2

Est 95% CI
P value
(p-BH) Est 95% CI

P value
(p-BH)

Blood T1D versus CON −0.5 −0.9 to −0.0 0.034
(0.041)

−0.3 −0.9 to 0.4 0.424
(0.424)

Standing versus supine 0.6 0.4 to 0.8 <0.001
(<0.001)

0.6 0.4 to 0.8 <0.001
(<0.001)

Standing versus supine,
T1D versus CON

−0.4 −0.6 to −0.2 <0.001
(<0.001)

−0.4 −0.6 to −0.1 0.001
(0.002)

Arm T1D versus CON – – – – – –

Standing versus supine – – – – – –

Standing versus supine,
T1D versus CON

– – – – – –

Forehead T1D versus CON −0.7 −1.6 to 0.2 0.149
(0.224)

−1.5 −3.0 to 0.1 0.058
(0.116)

Standing versus supine −1.0 −1.6 to 0.7 <0.001
(<0.001)

−1.0 −1.2 to 0.7 <0.001
(<0.001)

Standing versus supine,
T1D versus CON

0.1 −0.2 to 0.3 0.683
(0.683)

0.1 −0.2 to 0.6 0.584
(0.683)

Results are presented as estimated mean differences with 95% CIs. Estimates are on original scale. Differences in saturation were 
modelled by a linear mixed-effect model with a participant-specific random intercept to account for the correlation of repeated 
measures within participants. Diabetes and whether the participants were standing or not, sex, age and smoking were included as 
fixed effects (model 1). A second level of confounder adjustment was also tested, by further adjusting for Body Mass Index, heart rate, 
systolic blood pressure, hemoglobin A1c, hemoglobin and baroreflex sensitivity (model 2). Estimates from arm oxygen saturation levels 
are not reported as normality of model residuals could not be obtained.
CON, healthy control; Est, estimate; p-BH, p value corrected for multiple testing using the Benjamini-Hochberg procedure; T1D, type 1 
diabetes.

Table 3  Student’s t-test on outcomes

Time (min) 1 2 3 4 5 6

Body position Supine Standing Standing Standing Standing Standing

Blood oxygen saturation

CON (n=55) 97.5±1.4 98.1±0.9 98.1±0.9 98.1±0.9 98.1±0.9 98.0±0.9

T1D (n=129) 96.9±1.5 97.2±1.4 97.1±1.4 97.1±1.4 97.1±1.3 97.0±1.3

P value
(p-BH)

0.006
(0.006)

<0.001
(<0.001)

<0.001
(<0.001)

<0.001
(<0.001)

<0.001
(<0.001)

<0.001
(<0.001)

Arm oxygen saturation

CON (n=55) 66.0±1.8 65.1±3.0 63.8±3.6 63.6±3.6 63.4±3.9 63.4±3.7

T1D (n=129) 66.8±2.4 63.7±4.7 61.0±6.2 60.2±7.3 60.0±7.2 59.9±7.4

P value
(p-BH)

0.022
(0.026)

0.042
(0.042)

0.002
(0.003)

0.001
(0.003)

0.001
(0.003)

0.001
(0.003)

Forehead oxygen saturation

CON (n=55) 64.9±2.4 64.3±2.7 64.0±3.0 63.9±3.2 63.9±3.0 64.0±3.0

T1D (n=129) 64.2±2.2 63.4±2.3 63.3±2.4 63.3±2.4 63.3±2.4 63.3±2.5

P value
(p-BH)

0.055
(0.142)

0.030
(0.142)

0.098
(0.142)

0.161
(0.161)

0.118
(0.142)

0.102
(0.142)

Data are presented as mean±SD unpaired Student t-test on outcomes with T1D=yes/no as class.
CON, healthy control; p-BH, p value corrected for multiple testing using the Benjamini-Hochberg procedure; T1D, type 1 diabetes.
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The arm oxygen saturation decreased more in 
response to standing in participants with T1D than in 
CONs. This might be a result of autonomic dysregulation 
with a sympathetic overdrive. Forehead oxygen satura-
tion decreased to a similar extent in both groups. This 
indicates a preserved cerebral autoregulation in the T1D 
group. It should be noted that these speculations are 
merely suggestions and there are indeed still many ques-
tions remaining to be answered in future studies.

Cardiovascular parameters
The heart rate, blood pressure and Body Mass Index 
were higher in the T1D group compared with CONs and 
baroreflex sensitivity was lower. These findings were as 
expected.29–31

Methodology
Pulse oximetry is a validated method, considered reli-
able for estimating arterial oxygen saturation at levels 
above 90% and can also be considered a reliable indi-
cator of generalized blood oxygen saturation.32 Near-
infrared spectroscopy is a well-established methodology 
that applies similar principles as pulse oximetry.13 33 
We aimed to assess tissue oxygenation in an area with 
important autoregulation, the brain, and in one without, 
the skeletal muscle of the forearm. We chose the forearm 
for practical reasons, but it would also be interesting 
to investigate, for example, the foot as already done in 
type 2 diabetes.6 7 In the forearm, covering an area of 
approximately 1.5 cm×4 cm and with a measuring depth 
of approximately 2 cm, the region of interest contained 
skin, fat, skeletal muscle and small circulatory vessels 
(capillaries, venoles, and veins). We believe that skeletal 
muscle tissue is primarily reflected in this measurement. 
In the forehead, the region of interest contained skin, 
fat, bone, small vessels and superficial brain tissue. With 
a measuring depth of 2 cm, we believe that brain tissue is 
primarily reflected. However, as the anatomical sites both 
contain mixed tissue, the near-infrared spectroscopy 
results should be interpreted as exploratory estimates 
of oxygenation at the peripheral anatomical sites of the 
forehead and forearm and not as exact measures of skel-
etal muscle and brain tissue oxygenation.

Impact
The impact of low blood oxygen saturation on diabetes 
and its complications are still at a very early stage, but 
studies investigating the role of hypoxia in diabetes are 
emerging.34 Some studies suggest that tissue hypoxia 
may be a central pathogenic factor in the development 
of diabetic kidney disease.35–37 Indeed, renal hypoxia has 
been observed in type 2 diabetes with kidney disease,38 
and reduced renal cortical oxygenation has been found 
to predict a decline in renal function in persons with 
chronic kidney disease.39 In addition, in T1D, it has been 
observed that inducing hypoxemia impairs cardiovas-
cular autonomic function40 and that inducing hyperox-
emia improves cardiovascular autonomic function,10 11 41 

indicating a possible causal relationship between blood 
oxygenation and cardiovascular autonomic function. 
Thus, dysregulated or impaired oxygen levels might play 
a crucial role in the pathogenesis of diabetic complica-
tions such as diabetic kidney disease or cardiovascular 
autonomic neuropathy, and exploring the mechanisms 
behind might reveal important knowledge that could 
lead to an improved understanding of diabetic compli-
cations and the development of new interventions to 
prevent or treat diabetic complications by targeting low 
oxygen levels.

Future studies
Low oxygen levels might be involved in the pathogenesis 
of microvascular diabetic complications such as cardio-
vascular autonomic neuropathy and diabetic nephrop-
athy and studies investigating the effects of interventions 
improving blood and tissue oxygenation are needed. 
In the field of diabetic nephropathy, sodium–glucose 
cotransporter two inhibitors in individuals with type 
2 diabetes have been shown to slow the progression of 
diabetic kidney disease and to reduce the risk of kidney 
failure.42 43 The mechanisms of these renoprotective 
effects are still unknown, but they could be linked with 
alleviation of renal cortical hypoxia by reducing kidney 
oxygen consumption as proposed by Nespoux and 
Vallon.44 This question will be addressed by our group in 
an ongoing study, the Astronaut Study (NCT04193566), 
investigating the acute effects of sodium–glucose cotrans-
porter 2 inhibition on kidney oxygenation in T1D evalu-
ated by MRI. Inducing hyperoxia by nasal inhalation of 
pure oxygen improves cardiovascular autonomic func-
tion in T1D10 but has detrimental effects on a range of 
clinical parameters including blood pressure and arterial 
function.45 Thus, it might not be a suitable therapeutic 
intervention to alleviate low blood oxygen saturation. 
In contrast, inducing hyperoxia by slow breathing exer-
cises also improves cardiovascular autonomic function 
but without the detrimental effects on blood pressure 
and arterial function.1 Only the acute effects of slow 
breathing exercises have been investigated so far and it 
would be interesting to investigate chronic effects of slow 
breathing exercises in T1D. In this context, alleviation of 
a low blood oxygen saturation might explain some of the 
positive effects seen with physical exercise in diabetes.46

Strengths and limitations
The T1D group consisted of 77% with normoalbuminuria, 
4% with microalbuminuria and 19% with macroalbumin-
uria. Thus, this study population might not be represen-
tative for a general T1D population. For comparison, in 
the intensive care arm of the The Diabetes Control and 
Complications Trial/Epidemiology of Diabetes Interven-
tions and Complications (DCCT/EDIC) cohort where 
participants had a similar age and diabetes duration, 81% 
had normoalbuminuria, but 16% had microalbuminuria 
and 3% had macroalbuminuria.47 An important limita-
tion is that the data were analyzed regardless of time after 



8 BMJ Open Diab Res Care 2021;9:e001944. doi:10.1136/bmjdrc-2020-001944

Pathophysiology/complications

standing up. We did this for reasons of statistical power 
and interpretability of the models. Another limitation 
to the study is that minute-to-minute changes in blood 
pressure and tissue blood flow were not measured and 
thus the full physiological response could not be consid-
ered when interpreting the data. It is a limitation that the 
position of the arm was not controlled although it was 
standardized. Individual differences in arm length were 
not adjusted for and could have influenced the results 
due to differences in hydrostatic pressure. It should 
be noted that the individual speed of standing up is a 
possible confounder as it was not measured, controlled 
or adjusted for. Different placement of the near infrared 
spectroscopy probes between participants could have 
altered the response. When evaluating change in oxygen-
ation after change in position, the changes were stable 
after 1 min (figure  1) except for measurements at the 
arm. The time to change was not considered in these 
analyses, and we cannot exclude that the time to change 
differed between individuals or groups. A limitation is 
the risk of survival bias in the T1D group, especially in 
participants with macroalbuminuria. It is a weakness that 
the mixed-effects model residuals could not be assumed 
normally distributed for the arm oxygen saturation and 
that instead, t-tests had to be used for comparison at each 
timepoint. Location and observer were not the same 
for all participants, as some participated in the Copen-
hagen study and some participated in the Helsinki study. 
Equipment and software used were the same in both 
studies, however. The near-infrared spectroscopy device 
used has not been validated and our findings should be 
interpreted with this in mind. A strength is that measure-
ments were performed under standardized conditions 
including fasting, abstinence from alcohol, smoking and 
strenuous physical activity. Another strength is the simple 
design and the simple methods used, making the results 
easier to reproduce in future research.

CONCLUSION
We confirmed that blood oxygenation is reduced in T1D 
in the supine position and extended this finding to a 
more significant lower blood oxygenation in the standing 
position compared with CONs. Furthermore, the oxygen 
levels and effects of standing were different between T1D 
and CONs in the blood, arm and forehead. This suggests 
detrimental patterns of blood and tissue oxygen adap-
tation to standing in T1D, which could be important 
for the development of long-term complications in the 
kidneys and nervous system. Further studies are needed 
to explore the consequences of these differences and 
whether the low blood oxygen saturation in T1D can be 
alleviated by intervention.
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