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Abstract

The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the
microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial
biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five
individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated
RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences
were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected
in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes.
Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on
detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely
related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to
Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae
were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S
rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data
provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of
meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with
pathogenic potential to human and animals.
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Introduction

Information about the commensal and pathogenic microbial

communities associated with host species, including humans, is

limited. The endemic microbial community of a healthy host is

important to characterize because its perturbation can be a cause

of disease [1,2]. Pathogenic microbes often escape detection if the

clinical consequences of infection are similar to known pathogens

or if they infect non-domestic species [3]. The maintenance of

unknown pathogens in wildlife species is particularly problematic

because many emerging human and livestock infections arise from

contact with wild animals [4–7].

With the advent of meta-genomics methods, the entire

community of microorganisms that exist in a given environment

can potentially be identified. Pyrosequencing and other high

throughput sequencing approaches have been applied to deter-

mine the microbial population in environmental samples such as

soil and seawater [8–11] and more recently to investigate the

community of microbes on human mucosal surfaces [12–15], both

of which are rich in microorganisms. Next generation sequencing

methods have also been successfully applied to identify the

microbial agents of several new diseases [16–20]. Recently, RNA

based meta-transcriptomic studies [21–23], which profile both

protein-coding transcripts and ribosomal RNA (rRNA), have been

used to study both functional and structural features of

environmental microbial communities.

The key question behind this study was whether viable

microorganisms could be detected within healthy mammalian

lymphoid organs by employing massively parallel sequencing

coupled with computational techniques able to detect transcripts

of microorganisms among the abundant transcripts of the mule

deer host. Lymph nodes are the specific replication sites for certain

pathogenic viruses and bacteria [24–29]. Moreover, although the

blood and the lymph systems are considered to be essentially free

of viable microorganisms in healthy individuals, the transient and

often asymptomatic presence of both bacteria and viruses have
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been detected in the circulation [30,31]. Phagocytic cells engulf

these microbes and migrate to lymph nodes. Thus, lymph nodes

should concentrate the commensal, endemic, and potential

pathogenic microbial communities of a host species.

We evaluated the microbial community in retropharyngeal

lymph nodes of mule deer to assess microbial exposure via the oral

or respiratory route. Because ungulates browse and receive small

punctures from sharp forage, we reasoned that healthy animals

would potentially be exposed to microorganisms from their

environment or to resident oral and rumen microorganisms that

would be cleared in draining nodes. We used mule deer to

highlight the utility of this approach in a wildlife host, but the

method is broadly applicable to any host species.

Our studies document for the first time that there is a

community of viable microorganisms in retropharyngeal lymph

nodes of healthy wild ungulates. Furthermore, our findings

demonstrate the applicability of meta-transcriptomic techniques

for the detection of novel bacteria and viruses in internal organs.

Results

The microbial community of mule deer lymph nodes
Detection of protein-coding and ribosomal RNA transcripts

provides strong support for the presence of viable and replicating

microorganisms. Therefore, we enriched the total RNA obtained

from lymph nodes for poly(A)+ RNA to prepare cDNA libraries

and subjected them to pyrosequencing on a Roche GS FLX

sequencer (Roche-454 Life Sciences). Properties of sequencing

runs are given in Table S1. All reads were compared against the

nonredundant NCBI protein database. The composite meta-

transcriptomic species profile for five individual and two pools of 4

or 8 mule deer samples, determined using the software MEGAN

[32], is depicted in Fig. 1A.

On average, 51% of total transcript-tags could be assigned to

known taxa with a bit score cutoff of 50 (see Table S2). Of the

assigned tags, 99.3% were of eukaryotic origin, predominantly

matching to Bos taurus and other close relatives of mule deer that are

represented in the protein database. Approximately 0.3% of the

assigned tags were to bacteria. Proteobacteria represented 60% of

all bacterial hits; Enterobacteriaceae in the Gammaproteobacteria

were the most commonly identified within this group. Firmicutes

and Actinobacteria represented 22% and 5% of the identified

bacterial taxa. Table S3 lists all bacterial genera detected in the

seven data sets. Transcripts assigned to Archaea, family Halobac-

teriaceae, were identified in both pooled samples but none of the

individual libraries. Only 37 transcripts were assigned to viruses.

Twenty-nine of these matched to the Retroviridae and Poxviridae

while the remaining were to phages, insect viruses, and a single

assignment to herpesvirus. These results suggest that representatives

of many bacterial phyla, archaea, and two major virus families are

transcriptionally active in mule deer retropharyngeal lymph nodes.

Meta-genomics studies evaluating microbial rich communities

were pioneered based on genomic DNA sequences [8–10,13].

Thus, we compared genomic libraries prepared from retropha-

ryngeal lymph node tissue of MD 72360, MD 80228, MD 84709,

and MD 84730 with our data from transcript libraries derived

from those animals (Fig. 1). Many sequences from the genomic

DNA libraries were to non-coding regions and could not be used

for taxonomic profiling (Fig 1B, Table S2). Based on protein-

coding sequences, only four bacterial genera were identified in the

comprehensive MEGAN analysis of the four genomic data sets.

Xylella and Burkholderia were identified in MD 72360, Acidovorax was

found in MD 84709, and Bartonella was found in both MD 84709

and MD 84730. Bartonella and Xylella, as well as a member of the

beta retroviruses (found in MD 80228 and MD 84709), were

identified only in the genomic DNA data, suggesting that they

might not represent actively replicating organisms. These findings

indicate that meta-transcriptomics may be the preferred method

for detecting the viable endemic microbial community in the

tissues of healthy animals.

The most commonly detected microorganisms in the transcrip-

tome libraries comprised intestinal and skin-dwelling bacteria and

soil and freshwater bacteria. Ruminococcus, which is part of the

commensal intestinal microbial community of ungulates, was

detected in all seven libraries (Fig. 1A and Table S3). Other

bacteria found in at least three of the seven data sets were

Propionibacterium, a commensal bacterium of skin and the

gastrointestinal tract, and the environmental soil or water

inhabitants Magnetospirillum, Streptomyces and Pseudomonas. Members

of the latter genus are able to colonize a wide range of niches and

are also potential pathogens. Other animal and human pathogenic

genera detected in at least three different libraries were

Burkholderia, Streptococcus, Flavobacteria, and members of the

Enterobacteriaceae (Escherichia, Providencia).

The overall bacterial diversity and the number of unique

transcripts assigned to each bacterial taxon varied among the

samples. Notably, Helicobacter was only detected in the library

constructed from MD 257 but there were 12 unique transcript-tags

assigned to this genus. More commonly, bacterial taxon identifica-

tion was based on a single tag. Many of the single transcript-tags

came from MD 80228, which had the highest bacterial diversity

profile of all libraries analyzed, and from MD 84730. Bacterial

genera detected solely in either one or both of these two samples

include Acinetobacter, Legionella, Enterobacter, Salmonella, Yersinia, Vibrio,

Listeria, Mannheimia, and members of the Corynebacterineae, all of

which contain known pathogens. In addition, both specimens

depicted by far the highest numbers of reads taxonomically assigned

to the family Enterobacteriaceae. The lowest diversity of bacterial

genera was found in the MD OCT-pool, which was derived from

eight different mule deer. Pooling RNA from several animals

potentially increases the representation of transcripts common to all

animals but might decrease the ability to detect transcripts that are

unique to one animal. Consistent with this, the MD Bonner-pool,

which was derived from four animals, provided a broader spectrum

of bacterial genera than the MD OCT-pool. Thus, pooling samples

did not improve our ability to detect microbial diversity in lymph

node samples.

In contrast, viruses were detected in both pooled samples,

although the total number of transcript-tags was low. Of the

individual libraries, only MD 257 had evidence of viral transcripts

(Fig. 1A). The majority of viral transcripts were from a cervid

poxvirus [33], and a novel gamma retrovirus.

Identification of novel microorganisms
The computational analysis described above identified putative

microorganisms in mule deer tissue based on detection of protein-

encoding transcriptional activity. Although the cDNA used in our

analyses was derived from total RNA enriched for polyadenylated

RNA, it retained a considerable amount of the abundant

ribosomal RNA (rRNA). These sequences contribute to the ‘no

hits’ category in Figure 1 and Table S2. Bacterial rRNA derived

from the same dataset can, therefore, be used to provide additional

support for species identification. By classifying the rRNA-tags

from each library using the RDP rRNA classifier tool [34,35]

(http://rdp.cme.msu.edu/) we increased the number of bacterial

genera identified (see Fig. 2 for MD 257, Fig. S1 for MD 80228

and MD OCT-pool, and Table S4). Abiotrophia, which is a

component of the normal oral and intestinal microbial commu-
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nity, was detected in six of the seven libraries; environmental

bacteria such as Thermoanaerobacter, which is frequently found in hot

springs, were detected in four of the seven samples. Other genera

that were identified based on rRNA in at least two of the libraries

were Actinomyces, Campylobacter and Mycoplasma. Of particular

importance, rRNA-tags supported the presence of Helicobacter in

the MD 257 library (Fig. 2), of Acinetobacter, Escherichia, Pseudomonas,

Salmonella, Shigella and Variovorax in the MD 80228 library, and of

Shigella in the MD Bonner-pool library (Fig. 1 and Fig. S1, Tables

S3 and S4).

The support for Helicobacter in the MD 257 library was

particularly compelling because there were 12 unique transcript-

tags and one rRNA-tag to this genus. We evaluated the

phylogenetic relatedness of the mule deer Helicobacter with other

Helicobacter based on four of the protein-coding transcripts and on

the single 16S rRNA sequence. All analyses demonstrated that the

Helicobacter detected in the mule deer lymph node is a unique

organism that affiliates with the H. pylori cluster (Fig. 3A and 3B,

and Fig. S2). Because 16S rRNA sequence data is available for

more species, we were able to further demonstrate that the closest

Figure 1. MEGAN comparison of the taxonomic profiles of (A) cDNA transcript-tags from 454 sequencing five individual lymph
node samples and two lymph node sample pools and (B) genomic DNA-tags from four individual lymph node samples. Depicted are
assignments with bit score cutoffs $50. Circle sizes are scaled logarithmically. Not assigned: sequencing-tags matching to sequences in the NCBI
database that are not assigned to taxa; no hits: sequencing-tags not matching to any sequences in the NCBI database.
doi:10.1371/journal.pone.0013432.g001

Figure 2. MEGAN comparison of taxonomic profiles of MD 257 cDNA transcript-tags analyzed against the protein database (red)
and the ribosomal database (blue), and of V6 amplicon 16S rRNA-tags analyzed against the ribosomal database (green). Bit score
cutoff for the protein database comparison was set at 50, and confidence cutoffs for the ribosomal database comparisons were set at 80%.
doi:10.1371/journal.pone.0013432.g002
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relative to mule deer Helicobacter is a newly described H. cetorum

isolated from different dolphin species (Lagenorhynchus acutus,

Lagenorhynchus obliquidens, and Tursiops truncatus) and a beluga whale

(Delphinapterus leucas) [36] (Fig. 3A).

We also evaluated the phylogenetic placement of Acinetobacter

detected in MD 80228 based on both 16S rRNA and rpo-b
sequences. The number of rpo-b sequences for Acinetobacter in the

database is limited. However, we demonstrated that the MD

80228 transcript-tag clustered with those of Acinetobacter (Fig. 3D)

[37]. Moreover, based on 16S rRNA, we determined that the

Acinetobacter species identified in the MD 80228 cDNA library was

distinct from all known Acinetobacter and was most closely affiliated

with Acinetobacter schindleri (Fig. 3C).

The low representation of viral sequences was not unexpected

because viruses causing acute infections should be difficult to

detect in healthy animals. Retroviruses integrate into the host

Figure 3. Maximum likelihood trees showing the phylogenetic affiliation of sequences obtained from 454 sequencing with
GenBank homologous sequences. (A) 16S rRNA Helicobacter, (B) rpo-b Helicobacter, (C) 16S rRNA Acinetobacter, (D) rpo-b Acinetobacter. Bootstrap
support for each node is indicated.
doi:10.1371/journal.pone.0013432.g003
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genome as part of their replication cycle, thus transcription of

viral genes can be persistent in infected animals. Overall four

transcript-tags were assigned to gamma retroviruses of the

family Retroviridae. Based on the transcript-tag from the MD

Bonner-pool and an upstream region that is conserved in

gamma retroviruses, PCR fragments were amplified and

sequenced from MD 191 cDNA, which was used in the MD

Bonner-pool, and from genomic DNA of MD 80228. These

sequences were compared to other gamma retrovirus sequences

using maximum likelihood methods (Fig. 4). The mule deer

gamma retrovirus forms a distinct clade within the gamma

retroviruses, which has many well-described members of

primate, murine, and feline origin. A newly described gamma

retrovirus from killer whale (Orcinus orca) [38] is the closest

relative of this mule deer retrovirus. The killer whale virus was

described as an endogenous retrovirus based on its finding in

various tissues and individuals. However, our detection of

transcripts to this virus in only three of the libraries and the

sequence variation in the PCR fragment between genomic (MD

80228) and transcript-derived (MD 191) mule deer samples

suggest that both endogenous and exogenous gamma retrovi-

ruses might be present.

Comparison of transcript and 16S rRNA amplicon libraries
As an alternative approach to identifying bacterial microorganisms

present in lymph node tissue, we utilized amplicon DNA library

sequencing technology. The hypervariable region V6 of the 16S

rRNA gene was used because it has been reported to differentiate

between many bacterial species [39]. Amplicon libraries of V6 were

generated from the 454 cDNA libraries of MD 257, MD 80228, and

MD OCT-pool and subjected to multiplex pyrosequencing on a

Roche GS FLX sequencer (for properties of amplicon sequencing

runs, see Table S1). The V6 amplicon rRNA tags were evaluated

using the RDP classifier tool (Table S5).

The assigned bacterial genera cluster in the Gamma- and Beta-

proteobacteria, the Actinobacteria and in the order Bacilli. A

comparison of the three methods used to detect bacteria in mule

deer lymph node samples is shown for MD 257 in Figure 2 and for

MD 80228 and MD OCT-pool in Figure S1. Acinetobacter,

Burkholderia, Corynebacterium, Escherichia, Providencia, Salmonella, Pseu-

domonas, Ralstonia, Staphylococcus, Streptococcus and Variovorax were

identified by both amplicon and cDNA sequencing in MD 257,

MD 80228, and/or MD OCT-pool (Tables S3 and S5).

Although the overall taxonomic diversity in the V6 rRNA amplicon

libraries was lower than that detected in the cDNA transcript libraries,

Figure 4. Maximum likelihood tree inferred from the partial nucleotide sequence data of env gene showing the phylogenetic
placement of mule deer (MD) retrovirus. The two MD PCR sequences reported in the present study are in bold. GenBank accession numbers of
reference viruses are mentioned. Bootstrap support for each node is indicated.
doi:10.1371/journal.pone.0013432.g004
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the diversity within bacterial classes was higher. Newly identified

genera comprised predominantly environmental soil, sediment and

water inhabitants (e.g. Aeromicrobium and Bdellovibrio), and the potential

pathogens Stenotrophomonas, Rhodococcus, Rothia, and Gardnerella [40-43].

These findings indicate that the V6 rRNA amplicon sequencing

technology is a valuable tool in complementing information about the

bacterial community in host tissues.

Discussion

Microbiome profiles of environmental samples and animals

have mostly been based on the analysis of genomic DNA [8–

10,13,44,45]. Further, studies on the microbiomes of humans or

animals have been restricted to habitats known to harbor large

collections of microorganisms, in particular skin, oral cavity or gut

[12–15,46–48]. In this study, we sought evidence for viable

microorganisms in lymph nodes, an organ hitherto believed to be

largely amicrobic in the absence of overt disease [26–29]. Our

data demonstrate that transcriptional activity of a variety of

bacteria and a limited number of archaea and viruses, including

novel organisms, can be confirmed in healthy animals using a

meta-transcriptomic approach.

In our study, we faced the computational challenge of detecting

a rare microbial community in a dominant pool of host genetic

material. We utilized transcript-based libraries because there is an

amplification of protein-coding sequences during transcription,

which increased our detection ability and provided support that

the identified microorganisms were viable. Further, the database

for protein-coding regions is more extensive than that for non-

coding regions for non-reference organisms. Thus, focusing on

transcripts should facilitate classification of novel organisms and

those without complete genome coverage. Indeed, our study

demonstrates that at the moderate sequencing depth employed,

there were more assignable sequencing tags to protein-coding

regions utilizing cDNA compared to genomic DNA, which

consequently increased our ability to detect microbial taxa. In

addition, transcriptome sequencing yields bacterial ribosomal

RNA, which is highly expressed in metabolically active microor-

ganisms and is well documented as a taxonomic tool for bacteria.

Because single protein-coding or rRNA transcript-tags from a

putative microorganism were frequently encountered, our confi-

dence in taxonomic assignment increased by employing bioinfor-

matics methods to classify organisms based on both types of

transcripts. Amplicon 16S rRNA sequencing increased the

sensitivity to detect members of some bacterial classes. However,

primer specific methods do not provide as comprehensive a

perspective on the microbiota due to a possible amplification bias

towards more abundant taxa or those exhibiting higher primer

specificity. Therefore, neither our metatranscriptomic nor ampli-

con sequencing approaches should be considered quantitative. We

note that in samples that are highly enriched for actively

replicating microbial organisms, such as environmental samples

or gastrointestinal tract specimens, cDNA-based approaches can

yield an abundance of small RNA produced by complex microbial

communities, which can facilitate studies on microbial ecology

but be less useful for identification of individual microbes [49].

In addition established metagenomics or metatranscriptomic

[11,50,51] approaches that utilize sample fractionation methods

for microbial enrichment will likely provide a more comprehensive

profile of the community structure. These methods were not

applicable to our samples, which included phagocytized microor-

ganisms and viable microbes that were not robustly proliferating.

Nevertheless, as deeper sequencing of cDNA libraries using newer

high-throughput sequencing methods becomes more accessible, it

could complement the Roche-454 pyrosequencing data, poten-

tially covering the entire viable microbial community.

Our study confirms that there are viable microorganisms in

intact lymph nodes of apparently healthy mule deer. In the

analyzed samples, we identified members of all bacterial phyla, as

well as archaea, a DNA virus and a Retrovirus. The bacteria were

representative of organisms that are commensal to mule deer and

to their external environment. For example, we detected the

common rumen and intestine dwellers, Ruminococcus and Abiotro-

phia, based on transcript- and rRNA-tags, respectively, in most

libraries, indicating that commensal gut and mucosal microor-

ganisms may routinely be sampled in secondary lymphoid tissue,

presumably from transient bacteremia. Streptomyces was the most

common soil dwelling bacteria identified. Of interest, Legionella,

which is found near hot springs, was identified only in an

individual mule deer from the Yellowstone region. The finding of

a considerable number of archaeal transcripts in MD OCT-pool

and MD Bonner-pool libraries implies that members of this

domain of life are likely present in mule deer habitats or resident in

mule deer gastrointestinal tracts, as has been recently documented

in humans [52]. Correspondingly, environmental bacteria identi-

fied in healthy deer lymph nodes may reflect the animal’s habitat.

Few viruses were identified with our analysis methods. This

could represent the paucity of viruses in healthy animals.

However, viral detection may be more difficult than bacterial

identification using this technology in part due to extensive

sequence diversity among viruses in the same family. For example,

we were only able to detect the gamma retrovirus because a

transcript was present which was homologous to a conserved

region of the viral env gene, and the cervid poxvirus was detected

because sequence data for this virus was present in the database.

Other persistent viruses, such as herpes viruses (for which we

detected a single transcript), would be expected to be present in

some animals. However, detection of latent herpes virus infection

may be difficult because protein-coding transcript levels are low

and latent viruses express non-coding RNA [53]. In addition, viral

detection can be compromised if viral sequence tags were

misassigned to the host organism because of homology of viral

and host genes. Thus, many virus tags might be found among the

host transcripts or in the not-assigned or no-hits groups of the

MEGAN analysis, which together comprise nearly half of the total

sequenced transcript-tags of our data.

In addition to our finding of a novel gamma retrovirus, we also

identified new species of Helicobacter and Acinetobacter. Phylogenetic

evaluation of Helicobacter transcripts and 16S rRNA from the MD

257 cDNA library placed this new organism in the Helicobacter

pylori/Helicobacter acinonychis/Helicobacter cetorum complex. All mem-

bers of this complex have been associated with gastritis and peptic

ulcer disease in humans and animals [36,54–56]. Our detection of

this bacterium in only one animal suggests that this Helicobacter is

not a mule deer commensal. Of interest in this respect is the high

incidence of H. pylori infections and gastric ulcers in American

Indian populations from the same geographical area in central

Montana [57]. Acinetobacter and Pseudomonas were identified in MD

80228 libraries based on all detection methods used (cDNA

transcripts for protein-coding and rRNA, and amplicon rRNA).

Phylogenetic evaluation of Acinetobacter transcripts and 16S rRNA

from the MD 80228 cDNA library placed the respective reads in

close relationship to Acinetobacter schindleri. Acinetobacter species are

important environmental organisms, however they also are

notable pathogens. In particular, Acinetobacter schindleri infections

appear to be increasing in prevalence in hospitalized patients

[37,58]. Therefore, both of the newly identified bacteria are

potential mule deer pathogens.

Lymph Node Metatranscriptomics
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In conclusion, our study demonstrates that endemic microbiota

can be detected in lymph nodes of healthy animals using meta-

transcriptomic approaches. These results suggest that meta-

transcriptomic analyses of secondary lymphoid organs could be

valuable in monitoring endemic infections in wildlife or livestock

as well as in detecting novel infectious organisms with the potential

for causing emerging zoonotic or epizootic infectious diseases.

Further, these studies have the potential to cast new light on the

diversity of life within and among individuals.

Materials and Methods

Lymph node collection
Retropharyngeal lymph nodes were obtained from a total of

seventeen individual Montana mule deer that were presented by

hunters to check stations approximately 5 hr (range 2–11 hr) of

being shot. Because our samples were obtained from legally killed

animals, the study is exempt from Montana State University

guidelines governing animal experimentation. Lymph nodes were

dissected from animals with sterile scalpel and forceps, and rinsed

in 70% ethanol. After dissection from the animal, the lymph nodes

were either frozen directly or stored in RNAlater (Applied

Biosystems, Ambion, CA) until further processing.

Lymph node tissue was taken from mule deer in several

geographical regions. The Bonner pool consisted of tissue from

four mule deer (167, 191, 196, 200) from a Montana region north

of Interstate 90 in proximity to the town Bonner. The OCT-pool

(353, 366, 369, 371, 373, 375, 376, 389) consisted of eight animals

from an area in the northwest of Montana defined by the towns

Olney, Canoe Gulch, and Thompson Falls. Five mule deer (MD

257, MD 72360, MD 80228, MD 84709, and MD 84730) from

different regions were analyzed individually (Fig. S3).

Preparation of genomic DNA, total RNA, poly(A)+RNA and
cDNA

Lymph node tissue cores were dissected into small pieces and

further disrupted, lysed and homogenized using a TissueLyser with

steel beads (Qiagen, Germany). Genomic DNA was isolated from

lymph nodes of four individual Mule deer (MD 72360, MD 80228,

MD 84709, and MD 84730) using either the Genomic DNA Buffer

Set with 20/G Genomic-tips (Qiagen, Germany) or the AllPrep

DNA/RNA Mini Kit (Qiagen, Germany). Total RNA was isolated

using the RNAqueous-Midi Kit (Applied Biosystems, Ambion, CA).

For the Bonner- and OCT-pools, equal quantities of total RNA

from lymph nodes of four or eight individual Mule Deer,

respectively, were combined. Poly(A)+RNA was enriched from total

RNA using the MicroPoly(A) Purist Kit (Applied Biosystems,

Ambion, CA). Poly(A)+RNA (0.9–5.0 mg each) was used for cDNA

synthesis (Just cDNA Double-Stranded cDNA Synthesis Kit,

Stratagene, CA) after elimination of residual contaminating

genomic DNA using the Turbo DNA-free Kit (Applied Biosystems,

Ambion, CA). In one case we explored an alternative empirical

approach to enrich for rare microbial transcripts, using total RNA

of the MD OCT-pool. Reverse transcription and amplification of

cDNA was done as described by Cheung and coworkers [59] and

included a normalization step, which effectively decreased over-

expressed reads. The data resulting from this approach are included

in the MD OCT-pool data.

Roche-454 GS FLX pyrosequencing
Up to 5.0 mg of cDNA or genomic DNA was subjected directly

to preparation of 454-DNA libraries and subsequently to

pyrosequencing without any prior PCR or cloning steps. Library

preparation and pyrosequencing were performed as described

previously [60] on a Roche GS20 sequencer FLX (Roche Applied

Sciences/454 Life Sciences, Branford, CT), producing sets of

RNA-tags or DNA-tags, respectively. The runs were performed on

either quarter or half plates, resulting in read numbers between

10,673 and 176,878 and base numbers in the range of 1,411,420

to 41,066,808. The MD OCT-pool cDNA library was run twice

due to low read and base numbers of the first run, and the

transcript-tags of these two runs and of the run following the

normalization approach (see above) were combined for all

subsequent data analysis. Sequences are deposited to the Sequence

Read Archive (in progress).

Data analysis
The data of individual 454 runs (and the compilation of normal

and normalized MD OCT-pool data) was compared against the

NCBI non-redundant protein database (BLASTX-nr) with an e-

value of 1e-4 to identify transcript RNA-derived tags. To filter

repetitive elements, RepeatMasker (http://www.repeatmasker.

org) was used to scan the mule deer sequences, with the latest

version of Repbase 13.04 [61]. The output files were analyzed

with the program MEGAN [32] version 3.7.2.

The 16S ribosomal RNA content of the cDNA pyrosequencing

reads was analyzed by comparison to the ribosomal database of the

Ribosomal Database Project (RDP) version 10 (http://rdp.cme.

msu.edu/) [34]. The selected output reads were classified by the

RDP Classifier tool (Naı̈ve Bayesian rRNA Classifier Version 2.0)

using the Taxonomic Outline of the Bacteria and Archaea, release

7.8, for the setup of the taxonomical hierarchy [35]. The output files

were analyzed with MEGAN version 3.7.2 [32]. For the MD OCT-

pool, the combined data of three individual 454 runs was used.

Virus amplification
The cDNA from MD 191, which was used in the MD Bonner

pool, and genomic DNA from MD 80228 were subjected to PCR

using forward primer 5-ATGTGGGGGAGTTGATTCTTTT-

TA and reverse primer 5-CTGCGCCTGAGTGGTCTACATA.

PCR conditions were 40 cycles of 95uC for 30 sec, 56uC for 30 sec

and 72uC for 90 sec. Fragments were gel isolated, cloned using the

Stratagene PCR cloning kit (Stratagene, La Jolla, CA) and Sanger

sequenced.

Phylogenetic analyses
Partial nucleotide sequences of 16S rRNA and rpo-b for

Helicobacter and Acinetobacter and of flgK, GDP-D-mannose

dehydratase and UDP-3-O-[3-hydroxymyristoyl] glucosamine N-

acyltransferase for Helicobacter from cDNA sequencing, and of env

gene for the retrovirus from a PCR product were aligned with the

respective homologous sequences available in GenBank using the

MEGA version 4 [56] software. The appropriate nucleotide

substitution model for each data set was selected by the Akaike

information criterion implemented in the Modeltest version 3.7

[62], and maximum likelihood (ML) trees were reconstructed

using PhyML version 2.4.4 [63]. Using the same program

(PhyML) nodal supports were estimated with 100 bootstrap

replicates. The trees were visualized in FigTree version 1.2.2

(http://tree.bio.ed.ac.uk/software/figtree/).

Multiplex Amplicon Sequencing (Roche-454)
Fusion-primers were designed including the sequences of the

454-Amplicon DNA library specific primers A and B, respectively,

(GS FLX Amplicon DNA Library Preparation Method Manual,

www.roche-applied-science.com), 4-base barcode sequences for

identifying amplicon products derived from mule deer specimen
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MD 257, MD OCT-pool, and MD 80228 (TGCA, ACGT, and

CGAT, respectively), and the ‘‘universal’’ V6-specific PCR primer

sequences V6F: 59 TCGATGCAACGCGAAGAA 39 and V6R:

59 ACATTTCACAACACGAGCTGACGA 39 (designed to

conserved regions flanking V6 based on comparison of 110

bacterial DNA sequences [39]).

The MD 257 template for amplicon generation was based on

the total RNA fraction depleted of poly(A)+RNA (see ‘‘Preparation

of genomic DNA, total RNA, poly(A)+RNA and cDNA’’). The

supernatant was cleared of small RNA molecules using the

MEGAclear Kit (Applied Biosystems, Ambion, CA) and depleted

of host ribosomal RNA performing two cycles of the MICROBE-

nrich (Applied Biosystems, Ambion, CA) protocol. Subsequent

depletion of bacterial ribosomal RNA yielded an RNA sample

enriched for bacterial transcripts (MICROBExpress, Applied

Biosystems, Ambion, CA), which was subjected to cDNA synthesis

(Just cDNA Double-Stranded cDNA Synthesis Kit, Stratagene,

CA) after elimination of residual contaminating genomic DNA

using the Turbo DNA-free Kit (Applied Biosystems, Ambion, CA).

Either cDNA derived from RNA enriched for non-polyadenyl-

ated bacterial mRNA (MD 257) or cDNA sequencing library

samples derived from reverse transcribed poly(A)+RNA (for MD

OCT-pool and MD 80228) were used as templates for the

generation of 16S rRNA V6 hypervariable region-specific

amplicons using the FastStart High Fidelity PCR System (Roche,

Switzerland). PCR conditions were 50 cycles of 94uC for 30 sec,

55uC for 45 sec and 72uC for 45 sec. The yielded amplicon

products were purified using AMPure, and the resulting individual

amplicon DNA libraries were clonally amplified by multiplex

emulsion PCR followed by sequencing using the GS FLX

pyrosequencing platform. The sequencing output data were

computationally divided into subsets according to the barcodes

(and the corresponding mule deer sample) and the primers A or B.

Supporting Information

Figure S1 Comparative MEGAN analysis of (A) MD 80228 and

(B) MD OCT-pool transcript-tags analyzed by comparison to the

protein database (red) and the ribosomal database (blue), and of

amplicon 16S rRNA-tags compared to the ribosomal database

(green). Bit score cutoff for the protein database comparison was

set at 50, and confidence cutoffs for the ribosomal database

comparisons were set at 80% and 80%, respectively.

Found at: doi:10.1371/journal.pone.0013432.s001 (0.45 MB

DOC)

Figure S2 Maximum likelihood trees showing the phylogenetic

affiliation of protein-coding transcripts obtained from 454

sequencing with Helicobacter reference sequences from GenBank.

(A) Helicobacter FlgK, (B) Helicobacter GDP-D-mannose dehydratase,

(C) Helicobacter UDP-3-O-[3-hydroxymyristoyl] glucosamine N-

acyltransferase.

Found at: doi:10.1371/journal.pone.0013432.s002 (0.18 MB

DOC)

Figure S3 Map of Montana, USA, depicting the geographical

distribution of the mule deer specimen.

Found at: doi:10.1371/journal.pone.0013432.s003 (8.14 MB

DOC)

Table S1 Properties of Roche-454 GS FLX sequencing runs.

Found at: doi:10.1371/journal.pone.0013432.s004 (0.42 MB

DOC)

Table S2 Numbers of cDNA transcript-tags and genomic DNA-

tags of seven and four mule deer specimen, respectively, assigned

to major taxonomic nodes by MEGAN comparison (bit score

cutoff set at 50).

Found at: doi:10.1371/journal.pone.0013432.s005 (0.30 MB

DOC)

Table S3 Numbers of transcript-tags assigned to bacterial taxa

by MEGAN comparison for seven mule deer lymph node

specimen.

Found at: doi:10.1371/journal.pone.0013432.s006 (0.73 MB

DOC)

Table S4 Bacterial taxonomic profiles of seven mule deer

specimen determined by comparison of cDNA libraries-derived

rRNA-tags to the ribosomal database.

Found at: doi:10.1371/journal.pone.0013432.s007 (0.51 MB

DOC)

Table S5 Bacterial taxonomic profiles of mule deer specimen

MD 257, MD 80228, and MD OCT-pool determined by

comparison of amplicon 16S rRNA-tags to the ribosomal

database.

Found at: doi:10.1371/journal.pone.0013432.s008 (0.60 MB

DOC)
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