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Abstract

High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a
missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic
network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical
method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix,
thereby linking computer-based genome-scale metabolic reconstruction and in vivometabolic dynamics. The incongruity of
metabolome coverage by typical metabolite profiling approaches and genome-scale metabolic reconstruction was solved
by the design of superpathways to define a metabolic interaction matrix. A differential biochemical Jacobian was calculated
using an approach which links this metabolic interaction matrix and the covariance of metabolomics data satisfying a
Lyapunov equation. The predictions of the differential Jacobian from real metabolomic data were found to be correct by
testing the corresponding enzymatic activities. Moreover it is demonstrated that the predictions of the biochemical
Jacobian matrix allow for the design of parameter optimization strategies for ODE-based kinetic models of the system. The
presented concept combines dynamic modelling strategies with large-scale steady state profiling approaches without the
explicit knowledge of individual kinetic parameters. In summary, the presented strategy allows for the identification of
regulatory key processes in the biochemical network directly from metabolomics data and is a fundamental achievement for
the functional interpretation of metabolomics data.
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Introduction

Genome-wide analysis of transcript levels, protein abundance

and metabolite concentration has evolved as a central strategy in

biology. Numerous studies based on techniques like next-

generation sequencing and metabolic phenotyping using liquid

chromatography coupled to mass spectrometry (LC-MS) and gas

chromatography coupled to mass spectrometry (GC-MS) have

significantly contributed to our current knowledge about the

molecular organisation of cells, tissues and whole organisms up to

the analysis of ecosystems [1,2]. However, the prediction of

dynamic metabolic phenotypes from full genome sequences is still

an obstacle [3]. There is an increasing need for methods to

systematically analyse and interconnect large datasets from

different experiments, in order to uncover global molecular

causalities. In recent years, several strategies were developed

aiming at the comprehensive analysis of complex data sets. For

example, by combining techniques of metabolic profiling and

genotyping strong genetic associations for concentrations of

metabolites were recently identified to characterize candidate

genetic building blocks for lignin content in maize [4]. A different

approach of integrating data on transcript levels and metabolite

abundance was applied to improve the understanding of global

responses to nutritional stresses in Arabidopsis thaliana [5]. In yeast,

genome-wide approaches to elucidate toxicity mechanism and

global stress responses are developed in the emerging transdisci-

plinary field of Toxicogenomics. It aims at the study of cell

response to a given toxicant at the level of the genome,

transcriptome, proteome and metabolome. Several studies could

already provide an integrative view on how cells interact with their

environment [6]. In a biomedical context the combination of

metabolite profiling by GC-MS and microarray based gene

expression profiling was shown to be a promising approach to

provide comprehensive insights into cellular regulation. For

example, the analysis of metabolic signatures obtained by an

untargeted GC-MS approach was shown to be an important step

towards the understanding of human pluripotent stem cells [7].

However, results from many studies also indicated the need to

further analyse dynamical behaviour of metabolism in order to

understand how a stable metabolic homeostasis can evolve and is

sustained under changing environmental conditions [8,9]. Time-

course experiments taking into account diurnal dynamics and

circadian rhythms [10,11] have been proven useful to analyse

metabolic regulation and plant-environment interaction. To

approximate cellular metabolic networks, techniques of large-scale

metabolic network reconstruction based on information about

whole genome sequences have been developed and applied to

plant metabolism [12–14]. These approaches were shown to be

able to provide information and allow predictions about metabolic

constraints, e.g. total ATP demand for growth and maintenance
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[13]. Yet, they are severely affected in their predictive power by

network gaps and mass-balance errors resulting from incomplete

genome annotation and reaction stoichiometry errors [15].

Additional complexity of such large-scale modelling approaches

arises from the fact that it is hardly possible to provide sufficient

information about reaction kinetics and associated parameters to

test and validate predicted rates of metabolite interconversion. In a

system of ordinary differential equations (ODEs) describing a

metabolic system of interest, the Jacobian matrix, which charac-

terizes the dynamical capabilities of the metabolic system,

represents the first-order partial derivative of functions fi with

respect to metabolite concentrations Mi (Eq. 1).
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One central parameter defining these functions in a biological

metabolic system is enzyme activity for which experimental data

are available only to a limited degree when compared to high-

throughput measurements of metabolite content or protein

abundance. To overcome this limitation a parametric represen-

tation of the Jacobian matrix is possible to allow the characterisa-

tion of a metabolic system of interest [16]. In contrast, the inverse

calculation of the Jacobian matrix directly refers to covariance

data from experimental high-throughput metabolomics data. By

this, a characteristic biochemical Jacobian matrix can be

estimated, instantaneously linking model structures and experi-

mental high-throughput metabolomics data sets [17,18]. However,

the linkage of genome-scale metabolic reconstruction and

metabolomics data is not directly possible because typical profiling

strategies such as GC-MS and LC-MS detect only subsets of the

whole metabolome. Therefore, we constructed superpathways

from a genome-scale metabolic reconstruction which cover the

typical set of identified metabolites in a metabolomics approach

focusing the central primary leaf metabolism of Arabidopsis thaliana.

This strategy allowed for the calculation of a differential

biochemical Jacobian directly from metabolomics data. We

analysed regulatory strategies in primary metabolism of leaves of

Arabidopsis thaliana induced by conditions of energy deprivation,

which is a substantial challenge for a plant due to restricted energy

Figure 1. Development of a superpathway model for primary leaf metabolism. The model structure was derived from stoichiometric and
biochemical information provided by genome-scale metabolic networks and databases. The model is provided in SBML format in the supplements
(Model S1).
doi:10.1371/journal.pone.0092299.g001
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resources and a complex reprogramming of metabolism [19,20].

Our predictions indicated significant alterations in the pyruvate

dehydrogenase complex (PDC) activity which we could validate

experimentally. Finally, we applied the obtained information to a

parameter optimization strategy.

Results

Metabolic Reconstruction of Genome-scale
Superpathways and Calculation of the Biochemical
Jacobian from Metabolomics Data using a Systematic
Mathematical Equation
Based on the genome-derived stoichiometric matrix of metab-

olism in Arabidopsis thaliana [12–14] and database information

about metabolic interaction (AraCyc, http://www.arabidopsis.

org/biocyc/index.jsp; MetaCyc, http://metacyc.org/) we devel-

oped a metabolic superpathway model of leaf primary metabolism

Figure 2. Differential Jacobian of Col-0 under conditions of light and extended night. Bars represent the log2-ratio of the entries in the
Jacobian matrices of Col-0 under conditions of light (L) and extended night (EN), which were derived from covariance data of metabolomics data sets.
Blue colour indicates a ratio.1, i.e. the Jacobian entry of the samples of extended night was higher than under normal light. White colour indicates a
ratio ,1, i.e. the Jacobian entry of the samples of extended night was lower than under normal light. All entries represent median values of 103

calculations normalised to the square of interquartile distance. (A) L(fMetabolite) and L(Metabolite) characterize the entries of the Jacobian matrix and
refer to equation 1. (B) shows the diagonal entries of the Jacobian matrix belonging to the metabolites described on the horizontal axis.
doi:10.1371/journal.pone.0092299.g002
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in Arabidopsis thaliana (Fig. 1). In this simplified model structure,

each superpathway represents a summary of underlying reactions

directly connecting metabolites which were experimentally acces-

sible. These superpathways were built by removing all metabolic

intermediates which were not contained in our experimental GC-

MS data set focusing the central leaf primary metabolism of

Arabidopsis thaliana. Finally, we re-connected all metabolite pools

which were left in the model by irreversible reactions. The model

contains 49 metabolite pools of which 32 were determined

experimentally, and 52 reactions. The model is provided in SBML

format (Model S1). The metabolite interaction matrix of the

model, which represents a simplified version of the true

stoichiometric matrix, was used - together with the experimental

covariance data - for the inverse calculation of the Jacobian

matrix. Experimental covariance data and the metabolic interac-

tion network were linked by equation 2 which results in entries of

the Jacobian matrix [17,21]:

JCzCJT~{2D ð2Þ

J represents the Jacobian matrix, C the covariance matrix

derived from the experimental data and D is the so-called

fluctuation matrix integrating metabolite fluctuations which can be

modelled by a Langevin-type equation (Eq. 3):

J
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Here, time-dependent changes in the matrix of metabolite

concentrations J are directly linked to the Gaussian noise function

y(t). Stationary solutions of (Eq. 3) are linked to the covariance

matrix by a corresponding Fokker-Planck equation, finally

resulting in (Eq. 2) [21,22]. Recently, we implemented this

equation into a statistical toolbox called COVAIN for the analysis

of metabolomics data and demonstrated that the Jacobian can be

directly estimated from the data assuming a predefined fluctuation

matrix [17]. To solve the inverse Jacobian from the covariance

matrix (Eq. 2), a total least square optimization routine was

applied [17]. To figure out the impact of the fluctuation matrix on

the results of our inverse Jacobian calculation, we repeated the

calculations 101, 102, 103, 104 and 1.66104 times and found the

interquartile distance of calculated Jacobian entries to be robust

after at least 103 calculations in all data sets (Fig. S1). Medians of

103 calculated Jacobian entries were then normalised to the square

of interquartile distances. A differential Jacobian, which describes

relative changes between the entries of two Jacobian matrices of

different conditions [17], was calculated directly from the

metabolomics data of control plants and plants exposed to

extended darkness running into the low energy syndrome (LES).

The differential Jacobian matrix indicated the most significant

difference in the diagonal entry of pyruvic acid (,0) and arginine

(.0) between both conditions (Fig. 2 A,B). As the diagonal entries

of a Jacobian matrix describes the partial derivative of a metabolite

function with respect to the metabolic substrate abundance, an

entry ,0 indicates a faster change in the metabolite function with

respect to a change in the metabolite concentration in the

denominator of the differential Jacobian matrix. In contrast,

entries .0 indicate a faster change in the numerator. With regard

to our data set this means that small changes in cellular levels of

pyruvic acid induce a faster change in the pyruvic acid consuming

function in control plants than under conditions of extended

darkness. Assuming that an enzyme, which follows the Michaelis-

Menten kinetics, significantly affects the interconversion of pyruvic

acid, we hypothesised that such enzyme activities are changed by

conditions of extended darkness. Due to the relative quantification

of metabolite abundance in our GC-MS experiment, these

predictions are only qualitative indicators of changes in enzyme

activities, and absolute quantification is not possible. A prominent

metabolic reaction, which interconverts pyruvic acid, is catalysed

by the pyruvate dehydrogenase complex (PDC) producing acetyl-

coenzyme A. Hence, to validate our model prediction indicating

that enzymatic activities are changed between the two conditions,

the whole cell activity of PDC was experimentally determined

(Fig. 3). Proving the Jacobian-based predictions, PDC activity was

found to be significantly higher in samples of control condition

than under conditions of extended darkness (p,0.05) and provide

a causal explanation for the differential Jacobian entries.

Application of Results from Inverse Calculation to ODE
System Optimization
The next step was to analyse whether the finding of differential

regulation of pyruvic acid metabolism is sufficient to explain the

differences in metabolic homeostases. Metabolic changes were

classified according to underlying pathways and measured

metabolite abundances were summarized in metabolic clusters

(Fig. 4). This resulted in 8 clusters, comprising metabolites

belonging to photorespiration (Cluster: C), aromatic amino acids

(Cluster: D), sugars (Cluster: E), pyruvic acid (Cluster: F), amino

acids derived from pyruvic acid (Cluster: G), TCA intermediates

(Cluster: H), amino acids derived from TCA intermediates

(Cluster: K) and polyamines (Cluster: L). The composition of the

metabolic clusters are described in detail in Table S1.

When transferred to extended night conditions, metabolic

clusters C, F and G were affected most significantly when

compared to control conditions (Fig. 4). In contrast, levels of

polyamines (Cluster L) were least affected. To comprehensively

integrate these changes of metabolite levels together with the

enzyme activity and the calculated entries of the Jacobian

matrices, a simplified model was derived from the superpathway

model (Fig. 5). This model was based on ordinary differential

equations (ODEs) connecting the metabolic clusters by network

functions fi. These functions fi represent the abstract summary of

metabolite functions, which are defined by parameters, for

example like temperature, enzyme abundance or substrate affinity.

To test whether the information about relative changes in PDC

activity is applicable to the solution of a system of ODEs describing

relative levels of metabolite pools, an optimization procedure was

applied providing information about the contribution of every

single interconversion function fi to the best solution of the ODEs.

The optimization procedure was designed as described in the

following: an arbitrary solution of the system of ODEs was

calculated allowing for the simulation of the metabolic steady state

in Col-0 under normal light conditions resulting in a set of fi,Col-0.

Starting from these identified values of fi,Col-0,L a local solution for

the system of ODEs was searched which allows the simulation of

the metabolic homeostasis of Col-0 under conditions of extended

darkness. To evaluate the contribution of each fi to the best

solution, different optimization runs were performed only allowing

one or two of the fi to be varied. For example, in the first

optimization run only f7, the function which describes the turnover

of pyruvic acid, was set as a decision variable in the optimization

procedure. Here, the solution only depended on variation of f7. In

the next run, an additionally function, e.g. f8, was defined as a

decision variable, too; hence the solution now depended on

variation of f7 and f8. In this way, all combinations of functions
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were analysed to evaluate the most efficient function combination

for yielding the best solution. The landscape showing the relative

contribution of each fi in combination with another function to the

best solution indicated the most significant contribution by f7
(turnover of pyruvic acid) and f9 (turnover of amino acids derived

from TCA intermediates, polyamine biosynthesis) (Fig. 6).

Discussion

The Inverse Calculation of the Differential Jacobian
Reveals Changes in Metabolic Functions
Metabolism is organized in a highly complex manner being

attributed to a vast variety of interlaced regulatory loops between

different levels of molecular organisation, e.g. metabolite-protein

interaction, and a high level of cellular compartmentation. This

makes it hardly possible to intuitively conclude regulatory

strategies from large experimental data sets, which have become

a central part of systems biology and are provided by various

omics technologies [2,3]. Computer assisted approaches of

mathematical modelling have become an imperative strategy to

handle such complex networks to derive as much information as

possible about physiological responses, developmental program or

cellular function [23]. The results of our study provide evidence

that deriving entries of Jacobian matrices from GC-MS data

represents an efficient approach to combine high-throughput

measurements with mathematical modelling. Such a methodology

is central to the research field of systems biology aiming at

uncovering biological networks on a global scale [3]. In contrast to

the non-limiting conglomeration of mathematical methods, which

have become applicable to the research field of systems biology,

one of the most limiting steps is the knowledge of model

parameters and the validation of model outputs by experimental

data. Frequently, this results in a solution space of model

simulations with multiple possible flux distributions or parameter

sets significantly complicating the determination of the most

realistic model output [24]. The systematic linkage of the

metabolic solution space defined by metabolomics measurements

with the metabolic network structure as represented by our

approach exactly tackles this multi-solution problem of structural

modelling. To some extent, this limitation can be overcome by the

presented method of inverse calculation of the Jacobian matrix.

While Jacobian matrices in a metabolic network are analytically

derivable as the first-order partial derivative of functions of

metabolite concentrations with respect to other metabolite

concentrations, this presumes the exact knowledge of the functions

of metabolite concentrations. These functions, however, are again

composed of various unknown parameters, like enzyme kinetics or

thermodynamic constraints. In our approach, the metabolite

function does not have to be known explicitly but can indirectly be

estimated by the (co-)variance of the experimental data. In the

present study, we have verified that the entries of the differential

Jacobian matrices indicate relative changes between environmen-

tal conditions in rates of metabolite functions depending on

enzyme kinetics. Particularly, the diagonal entries of differential

Jacobian matrices provide information about how a rate changes

with respect to a change in substrate concentration and with

respect to the condition. The following example should explain

this in more detail: assuming that metabolite function fA describes

the time-dependent concentration change of metabolite A which is

predominantly catalysed by an enzyme following the Michaelis-

Menten kinetics under conditions C1 and C2, this would result in

a characteristic diagonal Jacobian entry dJii:

Figure 3. Relative activity of the pyruvate dehydrogenase complex in Col-0 under conditions of light and extended night. Enzyme
activity is given in arbitrary units which are normalised to gram fresh weight. The blue bar shows relative activity under normal light condition, the
red bar shows activity under condition of extended darkness. The difference of relative activity is significant (p,0.05) and bars represent means6 SD
(n = 5).
doi:10.1371/journal.pone.0092299.g003
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Based on this equation in context of equation 2 (Eq. 2),

metabolomics data can directly be linked to underlying regulatory

instances, e.g. enzyme activities. Additionally, due to building a

ratio of two Jacobian entries with the same assumption about

enzyme kinetics, knowledge about the detailed characteristics of

the enzymatic interconversion is not necessary for detecting

differential regulation. This significantly reduces the uncertainty

about the biochemical reaction network which does not only arise

from experimental metabolomics data but also from kinetics and

kinetic parameters [25]. By using equation 2, the metabolomics

covariance data, and a reconstructed metabolic network of central

metabolism in Arabidopsis, Jacobian entries were calculated for

the Arabidopsis thaliana wildtype Col-0 under control conditions as

well as under low energy stress if grown in an extended night

period. We found the diagonal Jacobian entries depending on

pyruvic acid to be significantly lower in extended darkness.

According to our hypothesis of a dominating effect of enzyme

kinetics for definition of metabolite functions, the differential

Jacobian entries were predicted to be due to a differentially

regulated activity of PDC. The PDC enzymatic activity was

measured in vitro and was found to be significantly higher in the

control plants than in the samples of extended darkness. However,

the multivariate Gaussian distribution of the stationary solution of

the Langevin-type equation significantly affects the fluctuation

matrix D [21,22,26], and thereby automatically reduces the

predictive power of inversely calculated entries of the Jacobian

matrix. Additionally, entries of the Jacobian matrix, which are

derived from a metabolic interaction matrix, rather represent the

collective change in the activities of all enzymes involved. Hence,

those entries may only give a reliable prediction about rate limiting

steps in the corresponding superpathway, e.g. the activity of PDC.

Further studies are now necessary to reduce the noise and to

increase the number of reliable predictions, e.g. by integration of

more precise information about the metabolic interaction, i.e.

protein abundance and thermodynamic constraints.

Entries of the Biochemical Jacobian Matrix Allow for
Prediction of a Parameter Optimization Strategy
The representation of a biochemical system by ODEs has been

focused by many approaches of mathematical and kinetic

modelling [27–29]. While kinetic modelling represents an attrac-

tive method to study complex metabolic systems comprehensively,

a plethora of information about enzyme kinetics, kinetic param-

eters, regulation and network topology are needed to be able to

reconstruct and predict system dynamics [30]. Based on our

finding that the comparison of Jacobian entries predicts changes in

enzymatic activity, we tested whether this information is also

applicable to solve a system of ODEs of a simplified metabolic

network describing groups of metabolites in leaf primary

metabolism of Arabidopsis thaliana. The central components of a

mathematical optimization procedure are decision variables, an

objective function and constraints [31]. While decision variables

can be varied during the search for the best solution, the objective

function indicates the quality of solution and can be minimized or

maximized under variation of the decision variables. A prediction

of optimization strategies is desirable because, particularly in large-

scale metabolic networks but also in time-series models, the

computational time increases exponentially with the size of the

optimization problem [32]. In our example, we found that, as

predicted by the differential Jacobian, the objective function, i.e.

the minimal error square of steady state simulation and

experimental data, becomes minimal if the reaction of pyruvic

acid to TCA intermediates (f7) is set to be a decision variable.

Additionally, the reactions of amino acids to polyamines (f9) were

found to be a pre-requisite for the best solution of the optimization

problem. In context of this finding it is interesting to note that the

Figure 4. Relative changes of metabolic clusters under light and extended night conditions. Bars indicate the ratios of metabolic clusters
from Col-0 under extended night and light conditions. Clusters are named according to the description in the main text (Results) and Table S1.
doi:10.1371/journal.pone.0092299.g004
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diagonal entry of the differential Jacobian for arginine intercon-

version was greater than zero which is directly related to f9 as it

describes the polyamine biosynthesis. Thus, we provide evidence

that inverse calculation of a differential Jacobian based on

Figure 5. Simplified model structure of the primary metabolism according to metabolic clusters. The model was derived by
interconnecting the metabolic clusters by functions of interconversion (fi). Clusters are named according to the description in the main text (Results)
and Table S1.
doi:10.1371/journal.pone.0092299.g005
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metabolomics data provides a framework for evaluation of

optimization strategies which have to be applied to ODE-based

models of complex metabolic networks.

To summarize the findings of the present study, we could

demonstrate how metabolomic data from different homeostasis

can systematically be linked to large-scale models allowing for the

identification of perturbed pathways. Because the calculations of

the Jacobian matrix are based on genome-derived stoichiometry of

the metabolic network and metabolomics data, this matrix now

provides a comprehensive platform for estimating the impact of

genetic or environmental impact on regulatory mechanisms in

complex biological systems.

Materials and Methods

Plant Cultivation
Seeds of Arabidopsis thaliana Col-0 were sown on soil, stratified at

4uC for 2 days, and plants were grown in a growth cabinet in a

12 h light/12 h dark cycle. Light intensity was 80 mmol m22s21,

and temperature was set to 20/16uC during the light/dark period.

Whole rosettes of 35 days old plants were harvested 6 h after light

on and after 18 h of darkness, i.e. 6 h of extended darkness.

Samples were frozen immediately in liquid nitrogen. Plant

material was ground to a fine powder in a ball mill (Retsch,

Haan, Germany) and stored at 280uC until further experimental

processing.

Metabolite Extraction, Derivatisation and Analysis by GC-
MS
Metabolite extraction and derivatisation was done as described

in [18] with minor changes. 1 ml of 220uC cold methanol/

chloroform/H2O (2,5/1/0,5) was added to 80 mg of plant

material. Samples were vortexed, incubated on ice for 8 –

10 min and centrifuged for 4 minutes at 14000 g. 500 ml H2O

were added to the supernatant, followed by brief vortexing and 2

minutes centrifugation. The polar phase was split equally into 2

aliquots and C13 labeled Sorbitol was added to a final

concentration of 10 mg/l as an internal standard. Samples were

dried and for derivatisation, the dried pellets were dissolved in

10 ml of a 40 mg ml21 solution of methoxyamine hydrochloride in

pyridine by shaking at 30uC for 90 minutes. 40 ml of N-methyl-N-

trimethylsilyltrifluoroacetamid (MSTFA), spiked with 60 ml/ml of

a mix of even-numbered alkanes, were added and the samples

were incubated at 37uC for 30 minutes under constant shaking,

followed by 2 minutes of centrifugation at 14000 g. The

supernatant was transferred into a glass vial for measurement.

GC-MS measurements were carried out on an Agilent 6890 gas

chromatograph coupled to a LECO Pegasus 4D GCxGC-TOF

mass spectrometer (LECO Corporation, Michigan, USA). Setup,

methods and raw data processing were applied as previously

described [18] with the following changes: in the GC method, the

initial oven temperature was 70uC (held for 1 min), followed by a

9uC/min ramp with 350uC end temperature (held for 8 min). In

the MS method, data acquisition rate was 20 spectra/sec with a

detector voltage of 1550 V. Acquisition delay was 5.5 minutes and

mass range was 40 to 600 m/z. Raw data were processed with the

LECO Chroma-TOF software (LECO Corporation, Michigan,

USA). Relative metabolite levels for each sample were calculated

from the peak areas by dividing by the peak area of the internal

standard, subtracting of occurring values in the blank and dividing

by the sample fresh weight.

Inverse Calculation of Jacobian Matrices from
Experimental Metabolomics Data
Inverse calculation of the Jacobian matrix was performed

applying an algorithm as described previously [17,18]. Calcula-

tions were performed for 101, 102, 103, 104 and 1.6x104 times, and

medians as well as interquartiles of calculated Jacobians were

determined. Medians were normalised to the square of inter-

quartiles to include fluctuation of calculations in the data

interpretation. Differential Jacobian matrices were built as the

log2-ratio of Jacobian entries from data sets recorded under

conditions of light (L) and extended night (EN) (Equation 5):

dJ~log2D
JCol{0,EN

JCol{0,L
D ð5Þ

Figure 6. Contribution of metabolite interconversion functions to the best numerical solution of the simplified metabolic network
model. Numbers of metabolite interconversion functions are indicated on x- and y-axis. The colour bar indicates the relative decrease of the cost
function value, i.e. improvement of solution, when a function or a combination of functions was varied during the optimization process. All cost
function values were normalised to the best of all optimization runs (100%). Functions were optimized for the simulation of the metabolic
homeostasis of Col-0 under extended darkness.
doi:10.1371/journal.pone.0092299.g006
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Determination of Whole Cell PDC Activity
The activity of PDC in crude extracts of leaf samples of

Arabidopsis thaliana was assayed by the formation of NADH at

340 nm as described by Yu and co-workers with slight modifica-

tion [33]. The assay was downscaled to be performed in a 96 well

microplate (mClear, Greiner Bio-One GmbH, Germany).

ODE Programming and Optimization Procedure
Programming and global optimization of ODEs was performed

in MATLAB 7.12.0 (R2011a) using the ‘Systems Biology Toolbox

2’ and the ‘SBPD Extension Package’ [34]. The ODE model

structure is provided in the Supplementary Information in SBML

format (Model S2). The optimization process was performed

applying a downhill simplex method in multidimensions. The

algorithm is based on section 10.4 in ‘‘Numerical Recipes in C’’

[35], and is implemented in the ‘Systems Biology Toolbox 2’ and

the ‘SBPD Extension Package’ [34].

Supporting Information

Figure S1 Interquartile distance of calculated Jacobian
entries derived from n replicates. Each interquartile of

samples under conditions of light (A) and extended night (B) was

normalised to the interquartile distance of 10 replicates.

(PDF)

Table S1 Metabolomics data. GC-MS data, mean and

cluster-analysis results.

(XLSX)

Model S1 Metabolic reconstruction of genome-scale
superpathways adapted to metabolite profiling data
for Arabidopsis thaliana (see Materials and Methods).

(XML)

Model S2 ODE model global optimization procedures
(see Materials and Methods).

(XML)
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