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Genotypic data provide deep insights into the population history and medical genetics.
The local ancestry inference (LAI) (also termed local ancestry deconvolution) method
uses the hidden Markov model (HMM) to solve the mathematical problem of ancestry
reconstruction based on genomic data. HMM is combined with other statistical models
and machine learning techniques for particular genetic tasks in a series of computer
tools. In this article, we surveyed the mathematical structure, application characteristics,
historical development, and benchmark analysis of the LAI method in detail, which
will help researchers better understand and further develop LAI methods. Firstly, we
extensively explore the mathematical structure of each model and its characteristic
applications. Next, we use bibliometrics to show detailed model application fields
and list articles to elaborate on the historical development. LAI publications had
experienced a peak period during 2006–2016 and had kept on moving in the following
years. The efficiency, accuracy, and stability of the existing models were evaluated
by the benchmark. We find that phased data had higher accuracy in comparison
with unphased data. We summarize these models with their distinct advantages and
disadvantages. The Loter model uses dynamic programming to obtain a globally optimal
solution with its parameter-free advantage. Aligned bases can be used directly in the
Seqmix model if the genotype is hard to call. This research may help model developers
to realize current challenges, develop more advanced models, and enable scholars to
select appropriate models according to given populations and datasets.

Keywords: LAI model, HMM, mathematical structure, bibliometrics, benchmark

INTRODUCTION

Rapid advancements in computing technologies, genome sequencing, and single nucleotide
polymorphism (SNP) genotyping methods have made it possible to infer the genomic structure
at a fine scale (Kidd et al., 2012). It also accelerates the exploration of mixed ancestry or local
ancestry inference (LAI) at the individual and population levels (Schumer et al., 2020). In LAI, each
chromosome is considered as a mosaic of genomic segments, originated from multiple ancestral
groups (Padhukasahasram, 2014). LAI is of great importance in studying population evolution,
migration history, or disease risks (Fitak et al., 2018). Up to now, various LAIs have been widely
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used; each model comes with its own advantages and
disadvantages toward LAI in admixed populations
(Geza et al., 2019).

Due to the genetic recombination after interbreeding, the
genome consists of mosaic of DNA segments with different
genetic ancestries (Dougherty et al., 2017). Genotypes from
putative ancestral populations are mostly utilized to infer the
local ancestry of admixed individuals (Sankararaman et al.,
2008a). Currently, about 70% of LAI models are based on hidden
Markov model (HMM), where the hidden states correspond
to ancestries and generate the observed haplotypes/genotypes
(Baran et al., 2012). LAI models use ancestry informative markers
(AIMs) for simplicity or to account for linkage disequilibrium
(LD) of variants, i.e., STRUCTURE (Falush et al., 2003), Hapmix
(Price et al., 2009), Saber (Tang et al., 2006), and LAMP-LD
(Baran et al., 2012). Other models consider rich haplotype
information by employing window-based strategies, i.e., RFMix
(Maples et al., 2013), PCAdmix (Brisbin et al., 2012), and
LAMP (Sankararaman et al., 2008b). Table 1 presents more
details in this regard.

MODELS BASED ON AN ORIGINAL
HIDDEN MARKOV MODEL

The challenge of identifying ancestry along each chromosome can
be addressed with different approaches. One of the most widely
used models is HMM, an extension of a Markov chain, in which
the state transformation is generally unobservable (Wu and Zhao,
2019). In HMM, the parameters include initial state distributions,
state transition probability matrix, and emission probability
matrix. Algorithms were developed to solve three main questions
of HMM: evaluation (forward algorithm), decoding (Viterbi
algorithm), and training (Baum–Welch algorithm including
expectation maximization or maximum likelihood) (Schuster-
Böckler and Bateman, 2007).

LAI models based on the original HMM algorithm include
Hapmix (Price et al., 2009), Seqmix (Hu et al., 2013), PCAdmix
(Brisbin et al., 2012), Supportmix (Omberg et al., 2012), and
LAMP-LD (Baran et al., 2012). These models use Baum–Welch to
iteratively update the initialized transition probability matrix and
the emission probability matrix and use Viterbi for estimating the
hidden ancestral states. The designs of the initialized emission
and the subsequent calculations mainly differentiate among the
models. Supportmix utilizes a support vector machine (SVM)
(Haasl et al., 2013) for classifying the chromosome segments
of the ancestral group, while PCAdmix calculates Euclidean
distances between the ancestral groups and admixed individuals
for finding the closest ancestry for each window.

Hapmix Model
The Hapmix model (Price et al., 2009) is based on a combination
of the HMM and haplotype. The hidden state for position
s is denoted via a triplet (i,j,k); here, i denotes the ancestry
derived from a different population, while j recorded the
population from which the haplotype was copied considering
miscopying, and k corresponds to the source of the individual

the chromosomal segment was copied from. ps(i,j,k;l,m,n) is the
transition probability from state (i,j,k) to state (l,m,n) between the
adjacent sites s and (s + 1). e1

ijk(s) denotes the type 1 offspring
chromosome probability at site s and tjk represents the parent
individual k type in the reference population j. The initialized
emission probability matrix is given in Equation (1).

e1
ijk (s) =

{
θiδ
(
tjk = 0

)
+ (1− θi) δ

(
tjk = 1

)
if i = j

θ3δ
(
tjk = 0

)
+ (1− θ3) δ

(
tjk = 1

)
if i 6= j

(1)

Here, offspring carrying the identical type to the specific parent
is with a probability (1 – θ1), while a different type with the
probability θ1, θ3 denotes the mutation rate in the case that
offspring copied from the other population.

Seqmix Model
The Seqmix model (Hu et al., 2013) aligns bases directly rather
than relying on genotypic calls. The method implemented in
Seqmix consists of three layers: the hidden ancestry state, the
hidden genotype, and the observed sequence reads. The genotype
is placed in the intermediate layer by connecting the sequence
reads and ancestry. In the HMM, the transition matrix denotes
the hidden ancestry state qs as (As1, As2), Herein, As1 represents
the first chromosome ancestry at site s, while the ancestry of
the other chromosomes is represented by As2. γs,s + 1 is the
rate of recombination per generation between site s and s + 1
and T represents the generations since admixture. πA and πE
correspond to the prior probabilities for populations 1 and 2. The
initialized transition probability matrix is given in Equation (2).

Ps,s+1 =

[
PE,E

s,s+1 PE,A
s,s+1

PA,E
s,s+1 PA,A

s,s+1

]
=

[
1−

(
1− e−γs,s+1T)πA (1− e−γs,s+1T)πA(

1− e−γs,s+1T)πE 1− (1− e−γs,s+1T)πE

]
(2)

The initialized emission probability is P(Os| qs), which is
calculated as a sum of the overall possible genotypes, assuming
the Hardy–Weinberg equilibrium, and is weighted by ancestry-
specific allele frequencies: P

(
Os|qs = (As1,As2)

)
. The genotype

likelihood P(Os| qs) is the probability of the observed set of reads
given the hidden ancestry state.

PCAdmix Model
The PCAdmix model (Brisbin et al., 2012) is based on a
combination of the HMM and principal component analysis
(PCA). The principal components (PCs) of the ancestral
populations are firstly calculated based on the phased genotypes
of the ancestral representatives and the phased genotypes
of admixed individuals projected onto the component space.
The vector P(Si,w|anci,w = j) defines the emissions probability,
anci,w denotes the ancestry of haplotype i at window w from
population j and comprises the ancestry scores across the first
K – 1 PCs, where K is the total count of ancestral populations,
the weighted sum Siw = Lwgiw is the ancestry score for haplotype i
in window w, giw represents a column vector of the haplotype’s
alleles in the window, and Lw represents a matrix in which
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TABLE 1 | Detailed deconvolution model description.

Model name Split format Algorithm The number
of ancestral
populations

Built-in
phasing error

correction

Reference
populations

Admixed
populations

LD References

Hapmix Haplotype HMM 2 Yes Phased Unphased Yes Price et al., 2009

Seqmix Haplotype HMM 2 No Unphased Unphased No Hu et al., 2013

PCAdmix Window PCA + HMM > = 2 No Phased Phased Yes Brisbin et al., 2012

Supportmix Window SVM +HMM > = 2 No Phased Phased Yes Omberg et al., 2012

LAMP-LD Window HMM 2, 3, 5 No Phased Unphased Yes Baran et al., 2012

ALLOY Window F-HMM > = 2 Yes Phased Phased Yes Rodriguez et al., 2013

Saber Haplotype M-HMM > = 2 No Phased/
Unphased

Phased/
Unphased

Yes Tang et al., 2006

SWITCH Haplotype MCMC > = 2 No Phased Phased Yes Sankararaman et al., 2008a

HAPAA Haplotype H-HMM > = 2 Yes Phased Phased Yes Sundquist et al., 2008

ELAI Haplotype Two-layer HMM > = 2 No Phased/
Unphased

Phased/
Unphased

Yes Guan, 2014

RFMix Window RF + CRF > = 2 No Phased Phased No Maples et al., 2013

Chromopainter Haplotype PCA+MCMC > = 2 No Phased Phased Yes Lawson et al., 2012

LAMP Window ICM > = 2 No Unphased Unphased No Sankararaman et al., 2008b

Loter Haplotype DP > = 2 Yes Phased Phased No Dias-Alves et al., 2018

EILA Haplotype FQR + K-means > = 2 No Unphased Unphased No Yang et al., 2013

LASER 2.0 Haplotype PCA + PPA > = 2 No Phased Phased No Wang et al., 2015

WINPOP Window DP > = 2 Yes Unphased Unphased No Pasaniuc et al., 2009

the individual columns carry the PC loadings of one SNP in
the window; each window is used as the observation value in
HMM. The transition probability is P(anci,w = j| anci,w − 1 = k).
A forward–backward algorithm is applied to find the posterior
probability for each window in the admixed haplotype.

Supportmix Model
In the Supportmix model (Omberg et al., 2012), SVM and HMM
algorithms are combined, and independent SVM classifiers are
firstly applied for each genomic window to retrieve putative
ancestry origins. The outputs of the SVMs are then fed to HMM
to refine the ancestral assignment for each window. The emission
possibilities are p for the hidden state (1 – p)/(k

′

– 1) and for
the other states, where k

′

is the number of ancestral populations
and p is the classification from the SVM at the corresponding
window. LD is considered in the HMM where the recombination
is modeled as a Poisson process. The transition probability is thus
defined as (1 – e−gd)/(k

′

– 1), where d is the genetic distance
(in centimorgan) between the windows and g is the generation
since admixture.

LAMP-LD Model
The LAMP-LD model (Baran et al., 2012) uses a window-
based HMM, which divides the genome into non-overlapping
windows of fixed length L with a fixed state space of hidden

ancestry of
(

K
2

)
. The admixed chromosome is modeled by

HMM corresponding to each ancestry pair Sw
= (Mw

1 ,Mw
2 ).

Genotypic block Gw is emitted by each state(Mw
1 ,Mw

2 ) with
the emission probability:

∑
(Hw

1 ,H
w
2 )

P
(
Hw

1 |M
w
1
) (

Hw
2 |M

w
2
)
. Here,

P(Hw
1 |M

w
1 ) is the probability that the haplotype segment Hw

1 is

emitted under the ancestry M1 and (Hw
1 ,Hw

2 ) is the haplotype
pair consistent with the genotypes. The transition probability
between the two states in a consecutive window (Mw

1 ,Mw
2 ) and(

Mw
′

1 ,Mw
′

2

)
is set to the average recombination rate per base

per generation θ = 10−8
× D (D denotes the length in base pairs

between windows) if the unordered ancestry pairs (Mw
1 ,Mw

2 ) and

(Mw
′

1 ,Mw
′

2 ) differ by one ancestry, θ2 if both ancestries differ, or
1 – 2θ – θ2 if there is no ancestry switch.

MODELS BASED ON A HIDDEN
MARKOV MODEL FAMILY

The HMM family, based on an extension of the original
algorithm, includes factorial-HMM (F-HMM), hierarchical-
HMM (H-HMM), Markov-HMM (M-HMM), conditional
random field (CRF), and two-layer HMM. Their transition and
emission probabilities have been improved for reinforcing the
learning of the original HMM. LAI models based on the HMM
family include ALLOY (Rodriguez et al., 2013), Saber (Omberg
et al., 2012), HAPAA (Sundquist et al., 2008), ELAI (Guan, 2014),
and SWITCH (Sankararaman et al., 2008a). ALLOY applies a
F-HMM to get hold of the parallel process, thus giving rise to
the paternal and maternal admixed haplotypes. This, in turn,
strengthens the correction of the HMM parameters, especially
for the emission probabilities. Saber and SWITCH improve
and enhance the traditional emission probabilities at a marker
by using the joint distribution of alleles at two neighboring
markers. SWITCH depends on pairwise SNP allele frequencies
between consecutive markers, whereas the Saber model relies
on the allele frequencies at the two consecutive markers. Unlike
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the M-HMM emission probability models of SWITCH and
Saber, HAPAA has an emission probability of a 5 × 5 stochastic
matrix and is historically the first model of the series (Sundquist
et al., 2008). Most of the transition probabilities still consider
the genetic distance and generations in extended HMM. Like
Supportmix, RFMix adopts a kind of multi-classification models
for investigating chromosome segments of similar ancestry and
uses CRF to smooth ancestral window information.

ALLOY Model
The ALLOY model (Rodriguez et al., 2013) uses F-HMM and
is an improved form of HMM to capture parallel processes
for producing the maternal (m) and paternal (p) admixed
haplotypes. This model is denoted by Hm

l ,Hp
l , the haplotype

cluster membership drawn from al ∈ Al on the haplotypes
at position l. Gl ∈ {0,1,2}, which is the observed genotype at
the same marker position, represents the count of the minor
allele. Across all the positions of the L marker, the presence
of vectors of haplotype cluster memberships and genotypes are
represented by H{m,p} = (H{m,p}1 ,H{m,p}2 , ...,H{m,p}L ) and G =

(G1,G2, . . . ,GL), correspondingly. In the model, the posterior
marginal is first computed to infer the emission probability, given
the sample of genotypes P(Hm

l ,Hp
l |G) by applying the forward–

backward algorithm. Local observation is made from the
multiplication of the emission probability P(Gl|Hm

l = al,Hp
l =

a
′

l) and by incorporating the transition probability of (Hl |Hl−1).

Saber Model
The Saber model (Tang et al., 2006) computes the posterior
probability of the hidden states in the M-HMM based on forward
and backward algorithms and adds the relationship between
the observed genotype along each chromosome. The transition
probabilities of the initial state are given in Equation (3).

P(Z1 = i|π) = πi, (i = 1, · · ·,N),Astruct
ij

(t) = P
(
Zt = j|Zt−1 = i, τ,π

)
(3)

where Zt represents unobserved ancestry, π represents the
genome-wide average individual admixture, and τ is the
time since admixing.

The distribution of Ot
f given Zt

f is described by the emission
probability; Ot

f represents the observed genotype. The allele
frequency in each ancestral population is considered as a natural
choice of emission probabilities at a particular marker. In
M-HMM, the model further requires the alleles’ joint distribution
at two neighboring markers. Equation (4) can be defined as the
emission probability at marker t.

Bt
(
v, u, j, i

)
= P

(
Of

t = v|Of
t−1 = u,Zf

t = j,Zf
t−1 = i

)
(4)

SWITCH Model
The SWITCH model (Sankararaman et al., 2008a) uses M-HMM
and presents an effective initialization procedure that yields
a highly accurate outcome at a notably reduced cost of
computation via the expectation maximization (EM) algorithm
for the estimation of parameters. In each EM iteration, the

ancestry information of each haplotype is represented by
matrix Z, and matrix W denotes recombination events. The
Z and W updates are computed with the help of the Viterbi
algorithm having emission probabilities Pr(Xi,j|Zi,j, pj, qj), which
are replaced with an integral of pj and qj; the noticed SNP binary
matrix has been represented by Xi,j at the j-th SNP of the i-
th haplotype. The expectation step includes the calculation of
the posterior probabilities of pj and qj; that is, Pr(pj, qj|Xi,j,Z

(t)
i,j ).

The underlined step can be performed via Bayes’ theorem. The
maximization step includes finding a solution to m separate
optimization problems in Zi, Wi, i∈{1,m}, where the vector of
ancestries for the i-th haplotype is represented by Zi and the
complementary vector of recombination events is shown by Wi,
as shown in Equation (5).

log
[
Pr
(
Zi,1|α

)]
+ I1,i

(
Zi,1

)
+
∑n

j=2

{Ij,i(Zi,j)+ fi,j−1,j
(
Zi,j−1,Zi,j,Wi,j

)
}. (5)

where fi,j−1,j(Zi,j−1,Zi,j,Wi,j). corresponds to the log transition
probabilities and Ij,i

(
Zi,j
)

represents the expectations of the
log emission probabilities. α refers to the fraction of the first
population in the ancestral population.

HAPAA Model
In the HAPAA model (Sundquist et al., 2008) based on H-HMM,
an integration of the model with multiple HMMs is used.
The model assumes the N populations P = {P1, P2,. . . , PN},
each P denoted via a set of np model individuals, Pp =

{ap1, ap2, . . . , apnp}. The probability of emission is given by a
5 × 5 stochastic matrix, P

(
āi = x|yi = Spkh

)
, where the hidden

state variable is denoted yi. Spkh is for the two haplotypes h ∈ {0,
1} of each k individual in the p population. After that, an emitting
state starts with an equivalent probability for the individual
population, which is provided as P(y1 = Spkh) = 1/2Nnp. Every
Spkh state can exist in three transitions: back to itself and the
other presumed haplotype in the very individual Spk(1 − h) with
a probability of (1− wpki)e−τpRi , and wpki · e−τpRi , respectively,
or to the state Outp exit with probability 1− e−τpRi . Training
samples provide the recombination rate τp, the probability of
a phasing switch error is represented by wpki, Ri represents
the genetic distance between the loci, the emission probability
is represented by P

(
āi = x|yi = Spkh

)
, and the transition

probability is represented by P(Outp → Inp′ ), and using an EM
algorithm to update these parameters on the training examples.

ELAI Model
In the ELAI model (Guan, 2014), a two-layer HMM is used:
the upper-layer switch probabilities provide the information
regarding the switching frequency between various ancestral
populations, while the lower-layer switch probabilities are related
to the switching frequency between the haplotypes within each
ancestral population. For each individual i, let Xm

(i), Ym
(i) be

the hidden state of the upper and lower clusters at marker m.
Herein, Xm

(i) obtains values in 1,· · ·S, S and Ym
(i) obtain values

in 1,· · ·K, K. The haplotypic marker hm
(i) emission of i at m from
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a lower-layer cluster is given in Equation (6).

P
(

h(i)m |X
(i)
m ,Y(i)m , ξ

)
= P

(
h(i)m |Y

(i)
m , ξ

)
(6)

The complete data likelihood combines with the lower-layer and
upper-layer clusters, as shown in Equation (7).

P
(
h(1), . . . , h(N),X(1),Y(1), . . . ,X(N),Y(N)|ξ

)
=∏N

i =1
∏M

m =1 P(h(i)m |Y
(i)
m , ξ)P(X

(i)
m ,Y(i)m |ξ) (7)

where ξ is defined as the parameter correlating with the HMM.
The first marker and the Markov transitions are

expressed as follows because the model takes two scales of
LD occurring in admixed individuals into consideration:
P
(
X1 = s,Y1 = k

)
= P

(
Y1 = k|X1 = s

)
P (X1 = s) and

P
(

Xm = s,Ym = k|Xm−1 = s
′

,Ym−1 = k
′
)
.

RFMix Model
In this model (Maples et al., 2013), CRF and the random forest
(RF) (Wu and Zhao, 2019) algorithm are combined. In the event
of CRF along with its chain structures, all potential functions
work on pairs of haplotype label variables, Hi and Hi + 1, that
are adjacent to each other. Firstly, the emission probability is
learned and RF is trained with segments (reference haplotypes) in
the corresponding window, which is then used for the estimation
of the ancestry Ai,∗ posterior probabilities, considering the
segment of the admixed haplotype for the window. Secondly,
the transition probability is also learned. In adjacent windows,
the joint probability of the local ancestries relies primarily
on the global proportion of the individual ancestry and the
likeliness of recombination between the pair of windows. The
joint probability distribution is P(Ai,p = j,Ai,p+1 = k). Thirdly,
a linear-chain CRF is independently used to model P(Ai,∗ |
Hi,∗ :2) for each admixed chromosome. The EM method is
used for updating the above parameters. In consideration of a
phasing error, P(Ai,∗ ,Aic,∗ ,Hi,∗ ,Hic,∗ | Oi,∗ ,Oic,∗ :2) is modeled,
wherein i and ic are the indices representing both copies of the
chromosome under evaluation for a specific admixed subject,
Oi,∗ represents the phased sequence observed for chromosome
i given by phasing algorithms, while Hi,∗ indicates the set of each
potential haplotype in the window.

MODELS BASED ON NON-HIDDEN
MARKOV MODEL FAMILY

Along with the HMM family models, there are also some other
non-HMM family models that are based on the basic algorithm
and data mining techniques. For example, Loter is a parameter-
free model that uses dynamic programming (DP) to obtain
a globally optimal solution. Chromopainter adopts PCA for
investigating chromosome segments of similar ancestry and uses
Markov chain Monte Carlo (MCMC) (Gilks, 1999) to smooth
ancestral segment information.

Chromopainter Model
The Chromopainter model (Lawson et al., 2012) works based
on PCA and MCMC (Gilks, 1999). Firstly, PCA uses the co-
ancestry matrix xij. For each element in the matrix, xij is an
estimate of the number of discrete segments of individual i, which
is strongly correlated with the individual j corresponding part.
The Chromopainter model is built on the assumption that the
chunks Pqiqj/n̂qj in various individuals are independent; hence,
the cross individuals are multiplied, which results in a complete
likelihood, as shown in Equation (8).

F
(
x|p, q

)
=

∏N

i =1, j =1
(

Pqiqj

n̂qj
)xij/c (8)

where c could be considered as describing an effective number
of chunks, N represents the number of individuals, while the
individuals are represented by j and i in populations qj and qi,
accordingly. Probably a single chunk delivered from the j to the
i individual is Pqiqj/n̂qj , and in various individuals, the chunks
are independent.

Secondly, a prior value Pa ∼ Dirichlet(βa = {βa1, . . . , βaK}) is
selected. βab values are proportionate to the a priori estimated
value of each Pab. Eventually, F is updated within the algorithm
via the updates of standard Metropolis–Hastings MCMC.

LAMP Model
In this model (Sankararaman et al., 2008b), a clustering algorithm
called iterated conditional model (ICM) is used to investigate an
optimal classification of all individuals regarding probability. The
ICM algorithm is different from the traditional EM model. The
E step comprises the expected classification θ, given minor allele
frequencies fl, thus resulting in a fractional class membership
for each individual i. In the LAMP, it is supposed that a
logical answer will be provided by the initial classification,
and it determines the maximum a posteriori estimate of θ,
as indicated here.

For populations As and At , the underlined model uses Gi,
which represents the genotype (gi1, . . . , gin) of the individual i,
as shown in Equation (9).

θ̂ (i) = argmaxAsA2
t∈{1,...,K}

Pr
[
θ (i) = AsAt|f1, . . . , fk,Gi

]
(9)

In the M step, it receives the maximum–likelihood estimation of
f1, . . . , fk via investigation, as shown in Equation (10).

argmaxf1,...,fk,Pr
[
(Gi)

m
i =1 |f1, . . . fk, θ

]
=∏m

i =1 Pr[Gi|f1, . . . , fk, θ(i)] (10)

Loter Model
The Loter model (Dias-Alves et al., 2018) adopts DP and supposes
that ancestral populations contain individuals n, which results in
haplotypes (2n) presented via (H1, . . . , H2n). The i-th haplotype
value (0 or 1) at the j-th SNP is indicated via Hi

j. The estimation
of the haplotype h (admixed individual) is made possible by
a vector (s1, . . . , sp) that determines the sequence (haplotype
labels). For the j-th SNP in the dataset, sj = k if haplotype h
resulted from the haplotype Hk copy. The optimization problem
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comprised reducing the underlined cost function, as shown in
Equation (11).

C
(
s1, . . . , sp

)
=

∑p

j =1
|hj
−Hj

sj | + λ
∑p−1

j =1
1sj 6=sj+1 (11)

In consideration of a phasing error, shown in Equation (12)

C
′

(2) =
∑p

j =1 |a
j
− Aj

sj | +
∑p

j =1 |a
′j
− Aj

sj |

+λ
∑p−1

j =1 1sj6=sj+1 + λ
∑p−1

j =1 1s′j 6=s′j+1
(12)

where (s1, . . . , sp) is in {1, . . . , 2n}p. A regularization parameter,
called λ, is involved in an optimization problem. A high λ

strongly penalizes the transition between the parental haplotypes
of long chunks of the constant local ancestry. A1 = (0, . . . , 0)
and A2 = (1, . . . , 1) represent two possibility ancestry states;
haploid local ancestry is represented two by vectors, a ∈ {0, 1}P
and a′ ∈ { 0, 1} P .

EILA Model
In the EILA model (Yang et al., 2013), fused quantile regression
(FQR) and the k-means classifier are used and are based on three
steps. Firstly, EILA defines a score ej,i (a continuous variable with
a range of 0–1) for the admixed genotype gj,i ( = 0,1,2) as the
probability that gj,i is the descendant of ancestry A. This is shown
in Equation (13).

ej,i = Pr
[
gj,i ∈ A| g(A)j,1 , . . . , g(A)j,n1

and g(B)j,1 , . . . , g(B)j,n2

]
(13)

Secondly, θj,i is defined as a smooth series and infers the
site of breakpoints for ancestral blocks by using FQR and
θj,i is estimated via investigating the value that minimizes∑m

j =1
∣∣ej,i − θj,i

∣∣+ λ
∑m

j =2
∣∣θj,i − θj−1,i

∣∣. Smaller λ will lead to
the lowering of penalty effects. The fitted value of θj,i is closer
to the observed ej,i. Thirdly, the breakpoints for all admixed
individuals are investigated, and the model infers the local
ancestry for all segments between breakpoints via k-means to
obtain a high power of inference.

LASER 2.0 Model
In the LASER 2.0 model (Wang et al., 2015), PCA and
projection Procrustes analysis (PPA) are combined. Firstly, PCA
is conducted on the genotypes of a set that has been chosen from
the N reference individuals and results in the construction of
a K-dimensional ancestry map. For all the evaluated samples,
further PCA is carried out on genotypes through overlapping
markers between the N reference individuals and the evaluated
sample and for obtaining a K ′-dimensional map corresponding to
N + 1 individuals (K ′ greater than or equal to K). Furthermore,
PPA is performed to determine the transformation optimal set
on the PCA map (sample-specific) for the maximization of its
resemblance with the reference ancestry map. For the similar
N reference individuals, the two sets of coordinates are given,
i.e., XN × K ′ and YN × K , and the PPA investigates a set of
transformations f to project X from a K ′-dimensional space
to a K-dimensional space and reduces the squared Euclidean
distances being added between f (X) and Y. Supposing that X, as

well as Y, has been centered toward the origin, the objective of the
model is to investigate an isotropic scaling factor, ρ, in such a way
that the minimization of | | ρXA – Y| | F

2 and the orthonormal
projection matrix AK ′ × K takes place.

Statistics and Comparison
Here, we performed a bibliometric analysis of the LAI research.
“Local ancestry inference” was selected as the search topic from
2000 to 2020 from the NCBI database.1 Each bibliographic record
includes detailed information of published articles, including
their titles, abstracts, and keywords. Figure 1A shows the number
of published articles on the significant increase in LAI from 2012.
Since 2000, when Chapman and Thompson (2001) published
Linkage Disequilibrium Mapping: The Role of Population History,
Size, and Structure, 186 articles have been published until 2020.
The major topics in LAI research are shown in Figure 1B. The
visual representation, known as a form tree, was generated using
the clustering tool Carrot II (Cost et al., 2002) based on 40
clusters. The leading topics of research are disease association
and human history. We analyzed the main contents of the cited
articles for each model in Figure 1C, which illustrates that
research on human history plays a leading role in LAI analysis
and model development. Similarly, LAI research is also largely
applied in disease risk, wildlife conservation, and domestication.
Figure 1D shows four original types of research and seven
model designs with top citations, which may play a driving
role in the research of LAI. During 2006–2016, LAI research
had been highly fascinating for various research groups; thus,
LAI publications experienced a peak period. This research has
gently and extensively infiltrated different fields of science and
has kept on moving in the following years (Lao et al., 2006;
Sankararaman et al., 2008b; Price et al., 2009; Bryc et al., 2010,
2015; Gravel, 2012; Lawson et al., 2012; Eaton and Ree, 2013;
Loh et al., 2013; Maples et al., 2013; Moreno-Estrada et al., 2013;
Jeong et al., 2014). To benchmark the computational efficiency
and accuracy of the seven most used models (Chromopainter,
LAMP, LAMP-LD, Loter, RFMix, Seqmix, and Supportmix), we
simulated data using SLiM 3.2 (Messer, 2013) and estimated the
average running time (ART), memory footprint size (MFZ), the
mean squared error (MSE = 1

n
∑n

i =1(observedi − predictedi))
for an individual genome, standard deviation (SD), and the
coefficient of variation (CV) for each model. In the SLiM one,
we initially generated two ancestor populations during 5,000
generations. The use of two initial populations differentiates
into five admixed subpopulations with different infiltration rates
after 4,000 generations. During the next step, differentiated
individuals evolve freely during 5–1,000 generations, and every
five generation is an interval. This step is repeated 20 times.
Finally, we randomly selected 1,000 ancestral populations and
500 admixed populations to stimulate LAI in seven models.
Table 2 shows further details regarding the simulation parameters
and other simulation processes.

As shown in Table 3, we adopted seven models in SLiM
1–3 and six models in SLiM 4–5 because Seqmix can only
handle two ancestral groups. The most efficient model is LAMP

1https://pubmed.ncbi.nlm.nih.gov
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FIGURE 1 | (A) Number of local ancestry inference (LAI) publications from 2000 to 2020. (B) A visual survey of the major topics on LAI by the Carrot II system.
(C) Distribution of models across the top four research fields including wild domestication, history of human evolution, disease risk, and ancient DNA. (D) Timeline
illustrating the development of LAI.

with respect to the run time (ART = 1.50 s) and memory
size (MFZ = 53.74 Mb); however, its accuracy is slightly lower
(1 – mean of MSE = 0.67) and the results are not stable
(SD = 0.20). The primary reason is the total reliance of this
model on biological parameters. Seqmix based on aligned bases
turns out to be the most accurate (1 – mean of MSE = 0.86)
and stable (SD = 0.08) model, while it is also efficient enough.
Loter is the only model with a parameter-free process and
general accuracy (1 – mean of MSE = 0.79) and fair stability
(SD = 0.10); however, it requires a comparatively longer running
time (ART = 2,506.70 s). The RFMix process has general accuracy
(1 – mean of MSE = 0.80) and fair stability (SD = 0.10), but it
consumes a lot of memory (MFZ = 2,472.29 Mb). A weighing
between the pros and cons of the different models is shown in
Table 4.

As shown in Figure 2, the phased data had a higher accuracy
in comparison to the unphased data. Besides, there exists a

significant difference between the phase and unphased results
(1 – mean of MSE) in all the simulated values by each paired
comparison in Tukey’s HSD (all P < 0.05). As shown in
Table 3, the CV of the phased results is less than that of the
unphased results in all simulated values, thus proving the higher
stability of phased data.

DISCUSSION

Current Situation and Existing Problems
Various challenges confront the researchers during inferring the
local ancestry via genome-wide data. Firstly, several models need
complex parameters, such as a genetic map and the number of
generations since admixture, that are difficult to be supplied,
particularly for non-model species. Secondly, some models only
use haplotype information and unlinked markers are removed

Frontiers in Genetics | www.frontiersin.org 7 May 2021 | Volume 12 | Article 639877

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639877 May 18, 2021 Time: 17:20 # 8

Wu et al. Review on Local Ancestor Inference

TABLE 2 | Details for generating slim data.

Slim1 Slim2 Slim3 Slim4 Slim5

Mutation rate 1e–8 1e–8 1e–8 1e–8 1e–8

Recombination rate 1e–6 1e–6 1e–6 1e–6 1e–6

Chromosome length 1e+6 1e+6 1e+6 1e+6 1e+6

Initial effective population size 2000 2000 2000 2000 2000

The number of generations producing true populations 5000 5000 5000 5000 5000

The number of ancestral populations 2 2 2 3 3

Effective ancestral population size 2000 2000 2000 2000 2000

Divergence time of ancestral population 4000 2000 200 2000 200

The number of admix populations 5 5 5 6 6

The number of selected ancestor individuals 1000 1000 1000 1000 1000

The number of selected admix individuals 500 500 500 500 500

Repetition times 20 20 20 20 20

Infiltration rate AdmP1 = 0.1\0.9
AdmP2 = 0.2\0.8
AdmP3 = 0.3\0.7
AdmP4 = 0.4\0.6
AdmP5 = 0.5\0.5

AdmP1 = 0.1\0.1\0.8
AdmP2 = 0.2\0.1\0.7
AdmP3 = 0.3\0.1\0.6
AdmP4 = 0.4\0.1\0.5
AdmP5 = 0.5\0.2\0.1
AdmP6 = 0.6\0.2\0.2

Generation number 5∼1000 (the interval is 5 generations)

TABLE 3 | Benchmark analysis of most used LAI models.

Model ART/s MFZ/Mb 1–Mean of MSE SD CV

Chromopainter 2243.56 309.20 0.73 0.18 0.24

LAMP 1.50 53.74 0.67 0.20 0.30

LAMP-LD 97.95 129.40 0.60 0.18 0.30

Loter 2506.70 269.84 0.79 0.10 0.13

RFMix 166.74 2472.29 0.80 0.10 0.13

Seqmix 31.11 1201.27 0.86 0.08 0.09

Supportmix 753.01 130.94 0.80 0.12 0.15

via the trimming step. With this process, many informative SNPs
are lost. Thirdly, because some models exclude probable ancestral
informative haplotypes, unmodeled LD could cause systematic
biases in determining ancestry, which results in false-positive
conclusions regarding the deviation in ancestry at specific loci.
Lastly, ancestral segments are windows or blocks of varying
lengths; however, existing models commonly use a window of
fixed size for simplification. The total count of generations since
admixture is inversely proportional to the length of ancestral
segments. As the number of generations is hardly recognized, it
is difficult to investigate the breakpoint or transition point for
ancestral haplotypes based on the statistics of the ancestral group
or even an individual’s genome.

Model-Based Recommendation
We summarize these models with their distinct advantages
and disadvantages as follows: (i) We recommend Seqmix if
the genotype is hard to call, and aligned bases can be used
directly in this model (Hu et al., 2013). (ii) ALLOY utilizes
F-HMM and the haplotype structure of the compound state to
improve its accuracy. We recommend this model if ancient and
complex admixtures need to be analyzed (Rodriguez et al., 2013).

(iii) We recommend Saber if high-density SNP panels exist;
however, a potential weakness of M-HMM, compared with an
HMM, is that when the genetic information on the ancestral
populations is not rich, it will weaken the accuracy of the
calculations (Tang et al., 2006). (iv) ELAI is appropriate for
instances where researchers require detecting further structure
of the haplotypes because of the two scales of LD in admixture
and a two-layer HMM exists as independent upper-layer latent
clusters that enforce structure on the haplotypes and other lower-
layer latent clusters depicting ancestral haplotypes (Guan, 2014).
(v) We recommend EILA if the researchers are interested in
the estimation of recombination events. The model has the
advantage of allowing the lack of ancestral populations’ high-
quality haplotype information; however, a potential weakness of
the k-means, unsupervised clustering, will weaken the stability
of calculations (Yang et al., 2013). (vi) Loter uses DP to obtain
a globally optimal solution, and its advantage is its being
parameter-free (Dias-Alves et al., 2018).

Integration With Other Methods
LAI incorporates other bioinformatics approaches and is widely
used in different research fields, including breeding new varieties,
protection of endangered animals and plants, and the prevention
and treatment of human genetic diseases. In the study of
population structure, the ADMIXTURE (Alexander et al., 2009)
and STRUCTURE (Pritchard et al., 2000) models perform
population allele frequencies and observe genotype probability
by ancestry proportions. Both models can be used to assign
global ancestry. They are applied in fine-matched corrected
association research and are relatively consistent with the LAI
results. Galaverni et al. better estimated the actual admixture
proportions of the hybrids according to the combination of global
and local ancestry inferences (Galaverni et al., 2017). About up
to 50% of blocks of domesticated individuals were identified by
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TABLE 4 | Weighing of most used LAI models.

Model Advantage Disadvantage

Chromopainter Moderate memory consumption and certain accuracy Slower processing speed and unstable analysis results

LAMP Fast processing speed and low memory consumption Low accuracy and unstable analysis results

LAMP-LD Fast processing speed and moderate memory consumption Low accuracy and unstable analysis results

Loter Moderate memory consumption, certain accuracy and stable analysis results Slower processing speed

RFMix Moderate processing speed, high accuracy and stable analysis results High memory consumption

Seqmix Fast processing speed, high accuracy and stable analysis results High memory consumption

Supportmix Moderate processing speed and memory consumption, high accuracy and certain stibility –

FIGURE 2 | Box plots of the accuracy of local ancestry inference (LAI) using a benchmark. The red hollow arrows indicate a higher accuracy by the median
comparison in this simulation. The results showed that phased data had higher accuracy in comparison with unphased data.

PCADMIX in the hybrid genome. The results of the analysis
were consistent with those estimated in ADMIXTURE at K = 2.
In the study of domestication, the admixture compositions of
select individuals with the minor allele for the peak markers
of quantitative trait loci (QTL) were analyzed by LAI. For
example, in one study, QTL were located in a chromosome
segment substitution line (CSSL) population. This population
comes from an interspecific cross between a wild aus-like
Oryza rufipogon donor accession and cv. Curinga (an upland
tropical japonica variety from Brazil). It was found that the
CSSLs conferred a wild aus-like introgression across the target
segment, which was beyond the rest of the CSSLs that carried
the tropical japonica genotype (Wang et al., 2017). In the
study of ancient DNA, the use of LAI and masking reconstruct
population-specific surrogates of the ancestral components to
yield entire genome. Yelmen et al. applied this technique
to reconstruct population-specific surrogates of South Asian
and West Eurasian populations, which complemented low-
quantity and low-coverage availability and provided a substantial
advantage (Yelmen et al., 2019).

Application and Development
Wild populations significantly contribute to the adaptation of
domesticated populations; therefore, their absence or presence
is imperative for breeding and genetics-related studies. Many

good traits exist in the wild population; however, they were lost
during domestication. Some advantageous or disadvantageous
alleles were located by constructing a hybrid population and
were further assigned the corresponding ancestral source.
This can help in understanding the molecular mechanisms
behind the traits and in explaining the valuable pool of
genetic resources found in wild populations. Domesticated
rice (Oryza sativa) is adopted as an example. Some traits
of wild rice (such as persistent seed dormancy and freely
shattering seed) may have high adaptability if introgressed
into weedy rice populations. Inversely, some traits of wild
rice (prostrate plant architecture and sporadic seed production)
are considered inappropriate for survival in domesticated rice.
Given the potential combination of the advantageous and
disadvantageous traits for weedy rice, it can be expected
that introgression evidence of wild rice to weed rice would
confer weed rice-adaptive traits to the specific genomic regions.
Such as some regions were likely introgressed from wild
accessions: PROG1, controlling prostrate versus erect growth;
qSW5, controlling seed size; sh4, controlling grain shattering;
Bh4, controlling hull color; An-1, controlling awn development;
and Rc, controlling pericarp pigmentation (Vigueira et al.,
2019). In another study, the analysis of wild caprids and
whole genomes of domestic goats revealed ancient introgression
evidence from a West Caucasian tur-like population to the
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ancestor of domestic goats. It was further revealed that the MUC6
gene was an introgression locus with a strong selection signature
and conferred enhanced immune resistance to gastrointestinal
pathogens (Zheng et al., 2020). The third case is the wild
yeast (Saccharomyces eubayanus). The lager-style beers are an
interspecies hybrid (S. eubayanus × Saccharomyces cerevisiae).
It was found that the wild isolates of S. eubayanus are not the
closest relatives of lager-brewing hybrids. Inversely, the genetic
composition of lager yeasts was contributed by S. eubayanus
strains with continuous variation, thus revealing the complex
ancestries of lager yeasts (David et al., 2016). The LAI model
can be a powerful tool for protecting wild species by identifying
segments of the genomes of hybrids. In the research of
Galaverni et al., domestic dogs (Canis lupus familiaris) can
reproduce with wild wolves (Canis lupus), coyotes (Canis latrans),
and golden jackals (Canis aureus). The gene pool of several
wild canid populations were threatened by the widespread
diffusion of stray dogs in human-dominated areas. Use of the
LAI model and genotype–phenotype association procedures
identified putative dog-derived causal mutations associated
with phenotypic variants, thereby constituting a conservation
strategy. Such as the black coat color, this trait is coded by a 3-
bp deletion at the β-defensin gene CDB103 that was possibly
introduced into wolves by ancient hybridization with dogs
(Galaverni et al., 2017).

The LAI model can be applied to the treatment and
prevention of human genetic diseases by assigning ancestry
to the chromosomal regions and applying admixture mapping
to identify candidate genes. Dengue has become a worldwide
health concern due to the increase in virus and vector
dispersions. LAI analysis has proven that African ancestry has
a protective effect against the dengue haemorrhagic phenotype
in admixed Cuban population. This was further authenticated
by identifying the corresponding candidate genes (Sierra et al.,
2017). A similar study indicates that the Tibetans have a
better altitude adaptation, on account of the introgression of

associated haplotypes from Denisovans or Denisovan-related
populations (Huerta-Sánchez et al., 2014). Besides, a recent
example is that about 3,000 coronavirus disease 2019 (COVID-
19) patients and control individuals were adopted, and it was
found that a gene cluster can cause severe symptoms after
SARS-CoV-2 infection. This genetic risk factor was caused
by a genomic segment of a size of about 50 kb inherited
from Neanderthals (Zeberg and Pääbo, 2020). Furthermore,
this genomic segment was carried by about 50% South Asian
and about 16% European people. In conclusion, these studies
not only enhance our understanding of genetic diversity
and natural history but also offer valuable evidence for the
source of diversity among human beings, animals, plants, and
model organisms.
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