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Abstract

Thermal remote sensing is an important tool for monitoring regional climate and environ-

ment, including urban heat islands. However, it suffers from a relatively lower spatial resolu-

tion compared to optical remote sensing. To improve the spatial resolution, various “data-

driven” image processing techniques (pan-sharpening, kernel-driven methods, and machine

learning) have been developed in the previous decades. Such empirical super-resolution

methods create visually appealing thermal images; however, they may sacrifice radiometric

consistency because they are not necessarily sensitive to specific sensor features. In this

paper, we evaluated a “sensor-driven” super-resolution approach that explicitly considers

the sensor blurring process, to ensure radiometric consistency with the original thermal

image during high-resolution thermal image retrieval. The sensor-driven algorithm was

applied to a cloud-free Moderate Resolution Imaging Spectroradiometer (MODIS) scene of

heterogeneous urban and suburban landscape that included built-up areas, low mountains

with a forest, a lake, croplands, and river channels. Validation against the reference high-

resolution thermal image obtained by the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) shows that the sensor-driven algorithm can downscale the

MODIS image to 250-m resolution, while maintaining a high statistical consistency with the

original MODIS and ASTER images. Part of our algorithm, such as radiometric offset correc-

tion based on the Mahalanobis distance, may be integrated with other existing approaches

in the future.

Introduction

Measurement of terrestrial thermal emissions allows us to estimate the land surface tempera-

ture and the emissivity of surface materials. Thermal remote sensing takes advantage of such

features to effectively monitor volcanic disasters [1], wildfires [2], crop fields [3], mineral com-

position [4], regional climate [5] and urban heat islands [6, 7]. In comparison to observation

using in situ photographs [8] or unmanned aerial vehicles [9], satellite-based observation has

advantages in spatial coverage, frequency, and regularity.
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One of the major issues in thermal remote sensing is the coarse spatial resolution of the

thermal images [4]. In comparison to optical sensors that observe solar reflection from the

Earth’s surface, thermal sensors that observe thermal emissions from the surface collect elec-

tromagnetic waves with lower signal strength, resulting in lower spatial resolution. For exam-

ple, the spatial resolution of the optical data provided by the Moderate Resolution Imaging

Spectroradiometer (MODIS) is 250 m or 500 m, whereas that of thermal data is 1 km. A simi-

lar situation arises for other moderate resolution sensors: the resolution of optical data pro-

vided by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is

15 m or 30 m, but the thermal data resolution is 90 m.

The other aspect of degraded spatial resolution is the general trade-off between spatial and

temporal resolution, and the spatial and spectral resolution in a single sensor. Due to technical

limitations (especially in data downlinks), frequent and/or spectrally fine-resolution observa-

tion sacrifices spatial details, and vice versa. Missing spatial detail in thermal images is particu-

larly critical when monitoring heterogeneous landscapes, such as urban and suburban areas.

To enhance the spatial resolution of thermal images, a wide variety of techniques, called

“disaggregation,” “downscaling,” and “super-resolution,” have been developed in recent

decades [10]. These can be roughly divided into multi-sensor-based and single-sensor-based

approaches. The multi-sensor-based approach, also called spatiotemporal image fusion [11],

mainly focuses on mitigating the trade-off between spatial and temporal resolution. In this

approach, thermal images with high spatial (but low temporal) resolution are estimated from

simultaneously (or quasi-simultaneously) acquired thermal images with low spatial (but high

temporal) resolution, based on an empirical relationship between them. Various algorithms,

such as the spatial and temporal adaptive reflectance fusion model [12] and similar or

improved models (e.g., [13–16]), are used to describe the relationship. These algorithms are

powerful tools for environmental monitoring with high spatiotemporal resolution, and are

widely applied with match-up pairs between MODIS and ASTER [17], MODIS and Landsat

[15], and polar orbiting satellites and geostationary satellites [14]. However, given the nature

of spatiotemporal image fusion, the success or failure of this approach depends on the selection

of the matched pairs used to describe the relationship.

In contrast, the single-sensor-based approach relies on a relationship between the thermal

image and images in other spectral domains (usually optical) acquired by the same instrument,

to enhance the spatial resolution of thermal images. This approach can be applied to a single

sensor that observes thermal and another spectral domain simultaneously from the same plat-

form, even in the absence of a counterpart satellite platform that offers a sufficient chance of

simultaneous overpasses of the region of interest, which is rarely realized for satellites with

irregular orbits, and for deep space exploration. Pan-sharpening methods via intensity-hue-

saturation transformation or principal component analysis have been used traditionally [18,

19], and kernel-driven methods [20–22] and machine-learning approaches (e.g., [23–25]) have

become popular recently. These efforts have created visually appealing thermal images that

have higher spatial resolution than the original ones. However, such “data-driven” approaches

do not necessarily take physical processes into account, including sensor-specific features, and

radiometric consistency.

In contrast, there are a few “sensor-driven” approaches that explicitly consider sensor fea-

tures, and target radiometric consistency in the super-resolution results. Hughes and Ramsey

[4] introduced a sensor-driven super-resolution approach originally developed by Tonooka

[26], which creates both quantitatively accurate and qualitatively acceptable results for their

exploration of Mars using the Thermal Emission Imaging System (THEMIS) onboard the

Mars Odyssey [27]. This simple approach uses the Mahalanobis distance to estimate each

high-resolution pixel value from neighboring, spectrally similar low-resolution pixels.
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Beneficial characteristics of this approach include consideration of the point spread function

(PSF) for the sensor of interest, and radiometric correction weighted by the Mahalanobis dis-

tance after the tentative super-resolution retrieval. Such an approach that gives attention to

sensor physics also seems to be in line with the recent trend of physically informed machine

learning [28], and worth revisiting to achieve single-sensor-based super-resolution rather than

using the empirical, data-driven approaches [18–25]. However, sufficient validation and evalu-

ation of the super-resolution results obtained using the sensor-driven algorithm over a hetero-

geneous Earth surface have not been conducted. In addition, as the original algorithm was

proposed more than 10 years ago [26], there seems to be room for refinement. Although it was

implemented with ASTER data over urban and suburban areas, quantitative accuracy assess-

ments using independent validation data have not been provided yet.

Therefore, this work aims to investigate the potential applicability of the sensor-driven

approach over a heterogeneous landscape, and to improve its primitive algorithm. A complex

terrain including urban, suburban, forest, lake, and river areas was selected as the study site for

this purpose. Similar to previous thermal super-resolution research (e.g., [17, 22]), Terra/

MODIS was used as the sensor of interest. The relatively wide swath of MODIS is suited to

covering large areas and capturing various land cover types in comparison with other moder-

ate-resolution instruments (e.g., Landsat) that are also often used for super-resolution algo-

rithm development. The other advantage of Terra/MODIS is the existence of a counterpart

higher-resolution sensor (ASTER), which can be used for validation data. Because they are

onboard the same satellite platform and make simultaneous observations, comparison

between them can minimize differences in atmospheric and/or surface conditions [29].

Because both MODIS and ASTER data are freely available, readers can easily reproduce our

results. The radiometric calibration uncertainty (sensor requirement) for MODIS thermal

bands for surface temperature measurement (i.e., bands 31 and 32) is ± 0.5% in radiance [30].

That for ASTER is ± 1 K or better in brightness temperature, for the range of 270–340 K (i.e.,

~ ± 0.3%) [31]. In-flight validation of the thermal bands of MODIS and ASTER has also been

reported by Hook et al. [32]. This work provides the first quantitative accuracy assessment of

sensor-driven super-resolution with MODIS, using independent validation data (ASTER).

Materials and methods

We first describe the original algorithm developed by Tonooka in 2005 [26] in the “Original

algorithm” section, and then describe our proposed refinement in “Proposed refinement” sec-

tion. Descriptions of the study site and data are provided in the “Study site and data process-

ing” section.

Original algorithm

The original algorithm for the sensor-driven approach was proposed by Tonooka [26]. It is a

single-sensor-based approach, and thus makes full use of high-resolution optical information

to achieve super-resolution with the low-resolution thermal pixels. It relies on “the empirical

fact that, if two nearby surfaces are covered by a similar material under a similar situation,

their radiance spectra will be similar in the wide wavelength region” [26]. Therefore, applica-

tion of the algorithm is not limited to correlation of thermal and optical images. As long as the

abovementioned assumption is reasonable, the algorithm is applicable (and was actually

applied), even between visible and near infrared bands and shortwave infrared bands.

For a general description, let us denote a pixel value of a higher-resolution image in band k
(= 1, 2, . . ., n) as fhigh,k, and that of the counterpart lower-resolution image in band k’ (k’ = 1, 2,

. . ., m) as glow,k’. By an appropriate inter-band coregistration and reasonable sensor design, we
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assume that one lower-resolution pixel corresponds to an integer number of higher-resolution

pixels. The overall super-resolution procedure is as follows:

Step 1) Search homogeneous pixels within each lower-resolution scale.

Step 2) Degrade fhigh,k images to the same resolution of glow,k’ images considering the PSF

(denoted as flow,k hereafter).

Step 3) Make a typical spectral pattern (i.e., correspondence between flow,k and glow,k’) by clus-

tering the homogeneous pixels within the entire study region.

Step 4) Calculate the Mahalanobis distance (dnei) between fhigh,k at the pixel of interest and flow,

k at neighboring homogeneous pixels within a moving window.

Step 5) Calculate the Mahalanobis distance (dlib) between fhigh,k at the pixel of interest and the

typical spectral pattern extracted in step 3.

Step 6) Compare all Mahalanobis distances calculated in steps 4 and 5, and assign glow,k’ at the

minimum dnei or dlib as the super-resolved pixel value (ghigh,k’).

Step 7) Repeat steps 4–6 for all high-resolution pixels.

Step 8) Add an offset so that degraded ghigh,k’ can be consistent with the original glow,k’ for each

low-resolution pixel (i.e., perform radiometric correction). The offset value is determined

for each high-resolution pixel from the Mahalanobis distance and PSF.

Fig 1 summarizes the super-resolution steps in the form of a flowchart. The image pairs for

(A) high-resolution bands and (B) low-resolution bands are input into the process. The high-

Fig 1. Flowchart for super-resolution process. The star symbols are where our refinement from the original

algorithm [26] was implemented. As an example, the super-resolution process for converting MODIS 500-m

resolution images (band 3–7) to 250-m resolution images is shown.

https://doi.org/10.1371/journal.pone.0266541.g001
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resolution images are degraded to the same resolution as the low-resolution images in step 2.

For each high-resolution pixel location, the B data is positioned by referring to the relationship

between the A and B spectral information, either at a neighboring homogeneous pixel (step 4)

or in a typical spectral pattern (step 5). By repeating this process (step 6) for all high-resolution

pixel locations (step 7), images having B-band information but having A-band spatial resolu-

tion are created (i.e., super-resolution). The final result is output after post-processing (step 8).

A more detailed explanation of each step is provided in the following section.

Theoretically, this process can be applied to any two datasets that have different spatial reso-

lutions, as long as they have some statistical relationship. In the case of MODIS, there are ter-

restrial bands with three different spatial resolutions (i.e., 250 m for bands 1 and 2, 500 m for

bands 3–7, and 1 km for thermal bands), leading to arbitrariness in combining these bands to

obtain super-resolution. In the case of the original algorithm [26], band 3–7 (500-m resolu-

tion) were first super-resolved to a resolution of 250 m by referring to the highest-resolution

bands (bands 1 and 2), and then the thermal bands (1-km resolution) were super-resolved to a

resolution of 250 m by referring to bands 1 and 2, and previously obtained super-resolution

bands (3–7).

The input-output process for this “two-times super-resolution” method is shown in Fig 2.

In the flowchart (Fig 1), original bands 1 and 2 (250-m resolution) correspond to fhigh,k,

degraded bands 1 and 2 (500-m resolution) correspond to flow,k, which are indicated by the

two red arrows input to the first super-resolution step in Fig 2. The original bands 3–7 (500-m

resolution) correspond to glow,k’, which is shown as the blue arrow input to the first super-reso-

lution step. The super-resolved bands 3–7 (250-m resolution) are further input to the second

super-resolution step with the original bands 1–2 (fhigh,k in the second super-resolution step),

as well as both degraded bands (1-km resolution; flow,k) and the original thermal bands (glow,

k’). The final output is the thermal images (bands 31, 32) with a resolution of 250 m.

Note that band 5 of Terra/MODIS suffers from stripe noise [33], and we decided not to use

it for further processing.

Fig 2. Original super-resolution algorithm proposed by Tonooka in 2005 [26].

https://doi.org/10.1371/journal.pone.0266541.g002
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For the second super-resolution process, the Mahalanobis distance from the highest-resolu-

tion bands and the previously super-resolved bands (bands 3–7 in our case) were calculated

separately. The total Mahalanobis distance is evaluated by

d2

total ¼
w
n1

d2

1
þ

1 � w
n2

d2

2
; ð1Þ

where d1 is the Mahalanobis distance (either dnei or dlib) for bands 1 and 2 in our case, d2 is

that for bands 3–7, n1 (= 2) and n2 (= 4) are the corresponding number of bands, and w is a

weighting factor, which was assumed to be 0.7 [26].

Proposed refinement

To make the algorithm more straightforward and to create better radiometrically corrected

results, in this paper, we propose two modifications regarding (1) the order of multiple super-

resolution retrievals and (2) regularization of the offset adjustment. For each super-resolution

process, refinement (1) concerns input-output correspondence and degraded image input,

whereas refinement (2) concerns post-processing (both are indicated by a star symbol in the

flowchart in Fig 1).

For the first modification, the second-highest resolution images are first super-resolved to

the highest resolution, which are used in the second super-resolution process in the original

algorithm. In this case, the first super-resolution process relies only on the two highest-resolu-

tion bands (bands 1 and 2), which is likely to cause substantial uncertainty in the first super-

resolution retrieval. The uncertainty probably propagates to the second super-resolution

retrieval, making it difficult to perform reliable analysis with the super-resolution results. In

addition, regarding this procedure, the original algorithm evaluates the Mahalanobis distance

from the highest-resolution bands and super-resolves the second-highest resolution bands sep-

arately (Eq 1). This seems to make the algorithm complex and requires the somewhat arbitrary

hyperparameter w.

To avoid this complexity, we applied the procedure in the inverse direction: first, thermal

bands were super-resolved to 500 m with the help of bands 1–7, the result of which was further

super-resolved to 250 m with the help of bands 1 and 2 (Fig 3). The MODIS bands 1 and 2

were degraded to 500 m and 1 km, and bands 3–7 were degraded to 1 km in the first super-res-

olution retrieval. In other words, bands 1–7 (500-m resolution) were fhigh,k, bands 1–7 (1-km

resolution) were flow,k, and bands 31, 32 were glow,k’, which were all input to the first super-res-

olution step. These were used together for calculation of the Mahalanobis distance, and thus

Eq 1 and the arbitrary parameter w were no longer needed. The procedure enables the first

super-resolution retrieval to make full use of all the optical bands, which may also improve the

second super-resolution retrieval and yield a more reliable final result.

For this modification, a detailed description of each step of the algorithm is provided

below.

Step 1) Within each low-resolution pixel, the standard deviation of fhigh,k is calculated. Homo-

geneous pixels are flagged when the standard deviation within a low-resolution pixel

exceeds the standard deviation over the entire study area for all bands k. In the first super-

resolution process, k ranges from band 1 to 7 with 500-m resolution (i.e., n = 7), whereas in

the second super-resolution process, k ranges from band 1 to 2 with 250-m resolution (i.e.,

n = 2).
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Step 2) Within each low-resolution pixel, fhigh,k is degraded using the PSF as a weighting func-

tion to describe signal blurring in low-resolution sensor observation:

flow;k ¼
X

ði;jÞ�lowres
PSFði; jÞ � fhigh;kði; jÞ; ð2Þ

where i and j denote high-resolution pixel locations within a low-resolution pixel. The mathe-

matical expression for the PSF is provided in the “Study site and data processing” section.

Step 3) For all homogeneous pixels, K-means++ clustering is conducted first with flow,k, and

then with glow,k’. The number of clusters is set to nine based on the land cover types of the

study site (see “study site and data processing” section). The clusters for flow,k and glow,k’

compose hierarchical trees. For each node of the tree, samples of flow,k and glow,k’ are aver-

aged and stored as a database, creating typical spectral patterns over the entire study region.

Step 4) Homogeneous pixels are picked up within ±10 low-resolution pixels (i.e., a moving

window) from the high-resolution pixel of interest. The Mahalanobis distance is calculated

by

d2

nei ¼ ðfhigh � f lowÞ
TV� 1

f ðfhigh � f lowÞ; ð3Þ

where fhigh = (fhigh,1, fhigh,2, . . ., fhigh,n)T is a vector with pixel values at the pixel of interest, flow

= (flow,1, flow,2, . . ., flow,n)T is a vector of homogeneous pixels, and Vf is a variance-covariance

matrix of flow for all the homogeneous pixels of the study site. The homogeneous pixel with

minimum dnei (i.e., the spectrum most similar to the pixel of interest) is a candidate for

ghigh,k’.

Fig 3. Proposed super-resolution algorithm.

https://doi.org/10.1371/journal.pone.0266541.g003

PLOS ONE Thermal remote sensing over heterogeneous landscapes using sensor-driven super-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0266541 April 6, 2022 7 / 20

https://doi.org/10.1371/journal.pone.0266541.g003
https://doi.org/10.1371/journal.pone.0266541


Step 5) Similarly, the Mahalanobis distance for the typical spectral pattern is calculated by

d2

lib ¼ ðfhigh � f libÞ
TV� 1

f ðfhigh � f libÞ; ð4Þ

where flib is a column vector with the average pixel values (band k = 1, 2, . . ., n) from each clus-

ter. The minimum dlib is also a candidate to estimate ghigh,k’.

Step 6) The minimum dnei and the minimum dlib are compared. When dnei� dlib, glow,k’ at the

homogeneous pixel with the minimum dnei is placed into the high-resolution pixel as ghigh,

k’. When dnei > dlib, the algorithm searches for the spectrum in the g domain at the node

where dlib was a minimum:

d2

lib;g ¼ ðglow � glibÞ
TV� 1

g ðglow � glibÞ; ð5Þ

where glow = (glow,1, glow,2, . . ., glow,m)T is a vector with pixel values at the pixel of interest, glib is

a column vector with average pixel values from each g cluster at the node with minimum

dlib, and Vg is a variance-covariance matrix of glow for all the homogeneous pixels in the

study site. The average glow,k’ at the node of minimum dlib,g is placed as ghigh,k’.

Step 7) Steps 4–6 are repeated for all high-resolution pixels to create a high-resolution g image

with ghigh,k’. At the same time, the Mahalanobis distance corresponding to the adopted ghigh,

k’ is stored for each pixel as a “distance map.”

Step 8) The retrieved ghigh,k’ should be radiometrically consistent with glow,k’ when degraded

again within a low-resolution pixel. To this end, an offset value is added to ghigh,k’. Instead

of adding an offset uniformly over the low-resolution pixels, full use is made of the Mahala-

nobis distance, to allow additional offset corrections to be made for less reliable pixels of

ghigh,k’ (i.e., pixels with less spectral similarity). The offset to meet this concept is

g 0high;k0 ¼ ghigh;k0 þ ak0 � d2; ð6Þ

where d is the Mahalanobis distance from the distance map, g’high,k’ is the corrected result, and

αk0 is a modification scale defined by

ak0 ¼
glow;k0 �

P
ði;jÞ�lowresPSFði; jÞ � ghigh;k0 ði; jÞ

P
ði;jÞ�lowresPSFði; jÞ � d2ði; jÞ

: ð7Þ

Our second modification of the original algorithm regards the offset correction. The above-

mentioned offset correction with consideration of the Mahalanobis distance as a weighting

function is theoretically reasonable; however, a very large Mahalanobis distance among a few

pixels may result in overcorrection and implausible pixel values. To mitigate overcorrection

while still employing the concept of weighting by the Mahalanobis distance, we introduced a

regularization term into the distance map:

d2

norm ¼
d2

P
ði;jÞ�ALLd2ði; jÞ

; ð8Þ

d2

reg ¼ d2

norm þ l; ð9Þ
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where dnorm is a normalized distance that makes the summation over the entire study region

equal to 1, dreg is the regularized distance, and λ is a tunable positive real number applied over

the entire study region. A large λ makes the correction uniform within a low-resolution pixel,

whereas a small λ makes it diverse (λ!0 is equivalent to the original algorithm).

We compared the results from (1) the original algorithm, (2) the inverse-direction super-

resolution algorithm without distance regularization (i.e., the first modification), and (3) the

inverse-direction super-resolution algorithm with distance regularization (i.e., the first and the

second modification). For simplicity, hereafter we call them Algorithm 1, Algorithm 2, and

Algorithm 3, respectively. This comparison will clarify how our algorithm refinement

improves the super-resolution results.

To summarize, the benefit of the sensor-driven algorithm over other existing approaches is

explicit consideration of the PSF, and radiometric correction weighted by the Mahalanobis

distance. The sensor-driven algorithm (with our improvement) may be useful for thermal

super-resolution research in the context of physical consistency.

Study site and data processing

The study site is centered around Tsukuba City, Ibaraki, Japan (36.049N-36.459N, 139.856E-

140.353E; Fig 4). The region includes urban and suburban areas of Tsukuba and several neigh-

boring cities; Mount Tsukuba, which is covered by a mixed needleleaf and broadleaf forest;

and a part of Lake Kasumigaura, the second-largest inland waterbody in Japan. Rice paddy

fields and croplands are distributed along several narrow river channels. According to the land

cover map provided by the Japan Aerospace Exploration Agency (JAXA) [34], there are also a

few grassland areas. The spatial resolution of the land cover map is 250 m. The overall accuracy

and kappa coefficient have been reported as 78.0% and 0.745, respectively [34].

We searched for a cloud-free scene acquired by MODIS and ASTER simultaneously, and

the scene on 24 September 2001 was selected for use. Level 1B calibrated radiances

(MOD02QKM for bands 1 and 2, MOD02HKM for bands 3–7, and MOD021KM for bands 31

and 32) were downloaded via the Level-1 and Atmosphere Archive and Distribution System

from the Land Processes Distributed Active Archive Center website [35]. To treat images with

equally spaced meter scales, all images were projected onto the UTM 54 projection with a

WGS84 ellipsoid by nearest neighbor resampling. For simplicity, super-resolution processing

was conducted with images in the radiance scale (W/m2/str/μm), including thermal bands. If

necessary, thermal radiance can be translated into brightness temperature Tb (K) by Planck’s

Fig 4. Reference satellite data and land cover map for the study site. (Left) False color image taken by ASTER (2001/

09/24), (center) that taken by MODIS, and (right) JAXA land cover map degraded to 250-m resolution. All images

have a UTM 54 projection with a WGS84 ellipsoid. Land cover category abbreviations: DBF, deciduous broadleaf

forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest.

https://doi.org/10.1371/journal.pone.0266541.g004
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law:

Tb ¼
hc=kl

lnð2hc2=l5Bl þ 1Þ
; ð10Þ

where h = 6.626 × 10−34 J s is the Planck constant, c = 2.988 × 108 m/s is the speed of light,

k = 1.380×10−23 J/K is the Boltzmann constant, l is the wavelength (m), and Bl is the radiance

(W/m2/str/m) at the wavelength.

For reference, ASTER Level-3A radiance data on the same day were downloaded via the

METI AIST satellite Data Archive System website [36]. The data were also projected on the

UTM 54 projection with a WGS84 ellipsoid. The band correspondence between ASTER and

MODIS is summarized in Table 1.

In the research performed by Tonooka [26], image coregistration between bands was not

implemented because the author assumed that the accuracy of the inter-telescope registration of

the data used (ASTER) was sufficient for the algorithm. However, data-driven coregistration is

desirable before integrating multiple images (e.g., [12]). Therefore, we implemented image coregis-

tration using the phase-only correlation (POC) approach [37]. Specifically, reference images (i.e.,

ASTER) were coregistered via POC between bands first. Then each MODIS band was coregistered

by comparing it with the corresponding ASTER band (Table 1) via POC. This ensured the elimina-

tion of uncertainty caused by inconsistent MODIS inter-band registration during the super-resolu-

tion process, and inter-sensor registration between MODIS and ASTER during validation.

The MODIS PSF to simulate spatial degradation of the higher-resolution signal can be

modeled by the convolution of a triangular function along the across-track direction and a

Gaussian function [38, 39]. The former represents the detector response [40], and the latter

represents optical blurring [38]. The PSF was considered to be a weighting function of spatial

degradation within a square low-resolution pixel, which includes ν × ν high-resolution pixels

(ν is the number of pixels along a column or row). The triangular function can be expressed as

follows, by considering geometric transformation of the coordinates within a low-resolution

pixel:

PSFtriði; jÞ ¼

0; if jvði; jÞj >
n

2
orjuði; jÞj >

n

2

�
2uði; jÞ
n
þ 1; if jvði; jÞj <

n

2
and 0 � u i; jð Þ �

n

2

2uði; jÞ
n
þ 1; if jvði; jÞj <

n

2
and �

n

2
� u i; jð Þ < 0;

ð11Þ

8
>>>>>>>><

>>>>>>>>:

Table 1. Characteristics of MODIS bands and correspondence with reference ASTER bands.

MODIS

band

Description MODIS wavelength

(nm)

MODIS original spatial

resolution (m)

ASTER

band

ASTER wavelength

(nm)

ASTER original spatial

resolution (m)

1 Red 620–670 250 2 630–690 15

2 Near infrared 841–876 250 3 760–860 15

3 Blue 459–479 500 1 520–600 15

4 Green 545–565 500 1 520–600 15

6 Short-wave

infrared

1628–1652 500 4 1600–1700 30

7 Short-wave

Infrared

2105–2155 500 5 2145–2185 30

31 Thermal 10,780–11,280 1000 14 10,950–11,650 90

32 Thermal 11,770–12,270 1000 14 10,950–11,650 90

https://doi.org/10.1371/journal.pone.0266541.t001
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uði; jÞ ¼
ai � j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p ; vði; jÞ ¼

iþ aj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p ; ð12Þ

where i and j are the high-resolution pixel coordinates in a low-resolution pixel; u(i,j) and v(i,
j) are those for the cross-track and along-track directions, taking the center of the image as the

origin; and a is the inclination of the along-track direction measured on the i-j coordinates,

which was set to 5.357 by checking geolocation information in the MODIS data (MOD03

[35]).

The Gaussian function was

PSFgauði; jÞ ¼ exp �
i2 þ j2

2ðnsÞ
2

 !

; ð13Þ

where σ determines the standard deviation of the Gaussian function, which was set to 0.2 by

referring to [38, 39].

Then, the total PSF was

PSFMODISði; jÞ ¼
PSFtriði; jÞ � PSFgauði; jÞ

P
ði;jÞ�lowresPSFtriði; jÞ � PSFgauði; jÞ

: ð14Þ

Examples of each PSF are shown in Fig 5.

Via the super-resolution algorithm, 250-m MODIS thermal images (bands 31 and 32) were

retrieved, which were validated by the corresponding ASTER band 14. To this end, the ASTER

image was degraded to 250-m resolution using the MODIS PSF. The correlation coefficient

(CC) and root mean squared error (RMSE) between the MODIS and ASTER images were cal-

culated for the three types of algorithms (the original algorithm, and the proposed algorithm

with and without distance regularization) to investigate the effect of our refinement. The Rela-

tive Dimensionless Global Error (ERGAS) index and peak signal-to-noise ratio (PSNR) [41]

were also checked to analyze the accuracy of spectral and spatial reconstruction, respectively.

Since the quantization of the thermal reference data (ASTER) is a 12-bit process [42], the max-

imum value is 4095 (equivalent to a radiance of 21.39 W/m2/str/m), which was used for

Fig 5. Simulated Point Spread Function (PSF) for 100×100 pixels (i.e., ν = 100). (left) Triangular weighting function

for sensor PSF, (center) Gaussian weighting function for optical PSF, and (right) combined PSF for a Moderate

Resolution Imaging Spectroradiometer (MODIS) observation.

https://doi.org/10.1371/journal.pone.0266541.g005
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calculating the PSNR. Spatial patterns (i.e., images) and the basic statistics for the radiance

were also checked among the reference, retrieved, and original data.

Results

The regularization parameter λ was determined as 0.002 based on tuning repeated twice, to

give the first super-resolution process the best performance (i.e., the least RMSE and the best

CC; Fig 6). On this basis, the validation with ASTER images for Algorithms 1, 2, and 3 is

shown in Table 2. Because the relative spectral responses are different even between the corre-

sponding bands in MODIS and ASTER images, it is natural that there is a systematic bias in

radiance. Apart from the inevitable bias, the best performance is achieved with our proposed

Algorithm 3, which produced the highest CC and PSNR, and the lowest RMSE and ERGAS.

More importantly, our proposed Algorithm 3 shows the best statistical consistency with the

original MODIS thermal data, and as a result, also with the ASTER data (as clearly seen in

Table 3). The original Algorithm 1 creates both physically impossible negative radiance and

implausibly high radiance. Only the average values were acceptable because of the offset cor-

rection. Our proposed algorithm without regularization (Algorithm 2) shows better results

than Algorithm 1, without any physically impossible values. However, with the appropriate

regularization (Algorithm 3), the statistical consistency with the original MODIS and ASTER

images increased further, not only for the average values, but also for the minimum and maxi-

mum values. Interestingly, the standard deviation of the retrieved result with Algorithm 3 is

more consistent with that of the reference data (ASTER) than that of the original MODIS data.

Fig 6. Tuning of the regularization parameter λ in Algorithm 3. (left column) Root mean squared error (RMSE)

and correlation coefficient (CC) for a wide range (from 0 to 104) and (right column) RMSE and CC for a narrow range

(from 10−4 to 2.0×10−2). Both tunings were performed with the first super-resolution image (i.e., retrieval of 500-m

thermal images), and the common λ was used for the second super-resolution process. Each x-axis is log-scale, whereas

each y-axis is scaled by the RMSE or CC for λ = 0. The dashed line marks λ = 0.002.

https://doi.org/10.1371/journal.pone.0266541.g006
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Fig 7 shows the stepwise enhancement of the spatial resolution in MODIS thermal images

by Algorithm 3. Although the image contains some noisy patterns that are probably errors

from our algorithm, textual details are certainly retrieved, especially around the boundaries of

major land features such as Lake Kasumigaura and Mount Tsukuba. Compared with the land

cover types (Fig 4), urban and built-up regions tend to show a brightness temperature higher

than that of neighboring areas. Low brightness temperatures over water surfaces and forest

areas are reasonable given the abundant evapotranspiration and aerodynamic features. Focus-

ing on the forest area, the northeast part is hotter than the other area, which is probably due to

the difference in altitude.

An almost similar spatial pattern can even be retrieved using Algorithms 1 and 2 (Fig 8).

However, careful comparison shows that Algorithm 2 tends to generate slightly more noisy

patterns and lower contrast than Algorithm 3, and that Algorithm 1 generates a few pixels hav-

ing a negative brightness temperature (shown by small red points), which also confirms the

results in Table 3.

Discussion

We revisited the sensor-driven approach for thermal image super-resolution and investigated

its applicability to a complex landscape with urban and suburban regions. The sensor-driven

algorithm [26] with our modification refined the statistical consistency of the retrieved

MODIS images (250-m resolution) with the original MODIS images and with the reference

ASTER images (Tables 2 and 3). Refinement of the algorithm structure (from Algorithm 1 to

2) improved the accuracy of the super-resolution process (Table 2): in Algorithm 1, the first

super-resolution process relies only on bands 1 and 2, which is likely to cause substantial

Table 2. Correlation Coefficient (CC), Root Mean Squared Error (RMSE), and Peak Signal-to-Noise Ratio (PSNR) for each band [31, 32], and Relative Dimension-

less Global Error (ERGAS) between the results from the three types of super-resolution algorithms and ASTER radiance. CC and PSNR: larger is better; RMSE and

ERGAS: smaller is better.

Accuracy criteria Algorithm 1 Algorithm 2 Algorithm 3

CC for band 31 0.366 0.533 0.644

RMSE / relative RMSE (%) for band 31 1.545 / 16.79% 1.468 / 15.95% 1.447 / 15.72%

PSNR for band 31 (dB) 22.77 23.28 23.40

CC for band 32 0.351 0.514 0.626

RMSE / relative RMSE (%) for band 32 0.882 / 9.584% 0.772 / 8.384% 0.739 / 8.030%

PSNR for band 32 (dB) 27.57 28.86 29.24

ERGAS 3.418 3.186 3.121

https://doi.org/10.1371/journal.pone.0266541.t002

Table 3. Basic statistics over the entire study region between the results from the three super-resolution algorithms, original MODIS image (1-km resolution), and

ASTER image.

Radiance statistics (W/m2/str/μm) Algorithm 1 Algorithm 2 Algorithm 3 Original MODIS ASTER (band 14)

Band 31 minimum -29.83 4.281 7.959 9.691 8.084

Band 32 minimum -27.98 4.685 7.694 9.100

Band 31 maximum 27.44 15.04 11.88 11.23 11.14

Band 32 maximum 24.83 14.06 10.98 10.41

Band 31 average 10.61 10.62 10.62 10.62 9.202

Band 32 average 9.876 9.881 9.881 9.881

Band 31 standard deviation 0.674 0.450 0.371 0.290 0.352

Band 32 standard deviation 0.588 0.391 0.320 0.248

https://doi.org/10.1371/journal.pone.0266541.t003
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uncertainty in the first super-resolution retrieval. The uncertainty probably propagates to the

second super-resolution retrieval, resulting in enhanced uncertainty in the whole super-resolu-

tion process. In addition, the somewhat arbitrary hyperparameter w is likely to make the origi-

nal algorithm too complex to obtain best-tuned results. Algorithm 2 was likely to address such

issues, and was further improved by the introduction of a regularization term for the Mahala-

nobis distance (i.e., Algorithm 3). The standard deviation in the retrieved MODIS images

using our algorithm (Algorithm 3) is more consistent with the ASTER images than with the

original MODIS image with 1-km resolution. This suggests that contrasting features (i.e., spa-

tial details) are captured by the super-resolution process, which are missed in the original

MODIS image having a coarser resolution.

Retrieved thermal images well captured specific features of different land covers. In particu-

lar, urban areas (Fig 4) tend to show high brightness temperatures, suggesting an urban heat

island phenomenon [43]. Statistics for each type of land cover showed that the mean thermal

radiance (or brightness temperature) in urban regions is the highest among the categories

(Table 4), quantitatively confirming the urban heat island phenomenon. The thermal radiance

and super-resolution accuracy were similar between paddy and crop categories distributed

around suburban regions. This is understandable because water in rice paddy fields should be

drained in preparation for harvest in this season (September), creating similar thermal proper-

ties to crop fields before and after harvest. For further discussion of the thermal structure in an

urban and suburban area, the land surface temperature [44] rather than the radiance or bright-

ness temperature may be more suitable, although it requires additional work to estimate the

thermal emissivity precisely over heterogeneous artificial materials [45, 46]. The highest accu-

racy (PSNR and ERGAS) was observed for the urban category, suggesting that this algorithm

is suitable for obtaining super-resolution in urban landscapes. Poor accuracy was obtained in

the water and forest categories. For the water category, the weak correspondence between the

Fig 7. Improvement in spatial resolution of MODIS thermal infrared bands by the proposed super-resolution

Algorithm 3. (left column) Original 1000-m resolution images, (center column) result from the first super-resolution

process, and (right column) result from the second super-resolution process for (top row) MODIS band 31 and

(bottom row) MODIS band 32. The radiance value was converted into brightness temperature by Eq 10.

https://doi.org/10.1371/journal.pone.0266541.g007
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thermal properties and optical spectra probably makes it difficult to conduct an accurate

super-resolution process. The reason for the poor accuracy for the forest categories can be

largely attributed to the temperature differences at different altitudes around Mount Tsukuba.

Adding altitude data (i.e., digital elevation model) when calculating the Mahalanobis distance

and clustering homogeneous pixels may improve the results for such mountainous regions.

Improvement in the accuracy indices by our algorithm refinement was statistically con-

firmed for all land cover categories (Table 5). The Wilcoxon signed-rank test over the catego-

ries (n = 7) indicated that Algorithm 3 showed a smaller ERGAS and a greater PSNR than

Fig 8. Comparison of maps obtained by the three algorithms. The upper panel containing 8 images displays MODIS

band 31 results, and the lower one displays MODIS band 32 results. For each panel, from the far left column: reference

ASTER images, MODIS retrieved by Algorithm 2, Algorithm 3, and Algorithm 1, respectively. The top row shows the

500-m resolution retrieval (first super-resolution images for Algorithms 2 and 3), and the bottom row shows the

250-m resolution retrieval. Algorithm 1 (original algorithm) cannot retrieve a 500-m resolution map. The red pixels

(encircled by red circles for visibility) in the maps retrieved by Algorithm 1 indicate negative brightness temperatures.

https://doi.org/10.1371/journal.pone.0266541.g008
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Algorithm 2 with statistical significance (p< 0.01), and Algorithm 2 showed a smaller ERGAS

and greater PSNR than Algorithm 1 with statistical significance (p< 0.01). Therefore, for all

categories, Algorithm 2 was better than Algorithm 1, and Algorithm 3 was better than both

Algorithms 1 and 2.

Artificial coloring and metal composition of the surface would also influence the estimation

of radiance or brightness temperature using our super-resolution algorithm, especially when

creating the typical spectral pattern, which relies on the spectral link between the optical and

thermal domains. In practice, the impact of the uncertainty in the typical spectral pattern on

the super-resolution is limited because most of the thermal radiance ghigh,k’ is retrieved from

neighboring homogeneous pixels, rather than the typical spectral pattern extracted by cluster-

ing (Fig 9G and 9H). Therefore, as long as a spectrally similar target with 500-m spatial homo-

geneity in the second super-resolution image can be obtained around the pixel of interest, the

resulting image is likely to be reliable. This condition may sometimes be too strict for heteroge-

neous landscapes including urban and suburban areas, and thus retrieval has uncertainty in

such regions. In fact, the Mahalanobis distance for the retrieval is small (i.e., high reliability in

the retrieval) over the relatively homogeneous forest region and water body apart from the

lake shore (Fig 9D and 9F), but not in the urban and suburban areas, and the boundary the

land covers (e.g., the shore of Kasumigaura Lake) with less homogeneity (Fig 9A–9C). How-

ever, even in such cases, the offset correction with regularization at least ensures statistical con-

sistency in the final retrieved value g’high,k’. Super-resolution with higher-resolution data (e.g.,

ASTER) may further mitigate uncertainty arising from such spatial heterogeneity.

There is still room to improve our algorithm regarding the visualizability of the retrieved

image. Textural details, such as narrow river channels and mixed landscapes of crop, forest,

urban, and suburban areas (Fig 4) are hidden behind the noisy patterns generated by the

Table 4. Statistics for super-resolved thermal data and accuracy indices for Algorithm 3 for each land-cover type. The land-cover type was determined using previ-

ously reported data [34], while unclassified and snow/ice categories were excluded. Note that the four forest categories (see Fig 4) were integrated into the one category.

Radiance (W/m2/str/μm) with standard deviation, Tb (brightness temperature; K) with standard deviation, PSNR, ERGAS, and N (number of sample pixels) are listed.

Categories B31 radiance / Tb B32 radiance / Tb B31 PSNR B32 PSNR ERGAS N

All 10.62±0.37 / 306.9±2.5 9.881±0.320 / 307.1±2.5 23.40 29.23 3.121 32400

Water 10.16±0.41 / 303.8±2.8 9.453±0.373 / 303.7±3.0 23.03 28.28 3.501 552

Urban 10.91±0.26 / 308.9±1.8 10.13±0.23 / 309.0±1.8 24.04 31.01 2.712 2285

Paddy 10.74±0.29 / 307.7±1.9 9.985±0.253 / 307.9±2.0 23.70 30.11 2.921 9027

Crop 10.73±0.26 / 307.7±1.7 9.978±0.227 / 307.9±1.8 23.55 29.83 2.990 9854

Grassland 10.58±0.34 / 306.6±2.3 9.847±0.298 / 306.9±2.3 23.98 30.13 2.872 589

Forest 10.35±0.38 / 305.1±2.6 9.662±0.324 / 305.4±2.6 22.86 27.88 3.527 9914

Barren 10.51±0.44 / 306.2±3.1 9.803±0.381 / 306.5±3.0 23.58 28.84 3.105 179

https://doi.org/10.1371/journal.pone.0266541.t004

Table 5. Comparison of accuracy indices (ERGAS: Smaller is better; PSNR: Greater is better) for different algorithms and land-cover types.

Accuracy indices ERGAS PSNR31 PSNR32

Algorithm 1 2 3 1 2 3 1 2 3

Water 3.831 3.571 3.501 22.51 22.93 23.03 26.71 27.88 28.28

Urban 2.930 2.788 2.712 23.56 23.87 24.04 29.47 30.44 31.01

Paddy 3.137 2.986 2.921 23.27 23.57 23.70 28.74 29.66 30.11

Crop 3.094 3.040 2.990 23.34 23.45 23.55 29.18 29.52 29.83

Grassland 3.195 3.042 2.872 23.29 23.62 23.98 28.34 29.10 30.13

Forest 4.055 3.599 3.527 21.94 22.73 22.86 25.86 27.56 27.88

Barren 4.632 3.186 3.105 20.80 23.49 23.58 23.61 28.19 28.84

https://doi.org/10.1371/journal.pone.0266541.t005

PLOS ONE Thermal remote sensing over heterogeneous landscapes using sensor-driven super-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0266541 April 6, 2022 16 / 20

https://doi.org/10.1371/journal.pone.0266541.t004
https://doi.org/10.1371/journal.pone.0266541.t005
https://doi.org/10.1371/journal.pone.0266541


algorithm (Fig 7). Due to the inherent feature of the twofold super-resolution retrieval, the

noise generated in the first super-resolution image should inevitably affect the second super-

resolution image. In fact, a distributed spatial pattern of the large Mahalanobis distance (i.e.,

less reliable retrieval) is observed in the distance map in the second super-resolution image

(Fig 9E), which can be attributed to the noise generated by the first super-resolution retrieval.

Data-driven approaches, including traditional pan-sharpening [18, 19], kernel-driven

methods [20–22], and machine learning [23–25], may have an advantage from the viewpoint

of visualizability. Therefore, comparison of the sensor-driven approach with such data-driven

approaches and/or their integrated use will be important future work. Especially, the offset

correction, which is an important part of our algorithm, may be added to other data-driven

approaches to improve the statistical consistency, while keeping each algorithm

straightforward.

Conclusion

To improve the spatial resolution of thermal satellite images, we revisited a sensor-driven

super-resolution algorithm and investigated its applicability to a complex landscape with

urban and suburban regions. The algorithm explicitly considers the sensor blurring effect

using a point spread function, and ensures radiometric consistency with the original thermal

image during high-resolution thermal image retrieval, both of which are not generally taken

into consideration in existing approaches such as machine learning and kernel-driven meth-

ods. We also introduced modification to the original sensor-driven algorithm to enhance the

statistical consistency of the super-resolution results, including making the algorithm structure

Fig 9. Maps describing characteristics of super-resolution retrieval. From the top row, pixel homogeneity,

Mahalanobis distance, and data sources (the typical spectral pattern or neighboring pixel used in the retrieval process)

are displayed. The left and center columns show the maps for the first and the second super-resolution retrievals by

our proposed Algorithm 3, respectively. The right column shows retrieval by the original Algorithm 1.

https://doi.org/10.1371/journal.pone.0266541.g009
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more straightforward, and introducing regularization term when calculating the Mahalanobis

distance.

The original sensor-driven algorithm (Algorithm 1) and two refined versions (Algorithms 2

and 3) were applied to a cloud-free MODIS scene to enhance the thermal (1 km) resolution to

the optical (250 m) resolution, and were validated against the corresponding high-resolution

thermal image (ASTER). The validation result showed that the refined sensor-driven algo-

rithm can downscale the MODIS image to 250-m resolution, while maintaining a high statisti-

cal consistency with the original MODIS and ASTER images. Part of our algorithm, such as

radiometric offset correction based on the Mahalanobis distance, may be integrated with other

existing approaches in the future.
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