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Abstract

Background: Pasteurella multocida (P. multocida) is an important veterinary pathogen that can cause severe
diseases in a wide range of mammals and birds. The global regulator crp gene has been found to regulate the
virulence of some bacteria, and crp mutants have been demonstrated to be effective attenuated vaccines against
Salmonella enterica and Yersinia enterocolitica. Here, we first characterized the crp gene in P. multocida, and we

report the effects of a crp deletion.

Results: The P. multocida crp mutant exhibited a similar lipopolysaccharide and outer membrane protein profile but
displayed defective growth and serum complement resistance in vitro compared with the parent strain. Furthermore,
crp deletion decreased virulence but did not result in full attenuation. The 50 % lethal dose (LDs() of the Acrp mutant
was 85-fold higher than that of the parent strain for intranasal infection. Transcriptome sequencing analysis showed
that 92 genes were up-regulated and 94 genes were down-regulated in the absence of the crp gene. Finally, we found
that intranasal immunization with the Acrp mutant triggered both systematic and mucosal antibody responses and
conferred 60 % protection against virulent P. multocida challenge in ducks.

Conclusion: The deletion of the crp gene has an inhibitory effect on bacterial growth and bacterial resistance to serum
complement in vitro. The P. multocida crp mutant was attenuated and conferred moderate protection in ducks.
This work affords a platform for analyzing the function of crp and aiding the formulation of a novel vaccine

against P. multocida.
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Background

Pasteurella multocida (P. multocida) is a non-motile,
capsulated, Gram-negative facultative anaerobic bacterium
and is recognized as an important veterinary pathogen [1].
P. multocida is classified into five serogroups (A to F)
based on its capsular antigens and into 16 serovars based
on its somatic antigens [2]. Certain strains of P. multocida
cause fowl cholera, a disease of poultry and wild birds
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resulting in high mortality rates with economic signifi-
cance [3]. Some control is achieved with adjuvanted
bacterins, which provide some degree of protective im-
munity and limit the incidence and severity of clinical
disease, but this type of vaccine lacks the ability to in-
duce long-term immunity and cross-protection against
heterologous serotypes, resulting in immunized animals
that continue to suffer disease outbreaks [4]. In an attempt
to mimic natural infection and elicit long-term humoral
and cellular immunity, empirically derived, live, avirulent
strains have been developed. However, the basis for attenu-
ation is not known, and reversion to virulence occurs [4].
Thus, new vaccines, particularly well-defined live vaccines,
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are required, and a significant amount of current research
is directed toward achieving this goal.

The design of such vaccines is based on a wealth of
new information on the pathogenesis of this bacterium.
Global regulators play a vital role in the adaption of bac-
teria to the environmental changes that are encountered
during infection, such as the PhoP/PhoQ regulators,
which induce modifications of lipopolysaccharides (LPS)
or outer membrane proteins (OMPs) to deal with envir-
onmental extremes and promote bacterial survival [5].
Many of these regulators are closely related to virulence
[6-11] and are proven mutation targets for vaccine de-
velopment [12, 13]. Crp (cAMP receptor protein) was
the first prokaryotic transcription factor to be purified
[14] and crystallized [15] from Escherichia coli (E. coli)
and is the best characterized. Crp plays a vital role in the
transcription of a series of genes for the utilization of
carbon sources other than glucose [16]. This protein
regulates the expression of numerous genes in response
to variations in the intracellular concentration of cAMP
[17], which is synthesized by membrane-bound adenylate
cyclase. The cya gene, which encodes adenylate cyclase, is
activated in the absence of glucose [18]. Upon binding
to cAMP, the cAMP-Crp complex undergoes a con-
formational change that allows it to bind to promoters
containing the consensus TGTGANGTCACA sequence
[19]. After binding to promoter DNA, Crp recruits RNA
polymerase, resulting in the formation of specific protein-
protein interactions that lead to the transcription of target
genes. At some promoters, Crp also inhibits transcription
via several mechanisms, such as promoter occlusion
[20, 21]. A total of 254 target promoters have been
identified in E. coli [22]. Crp has been shown to control
the expression of essential virulence factors, and crp
mutants attenuate the virulence of many Gram-negative
bacteria, including Salmonella enterica [23], Mycobacter-
ium tuberculosis [24], Vibrio cholerae [25] and pathogenic
Yersinia species [26, 27]. Furthermore, Salmonella enterica
strains with mutations in crp either alone or in combination
with other genes have served as effective vaccine candidates
against salmonellosis [28, 29].

The sequence and functions of the crp gene in P.
multocida have not yet been identified. In this study, P.
multocida 0818 was selected to investigate the putative
crp gene. The bacterium was isolated from livers of
ducks with a typical clinical representation of pasteurellosis
from a duck farm suffering a pasteurellosis outbreak in
southwest China. P. multocida 0818 was typed as capsular
serotype A:1, nontoxinogenic, and was highly virulent, with
a 50 % muscular lethal dose of <100 CFU being observed
for 3-day-old ducklings (unpublished data). Here, the crp
gene was first characterized from the virulent P. multocida
0818 strain. Then, the non-polar Acrp mutant of P. multo-
cida 0818 was constructed, and its phenotype, including its
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virulence, resistance to serum complement and bacterial
growth, lipopolysaccharide (LPS) and outer membrane pro-
tein (OMP) profiles, were systematically investigated. crp-
regulated genes were also identified through transcriptome
sequencing. Moreover, the immunogenicity and protective
efficacy of the Acrp mutant were determined.

Methods

Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are
described in Table 1. P. multocida was grown at 37 °C
in brain heart infusion (BHI) broth or on BHI agar
(BD Bioscience, USA), and Salmonella enterica serovar
Typhimurium (S. Typhimurium) and E. coli were grown
in Luria-Bertani (LB) broth or on LB agar. When required,
antibiotics and diaminopimelic acid (DAP) were added
to the medium at the following concentrations: kana-
mycin, 50 pg/ml; ampicillin, 100 pug/ml; chlorampheni-
col, 25 pg/ml for S. Typhimurium and E. coli or 2.5 pg/
ml for P. multocida; and DAP, 50 pg/ml [30]. The
transformation of S. Typhimurium and P. multocida
was performed via electroporation. Transformants were
selected on LB or BHI agar plates containing appropri-
ate antibiotics, and Asd® plasmids were selected on LB
agar plates.

Molecular and genetic procedures

Restriction digests and ligations were performed using
enzymes purchased from New England Biolabs (NEB,
Beverley, MA, USA) and TAKARA (Takara Bio Inc.,
Shiga, Japan), respectively, according to the manufac-
turer’s instructions. Plasmid DNA was extracted from
bacteria using the TIANprep Mini Plasmid Kit (Tiangen
Biotech Co., Ltd., Beijing, China), whereas genomic
DNA was prepared using the cetyltrimethylammonium
bromide method [31]. The DNA was amplified via PCR
using PrimeSTAR Max DNA polymerase (Takara Bio
Inc., Shiga, Japan) or Tuqg DNA polymerase (Tiangen
Biotech) and purified using a DNA Purification Kit
(Tiangen Biotech). The primers employed in this study
were designed according to the published genome se-
quence of P. multocida strain Pm70 (GenBank,
AE004439.1) [32] and are listed in Table 2. The DNA
sequences were commercially determined by BGI Tech
(BGI Tech Solutions Co., Ltd., Shenzhen, China), and se-
quence alignments were constructed using the Basic Local
Alignment Search Tool (BLAST).

Plasmids and mutant strain construction

BLAST was applied to search for potential P. multocida
crp gene (PM1157) via alignment of the amino acid se-
quences of S. Typhimurium Crp (Protein ID, NP_462369.1)
and the genome of P. multocida Pm70. To clarify the
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Table 1 Bacterial strains and plasmids used in this study
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Table 2 Primers used in this work

Strains or Description Source Primer Sequence 5-3'
plasmids name
Plasmids Cerp-F1 GCATGCCATGGTGCAAGAACAAATGCAAAC
pQK663 Asd* vector, p15A ori, spec’ Derived from Cerp-R1 CGCGGATCCATGGATCGCA AGCAGAG
pYA3332 [26] Cerp-F2 CGCGGATCCGTGCAAGAACAAATGCAAAC
PQK163  Insertion of p into pQKEE3 This work CapR2  ATAAGAATGCGGCCGCATTTTAGCAGAGAACCGGG
pET-32a-crp  For the expression of P. multocida Crp This work DET-cpF  GGGGTACCCAAGAACAAATGCAAACTAC
PMC-Bxpress A broad hostange shuttle vector derived  [27] PET-cpR  TGGATCCTTAGTGGTGGTGGTGGTGGTGTCTTGTACCGTAAA
from pMIDG100, chloramphenicol
CGACAATG
pYA4278 grRiEC1r1n2+der|vat\ve, sacB mobRP4 R6K [29] Derp-1 F CGOATCTGGTGAACCTGTGT
QK174 OYA4278-Acrp This work Dcrp-1R TACCTGCAGGATGCGGCCGCGGAAGACCTCCATAAACTAAT
pQK175 PYA4278-Acrp:kan, for deletion of crp in - This work Derp-2 F COCOGLCOCATCCTOCAGOTAATCCCCOGTTCTCTELTAA
P. multocida 0818 Dcrp-2R GGCACGTTGCACATGAATC
pQK176 Insertion of crp into pMC-Express This work kan-F ATAAGAATGCGGCCGCTCAGTGGAACGAAAACTC
Strains kan-R CCTGCAGGTTAGAAAAACTCATCGAGCATC
S184 S. Typhimurium Aasd66 Lab collection Primer 1 AGGTGAAAAAGCCGAGACGC
sS4 S. Typhimurium Aasd66 Acrp89 Lab collection Primer 2 GCGAACATCCCACCATTTGC
P. multocida Wild-type and virulent. Capsular Lab collection Primer 3 TGTTTGAAGCCTTGATTGAT
0818 serotype A:l. .
Primer 4 CTGATTCAGGTGAAAATATTG
S416 P. multocida 0818 Acrp:kanR This work .
Primer 5 CAATA CACCTGAATCAG
X7232 Ecoli K-12, endAT hsdR17 (rc, mx+) ginV44 [30] .
thi-1 recAT gyrA relA1 A(lacZYA-arghU169 Primer 6 GTCATTTCACCTGAATAAGC
Apir deoR (80dlac A(lac2)M15)
X7213 Ecoli K-12, thi-1 thr-T leuB6 glnV44 fhuA21  [30]

lacY1 recA1 RP4-2-Tc:Mu Npir AasdA4
Azhf-2:Tn10

potential gene in P. multocida, the PM1157 gene sequence
was amplified from the P. multocida 0818 strain with the
primers Ccrp-F1/Ccrp-R1. The amplified DNA fragment
was inserted into pQK663 derived from pYA3332 [33] be-
tween the Ncol and BamHI digestion sites to generate
pQK163, which was then transformed into the S. Typhi-
murium Aasd Acrp strain for a maltose fermentation assay.
For expression of the Crp protein, the complete P. multo-
cida crp sequence was amplified from P. multocida 0818
chromosomal DNA using the primers pET-crp-F and pET-
crp-R. The PCR fragment was then purified and digested
with kpnl-HF and BamHI-HF (NEB) and subsequently li-
gated to the pET-32a expression vector (Novagen Inc.,
Madison, WI, USA) between the kpnl and BamHI sites to
generate pET-32a-crp. To complement the crp mutant in P.
multocida, the complete crp gene was amplified from P.
multocida 0818 genomic DNA using the primers Ccrp-F2/
Ccrp-R2, and the amplified fragment was then digested and
inserted into the Notl and BamHI sites of a shuttle vector
pMC-Express [34] (kindly donated by Paul R Langford
from Imperial College London) to generate pQK176. The
plasmids pQK163 and pQK176 were transformed into
the crp mutant strains S411 (S. Typhimurium Aasd Acrp)
and S416 (P. multocida Acrp), respectively, generating the

corresponding complementary strains S411 (pQK163) and
S416 (pQK176).

The P. multocida Acrp mutant was constructed by al-
lelic exchange using the suicide T-vector pYA4278 [35]
as previously described [36]. Briefly, a 410-bp upstream
segment and a 416-bp downstream segment of the crp
gene were amplified with the primers Dcrp-1 F/Dcrp-1R
and Dcrp-2 F/Dcrp-2R, respectively. The two segments
were then linked via PCR using the primers Dcrp-1 F/
Dcrp-2R. The PCR product was then ligated to Ahdl-
digested pYA4278 to generate the plasmid pQK174.
Next, the kanamycin resistance (kanR) cassette amplified
from pYA4372 with the primers kan-F/kan-R was
inserted into the Notl and Shfl sites of pQK174 to gener-
ate the plasmid pQK175. This plasmid was subsequently
introduced into P. multocida 0818 from E. coli x7213
[37] via conjugation, and the Acrp mutant designated
S416 was selected on BHI agar containing kanamycin.
Subsequently, the candidate mutant clones were verified
by PCR screening using primers 1, 2, 3, 4, 5 and 6, which
were designed based on the genomic sequence and the
kanR cassette, as depicted in Fig. 2A. As a positive con-
trol, the 16S ribosomal RNA gene was amplified with
the primers 16sRNA-F/16sRNA-R. Moreover, Crp ex-
pression was also measured in P. multocida 0818, S416
(P. multocida Acrp) and S416 (pQK176) via western
blotting with a 1:160-diluted polyclonal rabbit anti-Crp
antibody.
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Purification of Crp protein and preparation of a
polyclonal rabbit anti-Crp antibody

The plasmid pET-32a-crp was transformed to E. coli
BL21 (DE3) cells (Tiangen Biotech) with ampicillin selec-
tion. Recombinants were harvested after 6 h of induction
with 1 mM IPTG (isopropyl b-D-1-Thiogalactopyrano-
side). The Crp protein was purified using 6x His/Ni-NTA
affinity chromatography. To prepare the polyclonal anti-
Crp antibody, two female New Zealand white rabbits were
subcutaneously immunized with Crp protein (1 mg)
adjuvanted with Freund’s complete/incomplete adjuvant
(Sigma-Aldrich, St. Louis, MO, USA) four times at 14-day
intervals. The titers of the antisera were then analyzed
using the immune agar diffusion test. When the titers of
the two rabbit antisera reached at least 1:32, blood sam-
ples were collected within approximately 14 days after the
last immunization to obtain the anti-Crp antibody.

Maltose utilization test

To detect maltose utilization, S184 (S. Typhimurium
Aasd) harboring the control plasmid pQK663, S411
(5184 Acrp) harboring pQK663 and S411 harboring the
complementary plasmid pQK163 were grown at 37 °C
for 18 h on MacConkey indicator plates containing 1 %
maltose, and the colony color was observed [38].

Phenotype determination

The growth curve of P. multocida strains was examined
by recording their ODg, values every 2 h over a period
of 14 h. The OMPs and LPS of P. multocida were ex-
tracted as previously described [36]. The OMP concentra-
tion was detected using a BCA Protein Assay Kit (Thermo
Scientific, Rockford, IL, USA). The protein samples were
subsequently diluted in sample buffer [50 mM Tris, 20 %
glycerol, 4 % sodium dodecyl sulfate (SDS), 0.005 % bro-
mophenol blue, and 5 % B-mercaptoethanol] and boiled
for 5 min at 95 °C. The samples were then subjected to
12.5 % SDS-polyacrylamide gel electrophoresis (PAGE)
followed by Coomassie Brilliant Blue R-250 staining
(Sigma-Aldrich). Additionally, 10 ul of the LPS super-
natant was diluted 1:10 in loading buffer, and the mixture
was then treated with 1 pl of proteinase K (20 mg/ml,
Sigma-Aldrich) at room temperature for 1 h and analyzed
by 12.5 % SDS-PAGE followed by silver staining [30].

Serum bactericidal assay

Duck serum was collected from healthy ducks and heat-
inactivated via incubation for 30 min at 56 °C. The
serum bactericidal activity against the P. multocida
strains were then measured as previously described [39].
Briefly, bacteria were cultured overnight in BHI media
to an ODgg of 0.8 to 0.9 at 37 °C and 180 rpm. The bac-
teria were re-suspended in phosphate-buffered saline
(PBS) and diluted to a final concentration of 10* CFU/ml
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Aliquots (100 pl) of the bacterial suspensions were added
to 900 pl of duck serum or heat-inactivated duck serum
and incubated for 3 h at 37 °C with shaking. After incuba-
tion, the samples were placed on ice to inhibit further bac-
teriolysis. Serial dilutions of the samples in PBS were
cultured on BHI agar plates and incubated at 37 °C over-
night. The growth rate was calculated as the CFU per ml
at 3 h divided by the CFU per ml at 0 h. All tests were per-
formed in triplicate.

Determination of the 50 % lethal dose (LDs) in ducks

All animal experiments in this study were conducted in
strict accordance with the recommendations of the
Guide for the Care and Use of Laboratory Animals of
the Ministry of Science and Technology of China. All
animal procedures were approved by the Animal Care
and Use Committee of Sichuan Agricultural University
(No. XF2014-18).

To determine the LDsq of P. multocida strains, duck
infection studies were conducted as described previously
[36]. Overnight cultures of P. multocida strains in BHI
medium were diluted 1:100 in fresh medium and further
cultured at 37 °C with shaking to an ODggg of 0.8-0.9.
The numbers of viable bacteria were then counted, and
the bacteria were diluted in 100 pl of PBS to obtain cul-
tures of 10* to 10"® CFU/ml. Various doses of P. multocida
0818 or S416 (Acrp) were then intranasally inoculated into
groups of 2-week-old Sheldrake ducks. The clinical symp-
toms and health of the ducks were monitored over a
period of 2 weeks after infection. The LDs, was calculated
following the method described by Reed and Muench, and
the experiment was repeated twice.

RNA extraction and sequencing
For preparation of bacterial RNA samples, P. multocida
0818 and S416 (Acrp) were grown in BHI medium in
triplicate with shaking. Once the ODgyq of the cultures
reached 0.8, the bacteria were harvested, and the total
RNA from each sample was extracted and purified using
the TRIzol reagent (Invitrogen, CA, USA). Contaminating
DNA was removed from the total RNA samples with
DNase I (NEB Inc., USA) at 37 °C for 10 min, and riboso-
mal RNA was eliminated using a MICROBExpress kit
(Thermo Fisher Scientific Inc., CA, USA). The RNA qual-
ity and concentration were determined using a Nanodrop
spectrophotometer (Thermo Fisher Scientific Inc., USA).
A cDNA library was then constructed using a TruSeq
RNA Sample Preparation Kit (Illumina, San Diego, CA,
USA), and the Illumina Hiseq2500/MiSeq platform
(Ilumina) was used for RNA deep sequencing, which
was conducted at Majorbio Bio-pharm Biotechnology
Co., Ltd. (Shanghai, China).

Sequence analysis was performed as previously de-
scribed [40]. In brief, clean reads were obtained from the
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sequenced raw data using FASTQC and NGS QC
TOOLKIT and de novo assembled by Trinity software.
The TGICL package was then applied to generate valid
unigenes, and the Bowtie 2 and eXpress software pro-
grams were used for the mapping of the clean reads
from each sample to unigenes based on the reference
genome sequence of P. multocida Pm70. The number of
mapped reads relative to each gene was measured using
the RPKM method. The RSEM and edgeR software
packages were subsequently applied for the screening of
unigene transcripts with differential expression between
P. multocida 0818 and S416.

Immunization and challenge

One-week-old Sheldrake ducks were intranasally immu-
nized with 1 x 10> CFU of S416 or PBS twice at an inter-
val of 10 days. The S416-immunized group included 16
ducks, and the PBS control group included 14 ducks.
Serum and bile were collected from six randomly se-
lected ducks from both groups on Day -3 and Day 20,
respectively, and stored at -80 °C until analysis. For the
challenge assay, the ducks in the S416-immunized and
PBS groups were intranasally inoculated with a lethal dose
of P. multocida strain 0818, approximately 1 x 10" CFU.
The health status of the animals was monitored and re-
corded every day for two weeks post-challenge, and the de-
ceased ducks were routinely subjected to bacterial isolation.

Enzyme-linked immunosorbent assay (ELISA)

The serum IgY and bile IgA levels were detected via in-
direct ELISA as previously described [36]. A 96-well
ELISA microplate was coated with 1 x 10'® CFU heating-
inactivated P. multocida 0818 or 0.25 pg/ml purified
OMPs and incubated at 4 °C overnight. After three washes
with PBST, the plate was then blocked with 2 % BSA in
PBS. The serum samples were diluted 1:100 in PBS con-
taining 1 % BSA, and the bile samples were diluted 1:40.
After the plate was washed again, 100 pl of these dilutions
was added to each well. After 1 h of incubation at 37 °C,
the plate was incubated with 100 pl of 1:5000-diluted alka-
line phosphatase (AP)-labeled mouse anti-duck IgY or IgA
(AbD Serotec, Puchheim, Germany) at 37 °C for 1 h. AP
solution (Sigma-Aldrich) was added for coloration, and
the reaction was terminated by the addition of 100 ul of
0.2 M NaOH. The optical density (OD) value at 415 nm
was measured using a microplate reader (Bio-Rad Labora-
tories, Richmond, CA, USA).

Statistical analyses

The GraphPad Prism 5 software package (Graph Soft-
ware, San Diego, CA, USA) was used for the statistical
analyses. The data are expressed as the means + standard
deviations (SD) and were evaluated using Student’s ¢ test
with significance levels set to 0.05 and 0.01. The animal
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experiments were performed at least twice, and the in vitro
experiments were conducted independently three times in
triplicate.

Results

Cloning and characterization of the crp gene of P.
multocida

The coding region of the suspected crp gene (PM1157)
in P. multocida strain 0818 was cloned via PCR, then se-
quenced and deposited in GenBank (accession number,
KU507499). The PM1157 sequence was 630 bp in length
and shared 73 % nucleotide identity with both S. Typhi-
murium crp (Gene ID, 1254989) and E. coli crp (Gene
ID, 947867) over 604 nucleotides. Additionally, the
630 bp sequence of the P. multocida crp gene was pre-
dicted to encode a 209-amino acid polypeptide, which
showed 86 and 87 % identity to S. Typhimurium Crp
(Protein ID, NP_462369.1) and E. coli Crp (Protein ID,
NP_417816.1) over 205 amino acids, respectively. The
deletion of crp resulted in defects in maltose fermenta-
tion in S. Typhimurium [38]. To clarify the nature of the
cloned sequence, we evaluated whether the PM1157
gene could restore maltose fermentation in S. Typhimur-
ium crp mutant. Maltose fermentation was detected in
S184 (S. Typhimurium Aasd) harboring pQK663 (control
plasmid), S411 (S. Typhimurium Aasd Acrp) harboring
pQK663 and S411 harboring pQK163 (pQK663-PM1157).
As shown in Fig. 1, S184 (pQK663) and S411 (pQK163)
produced red clones, whereas S411 (pQK663) produced
white clones on MacConkey maltose agar. Thus, the sus-
pected crp gene (PM1157) complemented the Salmonella
Acrp mutant, allowing the utilization of maltose.

Construction of the non-polar Acrp mutant in P. multocida
0818

To determine the role of crp (PM1157) in P. multocida,
the Acrp mutant S416 was constructed via suicide
plasmid-mediated homologous recombination and char-
acterized through PCR using three pairs of primers,
1&2, 3&4, and 5&6 (Fig. 2A). The DNA segment con-
taining the PM1157 upstream sequence and a partial
kanR cassette (3&4) and the DNA segment containing
the PM1157 downstream sequence and a partial kanR
cassette (5&6) were present in the S416 strain but not in
the parent strain (P. multocida 0818), whereas the complete
PM1157 sequence (1&2) was only present in the parent
strain (Fig. 2B). The positive control 16S RNA could be
amplified from both strains. Crp expression was also
measured using a polyclonal anti-Crp antibody. Crp
was expressed in the parent strain and the complemen-
tary strain S416 (pQK176), but not in S416 (Fig. 2C),
demonstrating that the crp gene was successfully de-
leted in S416. Moreover, the crp mutation was stable
for more than 20 passages (data not shown).
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maltose agar to observe the colors of the clones
.

Aasd (pQK663)

Fig. 1 Detection of maltose fermentation in S. Typhimurium. Three S. Typhimurium strains, $184 (Aasd) harboring the control plasmid pQK663,
S411 (AasdAcrp) harboring pQK663 and S411 (AasdAcrp) harboring the complementary plasmid pQK163 (PM1157), were cultured on MacConkey

Phenotype characterization of the P. multocida crp
mutant

To detect the influence of crp deletion, the growth curve,
OMP and LPS profiles, and serum complement sensitivity
were evaluated in the parent strain (P. multocida 0818),
S416 (P. multocida Acrp) and S416 (pQK176). The parent
strain showed a typical growth curve, with a short lag
phase (0-2 h), followed by a log phase during which major
bacterial growth occurred (2—-10 h) and then a stationary
phase (10-14 h; Fig. 3A). In contrast, S416 grew more
slowly after 2 h, particularly between 4 and 8 h. During
this phase, the OD values of S416 were significantly lower
than those of the parent strain (Fig. 3A). The complemen-
tary strain, S416, which harbors pQK176, partially restored
the defective growth (Fig. 3A), but the OD values recorded
at 8 h and 12 h remained lower than those of the parent
strain.

The S416 strain displayed OMP and LPS profiles similar
to those of the parent strain (Figs. 3B and C). Specifically,
these profiles primarily consisted of proteins larger than
25 kDa and short-length LPS, respectively. Moreover,
both the parent strain and S416 (pQK176) grew rapidly
in either untreated or heat-treated duck serum, whereas
S416 (Acrp) was rapidly killed in untreated serum but
grew in heat-treated serum (Table 3). The growth rates
of S416 significantly differed between untreated and

heat-treated serum (Table 3), demonstrating that the
deletion of crp increased sensitivity to complement-
mediated killing.

Determination of the virulence of wild-type P. multocida
and the Acrp mutant

To determine the effects of the crp mutation on bacterial
virulence, the LD5q values of the parent strain and S416
(P. multocida Acrp) were assessed in a duck animal
model. The results showed that the LDs, of S416 was
7.4 x 10° CFU, which was 85-fold higher than that of the
parent strain, whose LDg, was 8.66 x 10* (Table 4).

Identification of genes regulated by crp in P. multocida

Transcriptome sequencing was performed to screen for
genes regulated by crp in P. multocida. Compared with
the parent strain, 186 genes in addition to crp itself were
differentially expressed in the S416 (Acrp) strain during
the exponential growth stage. Specifically, 92 of these genes
were up-regulated, and 94 genes were down-regulated (see
Additional file 1). Genes exhibiting fold-differences in tran-
scription greater than 3.5 between the parent strain and the
Acrp mutant are listed in Table 5. A KEGG enrichment
analysis showed that the regulated genes were significantly
involved in six pathways, including two-component



Zhao et al. BMC Microbiology (2016) 16:125

Page 7 of 13

a D 1F
c1p- i

b M

2000
1200
800

S416 (Acip)

Parent strain 5416

Crp refers to purified protein and served as a positive control
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Fig. 2 Construction of the Acrp mutant in the P. multocida 0818 strain. a Schematic of the strategy used for deletion of the target crp gene
(PM1157). The P. multocida crp gene was replaced with a kanR cassette via homologous recombination. Three pairs of primers, 1& 2, 3& 4, and
5& 6, were designed to select and characterize the mutant clones. b Characterization of the constructed Acrp mutant via PCR. The parent strain
and Acrp mutant were identified using the primers 1&2, 3&4 and 5&6. M refers to the DNA marker; 16sRNA indicates amplification of the positive

gene in both strains. ¢ Detection of Crp expression in P. multocida stains. The parent strain, S416
media and collected at an ODgg of 1.0, and the expression of Crp was then measured in these strains with an anti-Crp antibody via western blotting.

16s

Parent strain

(Acrp) and S416 (pQK176) were grown in BHI

systems, arginine and proline metabolism, pyruvate metab-
olism, nitrogen metabolism, and oxidative phosphorylation
(see Additional file 2).

Evaluation of immune responses and the protection rate
conferred by the Acrp mutant

The antibody responses induced by S416 (Acrp) were de-
tected by ELISA post-immunization. As shown in Fig. 4,
no specific serum IgY or bile IgA against bacteria antigen
were detected in both the S416-immunized group and the

PBS group three days prior to immunization. In contrast
to the PBS group, S416-immunized group induced signifi-
cantly higher levels of serum IgY to whole bacteria antigen
and OMPs 20 days post-immunization (Figs. 4A and B).
In addition, the bile IgA levels against whole bacteria
antigen and OMPs were significantly increased in the
S416-immunized group compared with the PBS group
20 days post-immunization (Figs. 4C and D). Moreover,
60 % of the ducks in the immunized group survived
and steadily gained weight after challenge, whereas all
control ducks were dead within one week (Table 6).
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Fig. 3 Phenotype detection of the P. multocida Acrp mutant. a Analysis of the growth curve. The parent strain, S416 (Acrp) and S416 (pQK176)
were grown in BHI broth or BHI broth supplemented with kanamycin, and the ODgy Values were measured every 2 h over a period of 14 h. The
data are expressed as the means + SD, and the asterisks indicate significant differences compared with the parent strain. b and ¢ Profiles of the
OMPs and LPS of P. multocida. OMPs or LPSs were isolated from the parent strain or the Acrp mutant and then analyzed by SDS-PAGE. Coomassie
blue staining and silver staining were then performed to visualize the OMPs (b) and LPSs (c), respectively. M refers to the protein marker
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Thus, the Acrp mutant induced 60 % protection against
challenge with a dosage of 100-fold of the LDs, of wild-
type P. multocida 0818 in ducks.

Discussion

Global regulators play a vital role in the adaptation of
bacteria to the environmental changes that are encoun-
tered during infection. Despite the broad spectrum of
diseases caused by P. multocida and their worldwide
economic impact, only a few regulators have been charac-
terized in P. multocida, including Fis (nucleoid-associated
proteins) [41], Fur (ferric uptake regulation) [42], PhoP
[36] and FnrP [43]. These regulators are all associated with
bacterial virulence. Here, we first identified the homologue
of the crp gene in P. multocida and showed that PM1157
is the functional crp gene. Two pieces of evidence support
this conclusion: 1) PM1157 exhibited a high degree of
amino acid identity (86 %) with corresponding proteins
from other bacteria, including E. coli and Salmonella
enterica; and 2) the PM1157 gene of P. multocida was able
to restore maltose fermentation in the Salmonella crp mu-
tant. Thus, gene PM1157 of P. multocida is a crp gene that
is interchangeable with Salmonella crp.

The resistance of S416 (P. multocida Acrp) to duck
serum complement was significantly reduced compared
with that of the parent stain. Previous reports have dem-
onstrated that the long O-antigen chain of Salmonella
serovars or the presence of certain outer membrane
proteins of some bacteria, such as Salmonella Rck and
Haemophilus influenzae P5, contributes to complement
resistance [44—46]. Capsular polysaccharide also prevents
the complement-mediated clearance of Salmonella enter-
ica serotype Typhi [47] and P. multocida [48]. Here, we
showed that the LPS profile of S416 was similar to that of
the parent strain, mainly containing short oligosaccharides.
Several OMP genes, rather than capsule synthesis genes,

were differentially expressed in the absence of the crp gene
(see Additional file 1). Therefore, we speculated that some
of these OMPs were responsible for the decrease in
complement resistance, which should be confirmed in a
later study. In addition, the virulence of the S416 strain
decreased 85-fold after intranasal inoculation, and this
reduction was much less pronounced in the P. multocida
Acrp mutant than in the Salmonella Acrp mutant, for
which virulence was reduced by five orders of magnitude
[49]. Similar results have been observed for a crp mutation
in Edwardsiella ictaluri [50], indicating that ¢rp does not
necessarily impact virulence, or that its impact on
virulence is species-specific, or that other genes in P.
multocida may compensate for a loss of ¢rp to minimize
adverse effects.

Crp—cAMP can directly control a minimum of 378
promoters and perhaps > 500 genes in E. coli [22]. In this
study, crp was shown to influence the transcription of 186
genes, including 92 up-regulated genes and 94 down-
regulated genes in P. multocida (see Additional file 1).
This finding suggested that crp acts as both a positive and
negative regulator. The majority of differentially expressed
genes participate in metabolism, including carbon

Table 3 Serum bactericidal assay

Strains Serum heat treatment Growth rate®
Parent strain - 164+12
+ 166+0.8
5416 (Acrp) - 30+03°
+ 10704
5416 (pQK176) - 11.1£08
+ 121+1.0

2, The data are means and SD of three independent experiments
®, The difference in sensitivity between S416 in heated or unheated serum was
determined to be very significant (p < 0.01)
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Table 4 Determination of the LDsy of P. multocida 0818 and the Acrp mutant
Route Challenge dose (CFU) and survival Dsg
10 10° 10° 10’ 10° 10° (CFU)
Intranasal P. multocida 0818 7/8 8/16 1716 0/16 0/8 0/8 866 x 10
S416 (Acrp) 8/8 7/8 11/16 7/16 1716 0/8 74%10°

-, Not detected

Table 5 A partial list of differentially expressed genes between the parent strain and the Acrp mutant

Gene ID? Name Description Fold Change (log2)

Genes down-regulated in the Acrp strain
1244122 fcbD acetylgalactosaminyl-proteoglycan 3-beta-glucuronosyltransferase 2.55
1244154 potE putrescine:ornithine antiporter 244
1244150 PM0803 TonB-dependent receptor 232
1244125 wza sugar ABC transporter substrate-binding protein 2.19
1243664 iscR Rrf2 family transcriptional regulator 207
1244127 PM0780 sugar ABC transporter permease 1.93
1243665 PMO0318 cysteine desulfurase 1.87
1244088 PMO0741 ligand-gated channel protein 1.85
1244123 ugd UDP-glucose 6-dehydrogenase 1.85
1244252 miaA tRNA delta(2)-isopentenylpyrophosphate transferase 1.82
1243649 PM0302 sodium:proton antiporter 1.81

Genes up-regulated in the Acrp strain
1244768 o0adG oxaloacetate decarboxylase subunit gamma 3.19
1243370 nrfA cytochrome C nitrite reductase subunit c552 313
1244503 PM1156 hypothetical protein 264
1244939 napF ferredoxin 262
1243678 ompW membrane protein 2.55
1243988 bioD dithiobiotin synthetase 251
1243371 nrfB cysteine dioxygenase 246
1243373 nrfD formate-dependent nitrite reductase subunit NrfD 233
1243600 PMO0253 hypothetical protein 2.25
1243934 PMO0587 hypothetical protein 223
1244940 napD nitrate reductase 223
1243763 PMO0416 glucose-6-phosphate isomerase 2.1
1243372 nrfC formate-dependent nitrite reductase subunit NrfC 2.09
1243771 PM0424 hypothetical protein 2.00
1243606 PMO0259 cytidine deaminase 2.00
1244726 PM1379 D-ribose transporter ATP binding protein 1.98
1244035 PM0688 membrane protein 1.95
1243893 ppc phosphoenolpyruvate carboxylase 1.92
1245036 tatA preprotein translocase subunit TatA 1.89
1244941 napA nitrate reductase catalytic subunit 1.83
1244769 oadA oxaloacetate decarboxylase 1.82
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Fig. 4 Antibody responses induced by the Acrp mutant in ducks. Ducks were intranasally immunized twice with the Acrp mutant at an interval of
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metabolism, arginine and proline metabolism, pyruvate
metabolism, nitrogen metabolism and ABC transporters.
Therefore, Crp plays an important role in the metabolism
of P. multocida. The deletion of the crp gene also resulted
in the down-regulation of two global regulators (finr and
iscR) and up-regulation of seven regulators (pgtC, gseB,
arcA, ttrC, ttrB, rraA and isrR). Among these regulators,
fur, gseB and arcA have been shown to positively regulate
the virulence of pathogenic bacteria. Deletion of fur, gseB
or arcA significantly reduces the virulence of S. Typhimur-
ium [51], Aeromonas hydrophila [52] and Vibrio cholerae
[53], respectively. Thus, the down-regulation of fur ob-
served in the P. multocida Acrp mutant may partially ac-
count for the decreased virulence of this strain, and the
up-regulation of gseB and arcA may have attenuated this
decrease.

Vaccines are the most economical and effective means
to control infectious disease. Compared with vaccines
based on a subunit or dead bacteria, attenuated live vac-
cines are advantageous because they can induce long-term
immunity and confer good protection [4]. A significant
number of attenuated live P. multocida vaccines have been
successfully developed by targeting capsule genes [54, 55],

Table 6 Survival rate conferred by the Acrp mutant

toxin genes [56] and aroA [57], which elicit protective re-
sponses in mice, livestock or poultry. Here, we evaluated
the vaccine potential of the P. multocida Acrp mutant. Be-
cause circumstantial evidence has implicated the respira-
tory tract as the main route of P. multocida infection, we
selected the intranasal route to immunize ducks. The P.
multocida Acrp mutant induced potent serum IgY and bile
IgA responses in ducks, indicating the high immunogen-
icity of the Acrp mutant. Additionally, this mutant pro-
vided 60 % protection against challenge with the P.
multocida virulent strain at a dosage of 100-fold of the
LDs, (Table 6). This level of protection was lower than
that conferred by the Salmonella crp mutant [13]. The
immunization dose of an attenuated P. multocida strain
has been demonstrated to be related to the level of protec-
tion against challenge [58]; animals receiving a higher vac-
cine dose (10° or 10® CFU of the attenuated strain) are
less affected clinically, bacteriologically, and pathologically
through wild-type challenge compared with the adminis-
tration of a lower dose of 10° CFU [58]. Because the P.
multocida Acrp mutant was not fully attenuated, only low
doses of this mutant (10> CFU) were used to immunize
the ducks. We speculate that the low immunization dose

Group Immunization

Challenge

Survival Protection rate

10% CFU S416 (Acrp)
Control PBS

Immune group

107 CFU P. multocida 0818
107 CFU P. multocida 0818 0/8 0

6/10 60 %
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might have been responsible for the limited protection ob-
served. However, other studies have also shown that fully
attenuated bacterial strains such as the Edwardsiella tarda
aroA mutant fail to provide effective protection against
virulent challenge even at a high dose of immunization,
probably because of reduced immunogenicity or loss of
protective antigens [59—-61]. Therefore, it is vital to retain
or improve bacterial immunogenicity while achieving at-
tenuation through the deletion of virulence regulators.
Furthermore, bacteria with mutations in two or more
regulator genes are better attenuated than those with
single-gene mutations in some cases and provide high vac-
cine potency [62]. Thus, mutations in other regulator
genes need to be selected and introduced into the crp mu-
tant to achieve full attenuation for vaccine development in
a later study.

Conclusions

The PM1157 gene is the crp homologue of P. multocida.
The deletion of the crp gene has an inhibitory effect on
bacterial growth and bacterial resistance to serum com-
plement, without affecting the electrophoretic bands of
LPS and OMPs in vitro. Furthermore, the P. multocida
crp mutant was attenuated and provided 60 % protection
in ducks. The present study provides a basis that will
allow the mechanisms of crp-regulated genes to be explored
to ultimately develop a platform for an attenuated vaccine
against P. multocida.

Additional files

Additional file 1: Total differentially expressed genes between the parent
strain and the Acrp mutant. (PDF 142 kb)

Additional file 2: KEGG enrichment analysis of the differentially expressed
genes in the Acrp mutant. KOBAS software was used to analyze the
crp-regulated genes in KEGG pathways. Each column in A and B
indicates one pathway, and the abscissa represents the name and
classification of the pathway. The column color refers to the significance, and
the depth of the color directly correlates with the degree of significance.

* p<005; %, p<001; ** p<0001. (TIF 367 kb)
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