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Intracochlear drug delivery
in combination with cochlear
implants
Current aspects

Background

During the past 25 years, local drug ap-
plication for therapy of diseases of the
inner ear has experienced an increasing
interest. The application encompasses:
1. Extracochlear (intratympanic) drug

application to the diseased, but
intact, inner ear with the objective of
protection before exposure (e. g., to
a trauma or to substances damaging
the inner ear) or after exposure for
therapeutic intervention [31, 56].

2. Intracochlear application for drug-,
cell-, or gene-based therapy of dis-
eases of the inner ear aiming at
regeneration of inner ear structures
[14, 35, 57].

3. Extra- and intracochlear application
in combination with passive middle
ear implants, e. g. in the context of
stapes surgery [28].

4. Extracochlear and intracochlear
application in combination with au-
ditory prosthesis aiming at improved
safety and function of auditory
implants [2, 21].

While extracochlear (intratympanic)
drug application is already widely used
[60], other procedures (2–4 from above)
are applied only in individual cases in
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clinical practice (off-label) or they are
the topic of intensive preclinical and
translational research [9, 12, 25, 39].

Combinations of the different afore-
mentioned therapeutic strategies arepos-
sible, for example, combination of pre-
operative systemic application, preoper-
ative, extracochlear (intratympanic) ap-
plication, additional intracochlear appli-
cation during cochlear implantation, and
also postoperative local drug application
with the cochlear implant (CI) in place
(see case reports later).

Advantages of local drug
delivery to the inner ear

Local application of drugs to the inner
ear has many advantages over systemic
application (. Table 1).

Thismeans that local drug application
to the inner ear has advantages especially
for drugs with:
1. A small therapeutic range
2. Large “first-pass” effects
3. Relevant side effects outside the ear
4. Very expensive pharmaceuticals.

This is especially true, e. g., for neuro-
transmitters andneurotransmitterantag-
onists, peptides, viral and nonviral gene
transfer, and cell-based therapy.

The indications for drug application
in combination with auditory prostheses
are generally the same as for auditory
prostheses alone (CI, auditory brainstem
implant, penetrating auditory brainstem
implant, and auditorymidbrain implant)
[17, 47].

Specific objectives of additional drug
application (“drug–device combina-
tions”) in combination with cochlear im-
plantations are summarized in . Table 2.

However, currently most of the ques-
tions related to local drug delivery in
combination with cochlear implants are
still open (. Table 3).

Aspects of pharmacokinetics

Rational pharmacotherapy of the inner
ear by means of local drug delivery re-
quires specific knowledge of the pharma-
cokinetics of the inner ear. From a phar-
macokinetic point of view, the inner ear is
a multicompartment model with almost
stationary fluids [27, 50].

» The inner ear is a multicom-
partment model with almost
stationary fluids

Numerous aspects of the individual
pharmacokinetic processes (liberation,
adsorption, distribution, metabolism,
and elimination: LADME) have been
intensively investigated by our and
other groups during the past few years.
Nonetheless, many general aspects of
pharmacokinetics of the inner ear are
still unknown.

Important pharmacokinetic parame-
ters for extra- as well as intracochlear
application of drugs (e. g., uptake and
elimination) are only known for a view
substances. For elimination, for exam-
ple, it was shown that the elimination
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Table 1 Advantages of local drug delivery over systemic drug application

– Bypassing of the blood–brain barrier (the target organ is directly reached)

– Higher drug concentration in the inner ear

– Avoiding “first-pass” effects

– Reduction of adverse systemic effects

– Lower drug doses are necessary

Table 2 Objectives of drug application in combinationwith cochlear implants (“drug–device
combinations”). (Modified after Hendricks et al. [17])

– General reduction of insertion trauma

– Reduction of immune reaction

– Reduction of infection

– Reduction of loss of auditory neurons and spiral ganglion cells

– Reduction of fibrosis and ossification

– Reduction of stimulation of nonauditory neural structures

– Reduction of channel interaction

– Improvement of the frequency spectrum, resolution, and the dynamic range of auditory im-
plants

Table 3 Openquestions related to drug delivery in combinationwith cochlear implants

– Which drugs are useful?

– Which strategy of delivery is appropriate: systemic, locally intratympanic, locally intracochlear,
or directly via the implant?

– Which time of application is reasonable in the context of extracochlear and systemic therapy:
before, during, or after CI implantation?

– Which formulation and which carrier should be used?

– Which delivery system should be applied?

– Which dose should be applied?

– What are the pharmacokinetic characteristics?

– What is the additional benefit of additional drug application?

– What is the risk–benefit ratio?

half-time for dexamethasone from the
inner ear of guinea pigs was only around
22.5min(varyingfordifferentpartsof the
inner ear). Even allowing for a tolerance
for the exact value of the eliminationhalf-
time, this observation shows that sub-
stances forwhich a longer presence of the
drug in the inner ear is desired should
be applied continuously either via pump
or another application systems with con-
tinuous or delayed, controlled release of
the substance [23, 26, 33, 41, 49].

Regarding adsorption of substances it
was demonstrated that intracochlear ap-
plication of dexamethasone phosphate
by injection through the round window
membrane leads to a lower variability
of the intracochlear concentration, to an
increased absolute perilymph concentra-
tion, and to a more uniform distribution
of the substance in scala tympani [15].

Losses of the substance due to leaks in
the round window membrane, however,
must be taken into consideration, which
occur in the context of injections through
the round window membrane. These
losses may be reduced by using “seal-
ing” material such as biopolymer gels or
biocompatible tissue glue [43].

Drug-delivery devices

Different options are available for releas-
ing substances by the electrode carrier
into the cochlea (. Fig. 1).
4 The substances may be incorporated

in the CI electrode carrier itself.
4 The electrode carrier may be coated

with the substance.
4 The electrode carrier can be equipped

with a delivery channel, which is

then connected to a drug reservoir or
a pump system [4, 18, 24].

Shepherd and Xu suggested amultichan-
nel scala tympani electrodewith anappli-
cation channel for chronic intracochlear
infusion [55]. Paasche et al. modified
a perimodiolar electrode so that the ex-
isting channel of the stiletto required for
insertion of the electrode carrier is used
for drug delivery [38]. Recent studies
focus mainly on coating and incorpora-
tion of the substance because a channel
application system implies that for the
duration of therapy a permanent access
to the inner ear is present, which may be
associatedwith a higher risk of infection.

Drugs delivered in combination
with cochlear implantation

Neurotrophins

The research initially focused on the
application of neurotrophins aiming at
avoiding or reducing degeneration of
spiral ganglion neurons and inducing
growth of afferent nerve fibers toward
the CI electrodes [16, 48, 64].

Rejali and coworkers coated CI elec-
trodes with fibroblasts. The fibroblast
cells were transduced via a viral vector
with a BDNF gene. The BDNF-secreting
cells were attached to the CI electrode by
meansofanagarosegelandtheelectrodes
were implanted into the scala tympani of
guinea pigs. In comparisonwith the con-
trol group, the authors foundafter48days
that in the group with BDNF-releasing
electrodes significantly more spiral gan-
glion neurons could be preserved in the
basal turn of the cochlea [44]. Warnecke
et al. showed that a continuous release
of BDNF from a particular fibroblast cell
line on silicone improved the survival of
spiral ganglion cells in vitro and in vivo
[65].

A recent in vitro study investigated
the possibility of the biological modi-
fication of the surfaces of CI electrode
carriers with the objective of long-term
application of neurotrophins. The group
showed that magnetic particles improve
the adhesion of a fibroblast cell line [1].

Richardson and coworkers used
polypyrrole, anelectro-activepolymer, in
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which the growth factor neurotrophin 3
(NT3) was incorporated in order to pro-
tect auditory neurons from degeneration
after sensorineural hearing loss and to
stimulate the growth of neurites to the
electrode [45]. Under in vivo condi-
tions, they further found a protective
effect on ganglion cells after treatment
with aminoglycosides when the inserted
electrode carrier was coated with the
previously tested polymer incorporating
NT3 [46].

In the context of theNANOCIproject,
a multinational group of researchers
worked on the improvement of fre-
quency resolution with reduced energy
consumption of future CIs. The “proof
of concept” could be provided for a tar-
geted outgrowth of auditory neurons to
the stimulation electrodes in vivo and
a fivefold reduction in energy used for
stimulation in an in vitro set-up [34].

Antiapoptotic substances

Currently, research is focused on the ap-
plication of glucocorticosteroids and an-
tiapoptotic substances. These applica-
tions are aimed at minimizing fibrosis
and hearing loss due to surgical trauma
caused by insertion of the CI electrode
[11, 19, 63]. The objective is to preserve
residual hearing for combined electro-
acoustic stimulation (EAS or Hybrid CI).

» Preservation of residual
hearing allows for combined
electro-acoustic stimulation

Eshraghi and coworkers intracochlearly
applied the antiapoptotically effective
MAPK/JNK pathway inhibitor D-JNKI-
1 continuously over 7 days after im-
plantation of the electrode carrier. In
contrast to the control group that un-
derwent surgery without subsequent
treatment with the apoptosis inhibitor,
a progressive deterioration of the hearing
thresholds could thus be avoided [10].

Other potential agents for protection
of neuronal structures after insertion
trauma are the substances CEP-1347
[40] and SP 600125 [7, 11] also inhibit-
ing the MAPK/JNK signaling pathway.
For CEP-1347, a protective effect on

hair cells after noise exposure was found
[40]. The antiapoptotic agent AM-111
is currently tested in clinical studies
on the treatment of acute noise-in-
duced trauma and idiopathic sudden
sensorineural hearing loss. It might also
be an interesting option for application
in combination with cochlear implants
[36, 58, 59].

Glucocorticosteroids

Glucocorticosteroids have manifold ef-
fects in the auditory system. Anoverview
was provided by Meltser and Canlon in
2011 [32] and by Trune and Canlon in
2012 [62].

In vitro studies showed, for example,
that the loss of auditory sensory cells
after exposure to tumor necrosis factor α
could be reduced by a dexamethasone-
releasing polymer that may be used for
coating the electrode carriers [6].

Jolly and coworkers showed in an in
vivoset-up that thehearing loss causedby
insertion trauma could be significantly
reduced after implantation of silicone
rods that were loaded with dexametha-
sone, which was released over a period
of several weeks. Drug-free silicone rods
were implanted in the control group [21].

Generally, it is possible to apply drugs
also independently from theCI electrode
carrier, e. g., via a catheter that is tem-
porarily inserted into the cochlea before
CI insertion. This catheter may be ad-
vanced into the scala tympani and then
thedrug isveryslowly instilled. However,
experiments in a cochlearmodel demon-
strated that the drug distributes mostly
from the catheter tip in a basal direction
because the fluid volume is displaced at
the round window. Further distribution
of the substance in an apical direction
can only occur via diffusion [21].

Takumi and coworkers investigated
geneexpressionpatternsafter insertionof
dexamethasone-releasing CI electrodes
in guinea pigs. They found a modifica-
tion in gene regulation in comparison to
drug-free CI electrodes [61].

In a functional, morphological, and
pharmacokinetic study, Liu et al. investi-
gated effects of implantation of a dexam-
ethasone-releasing CI electrode. In both
groups, the drug-carrying CI electrodes
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Abstract
Local drug application to the inner ear offers
a number of advantages over systemic
delivery. Local drug therapy currently
encompasses extracochlear administration
(i. e., through intratympanic injection),
intracochlear administration (particularly
for gene and stem cell therapy), as well
as various combinations with auditory
neurosensory prostheses, either evaluated
in preclinical or clinical studies, or off-label.
To improve rehabilitation with cochlear
implants (CI), one focus is the development
of drug-releasing electrode carriers,
e. g., for delivery of glucocorticosteroids,
antiapoptotic substances, or neurotrophins
to the inner ear. The performance of
cochlear implants may thus be improved
by protecting neuronal structures from
insertion trauma, reducing fibrosis in the
inner ear, and by stimulating growth of
neuronal structures in the direction of the
electrodes. Controlled drug release after
extracochlear or intracochlear application in
conjunction with a CI can also be achieved
by use of a biocompatible, resorbable
controlled-release drug-delivery system.
Two case reports for intracochlear controlled
release drug delivery in combination with
cochlear implants are presented. In order
to treat progressive reduction in speech
discrimination and increased impedance,
two cochlear implant patients successfully
underwent intracochlear placement
of a biocompatible, resorbable drug-
delivery system for controlled release of
dexamethasone. The drug levels reached in
inner ear fluids after different types of local
drug application strategies can be calculated
using a computer model. The intracochlear
drug concentrations calculated in this way
were compared for different dexamethasone
application strategies.

Keywords
Inner ear · Cochlea · Cochlear implant · Drug
delivery · Impedance

group and the control group (drug-free
implants), hearing thresholds deterio-
rated immediately after surgery. While
the control group experienced almost no
hearing improvement up to 6 months
after surgery, a slow improvement of the
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a b c

Fig. 18 Possibilitiesofdrugdeliverywithcochlear implantelectrodes.a Incorporation in thematerial
of the electrode carrier;b coating of the electrode carrier; c delivery channel andpump

hearing thresholds was observed in the
group with dexamethasone-loaded CI
electrodes within 1–12 weeks [29, 30].

Douchementandcoworkersevaluated
the effects on hearing with application of
conventional electrode carriers and car-
riers loaded with 1% and 10% dexam-
ethasone. For both concentrations a sig-
nificantlybetterhearingpreservationwas
observed6weeksafter implantationcom-
pared with conventional electrode car-
riers. For assessment of the long-term
effect, the hearing thresholds were again
measured 1 year later. Hereby, the pro-
tective effect on the preservation of the
hearing functions could be proven most
clearly in the high frequencies [8].

» Lower impedances were
measured in patients with
dexamethasone-eluting CI
electrodes

Farhadi and coworkers showed a local
immune suppression in the cochlea af-
ter electrode insertion trauma by dexam-
ethasone-loaded electrode carriers. In
this context, a loading with 2% led to
a significantly reduced migration of im-
mune cells into the cochlea [13].

In a recently published study, Bas and
coworkers showed that dexamethasone-
releasingCI electrode arrayswere protec-
tive against electrode insertion trauma.
Deterioration of hearing threshold, loss
of sensory cells, damage of neural ele-
ments, increased impedances, and fibro-
sis could be reduced depending on the
applied dosage. For sufficient protection

of neural elements, a concentration of at
least 1% in the arrays was necessary [3].

Wilk and coworkers confirmed the
correlation of increased impedance and
fibrosis with cochlear implantation and
their reduction by applying dexametha-
sone-eluting electrode carriers. Themost
severe fibroses were observed in the basal
area of the cochlea near the round win-
dow. CI electrodes with dexamethasone
concentrations of 1% as well as 10%
significantly reduced fibrosis around
the electrode array. At 3 months after
implantation, the impedances in both
groups with dexamethasone-eluting ar-
rays (1% and 10%) were significantly
lower compared with the control group.
The group with the higher concentration
(10%), however, showed stronger effects
[66].

Dexamethasone-releasing CI elec-
trodes have also already been applied in
humans. In a pilot study, the safety of
dexamethasone-eluting electrodes could
be shown in a small patient group, and
lower impedances were measured in the
group of patients with dexamethasone-
eluting CI electrodes [5].

Problems and future questions

The problems and future questions re-
garding local drug application in combi-
nation with CIs include short-term and
long-term effectiveness as well as mea-
surable clinical outcome parameters and
possible adverse effects.

Adverse effectsmight be, for example,
immunosuppressive effects of corticos-
teroids or the development of biofilms
[20]. Other adverse effects caused by

neurotrophins or viral vectors must be
investigated and excluded [54].

Regarding effectiveness, it must be
considered that, e.g., neurotrophins have
only short half-lives, substance reservoirs
become empty, and implanted pump-
ing systems are associated with specific
technical problems and risks. Cell-based
therapies may provide solutions [37];
hereby, cells are stimulated in order
to produce neurotrophic factors or re-
lease neurotrophic factors after genetic
modification [65].

Clinical case reports

Case report 1

A 63-year-old patient with bilateral pro-
gressive hearing loss since around 1998
receivedhearingaids in2003. From2012,
he no longer recognized speech despite
hearing aids. Since around 2000, the
patient had additionally been suffering
from vertigo. In 2009, the patient had
an apoplexy. The ENT-specific findings
and diagnoses consisted of deafness in
the right ear and severe hearing loss on
the left side as well as bilateral vestibu-
lopathy due to “degenerative inner ear
disease.”

In November 2013, the patient re-
ceivedaCIontherightside(CI24RE(CA),
Cochlear Ltd., Australia). The intraop-
erative electrophysiological tests showed
homogeneous and regular impedances
with values of 5–10 kOhms at all elec-
trodes. The acoustic reflex could not be
provoked. The ECAP values measured
by means of neural response telemetry
(NRT)were between 205 and 235 current
units (cu). The first fitting of the audio
processor was successful, so that hearing
impressions could be achieved. Hearing
developed positively in the course of the
fittings and rehabilitation measures.

About5monthsaftercochlearimplan-
tation on the right side, the patient re-
ported intermittently severe, increasing
vertigo and a fluctuating hearing capac-
ity. Microscopyof the ear showednormal
findings. However, over all electrodes
significantly increased impedances were
measured. The patient received intra-
venous antibiotics with ceftriaxone (1 ×
2 g/day for 7 days) and a systemic high-
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Fig. 28 Time course of impedances of a typical cochlear implant (CI) electrode (no. 6) togetherwith
the times of systemic and local glucocorticoid application in patient 1 from the case reports.HDhigh
dose

dose prednisolone therapy (250 mg/day
for 5 days) leading to an improvement
of the complaints and reduction of the
impedances (. Fig. 2).

One month later, the patient reported
increasedvertigowithatendencytofall to
the right side. Again, hearing was fluctu-
ating. Over all electrodes the impedances
were increased. Clinically, the beginning
of fibrosis of the cochlea was suspected.
The patient received intravenous antibi-
otic therapy with ceftriaxone and intra-
venous systemic high-dose prednisolone
therapy followed by an oral therapy with
5 mg prednisolone per day for 2 months
leading to improved hearing, normaliza-
tion of the impedances, and decrease of
vertigo.

After further increases in vertigo at-
tacks and varying hearing capacity, tym-
panoscopy and intracochlear glucocorti-
coidapplicationwereperformedwith im-
plantation of a controlled-release drug-
delivery device (Ozurdex®, Allergan Inc.,
Irvine, Calif., . Fig. 3). This biodegrad-
able drug carrier measures 0.46 × 6 mm
and contains 0.7 mg of dexamethasone
in a polylactic-co-glycolic acid (PLGA)
polymermatrix. PLGA is anorganic sub-
stance based on lactic acid that is easily
degraded by the human body. Ozurdex®
isapprovedfor intravitrealapplication for
treating macula edema after retinal vein

occlusion and noninfectious uveitis. The
drug-delivery device has been applied in
the ear after acute, severe, and profound
idiopathic hearing loss (sudden hearing
loss) in the context of secondary or ter-
tiary (“salvage,” “rescue”) therapy at the
round window membrane [42]. Addi-
tionally, allergy testing of the CI compo-
nents was performed without any signs
of intolerance (regular patch test). After
localdrugapplicationanda4-weekpause
in the use of the CI, regular impedances
were measured.

» A biodegradable drug-
delivery system was introduced
for individual cases

Three months later (in September 2014),
vertigo increased again and hearing was
again fluctuating. The ear microscopic
findings were normal. Over all elec-
trodes, clearly increased impedances
were measured. Tympanoscopy was
performed, again with intracochlear
implantation of the dexamethasone-
eluting drug delivery device (Ozurdex®).
Additionally, triamcinolone (Volon A,
10 g/ml) on Curaspon® was applied into
the oval window niche. To date, the dif-
fusion of glucocorticosteroids through
the oval window niche into the scala

vestibuli or into the vestibulum has not
been investigated experimentally. How-
ever, data fromother in vivo experiments
with gadolinium and gentamycin allow
us to assume that glucocorticoids are
also taken up through the oval window
[22, 53]. A follow-up examination in
October 2014 showed homogeneous and
reduced impedances, a slightly improved
hearing, and no vertigo. In November
2014, the patient started to complain of
postural instability. Walking over longer
distances was only possible with a walk-
ing frame. Again, the impedances were
increased over all electrodes. From May
2015, no speech recognition was found
onthe right side and the impedanceshave
remained increased. Vertigo (vestibu-
lopathy with tendency to fall to the right
side) was unchanged. Walking was only
possible with an accompanying person
or a walking frame.

In June 2015, despite partly regular
impedances, no hearing with the CI was
possible. An intensive functional test of
the implant (“integrity test”) was per-
formed by the manufacturer, which did
not show any particularities. ECAPs,
however, could not be evoked. Stimu-
lation of the facial nerve with very high
amplitudes could not be provoked.

One year after the first CI implanta-
tion, no clear fluid signal was detected
by magnetic resonance imaging in the
basal turn on the right side with the in-
serted CI electrode. This was interpreted
as a possible postinflammatory finding.
No signs of an intracranial tumor were
found. In comparison with the preop-
erative examination from 2013, a newly
diagnosed lesion of unclear genesis was
found with extension from the cerebellar
peduncle on the right side to the right
nucleus of the trigeminus nerve with in-
volvement of the main nuclear areas of
the seventh and eighth cranial nerves.
Furthermore, a known, severe cortical
siderosis was found.

In December 2015, it was decided to
change the CI on the right side. Despite
(at that time) absence of vertigo and reg-
ular impedances during audio processor
fitting, no hearing impression could be
achieved.

. Fig. 2 depicts the course of the elec-
trode impedances of an exemplary CI
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Fig. 38 Implantation of single parts (size about 3mm×0.46mm, each) of a biocompatible, degrad-
able drug carrier approved for intravitreal injection (Ozurdex®, arrows) in addition to the cochlear im-
plant electrode carrier in the scala tympani in patient 1 (see case reports).a Endoscopic view of the
middle ear. Insertion of one half (a, b) and then of the other half (c) of the degradable drug-delivery
system.d Sealingof the insertionpoint of the electrode carrier into the scala tympaniwith connective
tissue. LPI long process of the incus; Ch. t. chorda tympani; E.p. eminentia pyramidalis
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electrode as well as medical and surgical
interventions.

Case report 2

A 62-year-old female patient suffered
from bilateral progressive hearing loss
and had received hearing aids in both
ears (word recognition score of mono-
syllables with hearing aids at 65 dB SPL
on the right: 55% and on the left: 45%).
As secondary diagnosis, only arterial
hypertension was known.

In November 2014, the patient re-
ceived a CI on the right side (CI 422,
Cochlear Ltd., Australia). The intraoper-
ative electrophysiological testing showed
regular impedances over all electrodes at
a level of 13.3–16.1 kOhm. The acoustic
reflex could be provoked. On all elec-
trodes, ECAPs could be evoked by NRT
and with 154–252 cu.

Three months after cochlear implan-
tation, postural instability with vestibu-
lopathy was found without changes
in hearing capacity with the CI but
with increased impedances. The pa-
tient received intravenous antibiotics of
cefuroxime (3 × 1.5 g/day) as well as
intravenous systemic high-dose pred-
nisolone (250 mg/day for 5 days). The
patient’s vertigo complaints reduced and
the impedances decreased.

In May 2015 (6 months after cochlear
implantation), the patient complained
of rotary vertigo, with unchanged hear-
ing with the CI. An ENT examination
yielded regular postoperative findings;
the impedances were inhomogeneous
but increased. The patient received
intravenous high-dose prednisolone
(250 mg/day for 5 days), followed by
an oral taper with continuous dose re-
duction over 16 days. This therapy led
to a reduction in the impedances and
improvement of the vertigo. However,
as early as in June 2015, rotary vertigo
attacks occurred again accompanied by
nausea and vomiting so that inpatient
treatment with high-dose prednisolone
and with ceftriaxone was initiated. This
led to quick improvement of the com-
plaints, and thus continuous application
of dexamethasone by means of an im-
plantable drug carrier on the right side
was discussed with the patient. Tym-
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Fig. 58 Calculated concentration in theperilymph for intratympanic injec-
tion (extracochlear application) of dexamethasone phosphate solution (1×
per day, every 2 days, total of 5 injections).ST scala tympani

Fig. 68 Calculated concentration of dexamethasone in the perilymph for
extracochlear application of Ozurdex®to the roundwindowmembrane.ST
scala tympani

Fig. 78 Calculated concentration of dexamethasone in the perilymph for
intracochlearapplicationofOzurdex®inadditiontoacochlear implantelec-
trode carrier (Nucleus CI24RE(CA)) in the basal part of the basal turn of the
scala tympani (case report 1).ST scala tympani

Fig. 88 Calculated concentration of dexamethasone in the perilymph for
intracochlearapplicationofOzurdex®inadditiontoacochlear implantelec-
trode carrier (Nucleus CI422) in the basal part of the basal turn of the scala
tympani (case report 2).ST scala tympani

panoscopy was performed to exclude
a labyrinth fistula in the area of the
entry of the CI electrode into the scala
tympani (via the round window niche)
and the aforementioned drug-delivery
device for continuous dexamethasone
release (Ozurdex®) was implanted into
the basal turn of scala tympani next to
the CI electrode carrier.

In August 2015, rotary vertigo, in-
creasing impedances, and deterioration
of hearing with CI led to tympanoscopy
onthe right sidewithatticotomy, removal
of the connective tissue adhesions in the
oval window niche, and the application
of gentamycin on Curaspon® into the
oval window niche. Already on the first
postoperative day, vertigo attacks ceased.

However, 2 weeks after surgery, vertigo
was observed again along with deterio-
ration in hearing.

After increasing vertigo (vestibulopa-
thy, postural instability), and further
hearing loss with CI, transtympanic
stapedectomy was performed in Oc-
tober 2015 with destruction of the
labyrinth (mechanically and with in-
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sertion of gentamycin on Curaspon®
into the vestibulum). Since then, the
patient is completely free of vertigo com-
plaints and hearing with the CI is good.
Thepatient asked for implantationof aCI
on the contralateral side because hearing
on that side had further deteriorated.

. Fig. 4 shows the course of the elec-
trode impedances of an exemplary CI
electrode as well as medical and surgical
interventions.

Stimulation of intracochlear
drug concentrations

Based on pharmacokinetic data from in
vivoinvestigationsinguineapigs, dexam-
ethasone concentration in the perilymph
of the scala tympani was estimated for
different application strategies inhumans
by means of a validated computer model
for calculation of substance concentra-
tions in inner ear fluids (FluidSim v3.1;
http://otocore.wustl.edu/saltlab/). Simu-
lated application strategies were:
a) Repeated intratympanic injection of

dexamethasone phosphate solution
(4 mg/ml, 0.3 ml; 30 min) into the
middle ear (once every 2 days, total
of five injections), (. Fig. 5).

b) Extracochlear application of an
absorbable PLGA-based drug carrier
with continuous elution of a total
of 0.7 mg dexamethasone for about
8 weeks (Ozurdex®) in the round
window niche (. Fig. 6).

c) Intracochlear application of
Ozurdex® in the basal parts of
the basal turn of the scala tympani
in addition to an already implanted
CI electrode carrier (case report 1:
. Figs. 2, 3 and 7; case report 2:
. Figs. 4 and 8).

Thepharmacokineticparameters fordex-
amethasone were based on previous in-
vestigations [52] and re-analysis of pub-
lished experimental data from animal
experiments in guinea pigs [51]. For
thedexamethasonephosphate injections,
a round window permeability of 76 *
10–9 m²/s, a diffusion coefficient of 0.72 *
10–9 m²/s, and an elimination half-time
from the scala tympani of 18.3 min were
assumed. For the free dexamethasone
base (Ozurdex®), a round window per-

meability of 2.37 * 10–9 m²/s, a diffusion
coefficient of 0.77 * 10–9 m²/s, and an
elimination half-time of 22.5 min were
used. For the elution rate from the drug-
delivery device, Ozurdex®, an exponen-
tial decrease with a half-time of 10 days
was assumed.

» Continuous intracochlear
application led to higher drug
levels along the scala tympani

The continuous intracochlear applica-
tion resulted in a stable concentration
for several weeks (only the first 2 weeks
are shown), with higher drug levels
more apically along the scala tympani.
Longitudinal concentration gradients
remained because of the rapid elimi-
nation of dexamethasone (elimination
half-time: 22.5 min [52]).

Conclusion for clinical practice

4 Beside the (“off-label”) strategy of
local drug application to the inner ear
by means of intratympanic injection
that is already established in the
clinic, the focus of current research
is increasingly directed toward
intracochlear application, for which
the first clinical trials are already
underway.

4 Intracochlear drug application in the
context of cochlear implantation has
the advantage that the cochlea is
already opened owing to insertion of
the CI electrode carrier.

4 In the future, intracochlear appli-
cation could also play a role for
indications other than hearing reha-
bilitation with CI, since it appears to
be necessary for certain therapeutic
strategies, especially gene- and cell-
based therapy of the inner ear.
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