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ABSTRACT: Decoherence is the tendency of a time-evolved
reduced density matrix for a subsystem to assume a form
corresponding to a statistical ensemble of states rather than a
coherent combination of pure-state wave functions. When a
molecular process involves changes in the electronic state and the
coordinates of the nuclei, as in ultraviolet or visible light
photochemistry or electronically inelastic collisions, the reduced
density matrix of the electronic subsystem suffers decoherence, due
to its interaction with the nuclear subsystem. We present the
background necessary to conceptualize this decoherence; in
particular, we discuss the density matrix description of pure states and mixed states, and we discuss pointer states and decoherence
time. We then discuss how decoherence is treated in the coherent switching with decay of mixing algorithm and the trajectory
surface hopping method for semiclassical calculations of electronically nonadiabatic processes.

I. INTRODUCTION
Many chemical processes may be understood in terms of a single
electronic state that evolves adiabatically, adjusting essentially
instantaneously to changing nuclear positions. This is often
called the Born−Oppenheimer approximation, and, for many
problems, such as the vibrational spectroscopy of most closed-
shell molecules or the reaction kinetics of most thermally
activated chemical reactions, it is an excellent approximation.
However, there are also many processes where we must consider
two or more electronic states;1−3 this includes photochemical
reactions promoted by visible light (vis) or ultraviolet (UV)
photons, many electron transfer reactions, quenching and
chemical reaction of electronically excited species, electronic
energy transfer, Penning ionization, dissociative attachment,
excitation of electron−hole pairs, and many other processes.
These processes are called electronically nonadiabatic processes
or non-Born−Oppenheimer processes, and they are the subject
field of this article. (“Electronically nonadiabatic” simply means
that the electronic quantum numbers are not conserved, i.e., that
the electronic state changes.) More specifically, we will consider
the role and treatment of decoherence in such processes since
this is critical for understanding them.

Although the present article is focused on fundamental issues
and many of the references pertain to gas-phase molecular
dynamics, we note that reduced density matrices, electronic
decoherence, and mixed states, which are all discussed here, also
play a role in more complex phenomena, for example, exciton
transport4,5 and the distinction between Bloch wave transport of
electrons and diffusive electrical conduction.6,7 Interest in the
density matrix treatment of mixed states has also increased in
recent years because of the use of magnetic resonance

spectroscopy for quantum information processing and quantum
computing.8,9

The treatment of decoherence involves aspects of quantum
mechanics that are not well covered in most textbooks;
therefore, we begin with a brief introduction to some of the
concepts needed to discuss it.

2. THEORETICAL CONCEPTS
Decoherence is often discussed in the context of measurements,
in which one considers a system interacting with an apparatus
that measures it. We take a broader perspective in which any
interaction of a system with its environment may be interpreted
as the system being measured by its environment; one may say
that the environment is continuously “witnessing” or “monitor-
ing” the system. Furthermore, we view decoherence as a
continuous process, not as a sudden collapse of a wave function.
The perspective of the present article is nicely summarized in the
following quotations:

The environment surrounding a quantum system can, in
effect, monitor some of the system’s observables. As a result,
the eigenstates of those observables continuously decohere
and can behave like classical states.10
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Instead of describing the quantum measurement process as a
discontinuous change of the state of the system−the
decoherence model is based on the application of the
Schrödinger equation to the system and the environment
with which it interacts.11

This perspective evolves from the seminal work of von
Neumann,12 Zeh,13 and Zurek.10 The rest of Section 2 reviews
the theoretical concepts needed to make the meaning of this
Perspective more precise.
2.1. Pure States. At the beginning, it is important to clarify

the meaning of the state of a system. An isolated system may be
in a pure state, which is described by a wave function. The 1954
Nobel Prize in Physics was given to Max Born for “fundamental
research in quantum mechanics, especially in the statistical
interpretation of the wave function”. Born’s seminal work14 in
the interpretation of a wave function was based on examining
what quantum mechanics tells us about the state of a particle
after a collision. He wrote, “One gets no answer to the question,
‘What is the state after the collision,’ but only to the question
‘how probable is a specified outcome of the collision’”.14 We may
conclude that “The state [i.e., wave function] of a system is not a
description of the system itself. [It is] a statement about the
probabilities of obtaining, for any given dynamical variable,
certain results upon their measurement.”15

“Systems in the real world are rarely in pure states.”16 As we
shall discuss below, this is because systems in the real world are
not isolated, i.e., a system of interest, call it , is invariably a
subsystem of a larger system consisting of plus an interacting
environment, which we may call . As mentioned above, this is
often discussed in the context of measurement theory, where the
environment is a measuring apparatus,12 but here we are
interested in environments more broadly.
2.2. Density Matrices and Mixed States. If a system is

described by wave function Ψ, the expectation value for the
measurement of a physical observable X (e.g., position,
momentum, angular momentum, energy, etc.) is

= | |X X (1)

More generally, the wave function may be expressed in terms of a
basis {ψI}:

= c
I

I I
(2)

which leads to

= * | |X c c X
IJ

I J J I
(3)

It is convenient to define the matrix element of a “density matrix”
ρ as

= *c cIJ I J (4)

We then may write eq 3 as

= =X X XTr( )
IJ

IJ JI
(5)

where Tr(M) or TrM denotes the trace of a matrixM, where the
trace is the sum of the diagonal elements of the matrix. Just as the
matrix X with elements XIJ is a representation of the operator X
in basis {ψI}, the density matrix ρ with elements ρIJ is a
representation of operator ρ̂ in basis {ψI}. This operator is
variously called the density operator, the statistical operator,17 or
the state operator. Unfortunately, it is also deeply ingrained in

the literature to call it the density matrix, and the unwary might
easily get confused by naming an operator as if it were a matrix.
To distinguish the operator from the matrix, we call the operator
the density operator and denote it as ρ̂. (As usual in
nonelementary discussions of quantum mechanics, we do not
display the caret symbol (^) for other operators.)

The diagonal elements of a density matrix are called
populations; the off-diagonal elements are called coherences.
The populations may also be called probabilities, because they
are normalized to sum to unity.

A useful representation of the density operator for a pure state
Ψ as defined in eq 2 is18

= | | = *| |c c
IJ

I J I J
(6)

That is, the density operator is the projection operator onto the
wave function. Clearly, a pure state may be specified either by
giving its wave function or by giving its density operator.

We mentioned above that most real systems are not in a pure
state. Systems that are not in a pure state are said to be in a mixed
state; alternatively, one can say that the system is in an impure or
nonpure state. A mixed state cannot be described by a wave
function, but it can be described by a density matrix. For a mixed
state composed a statistical mixture of pure states ΨL, the density
operator is

= | |p
L

L L L
(7)

where pL is the classical probability (not amplitude) of finding
the system in state L. Notice that this is an incoherent
combination of states, in contrast to the coherent superposition
in eq 2. In other words, we have a classical mixture of quantum
states.

Although much of the literature is written in terms of the
density operator, we will give our discussion mainly in terms of
the density matrix in an orthonormal basis; this will be denoted
by bold ρ with matrix elements ρIJ. Notice in the following that
the density matrix depends on the choice of basis, although the
density operator does not.

One basic reason for defining mixed states is to describe an
ensemble of similarly prepared systems, such as the particle of a
dilute gas in thermal equilibrium. More generally, mixed states
provide a quantum description when the exact state is not
known but one still wants to construct a probability distribution.
For example, despite the fact that it is thermally equilibrated, if a
molecule in a very dilute gas is regarded as an isolated system
(not part of larger system), we know there is a classical
Boltzmann distribution of states (determining pL), but we do not
know which state a particular molecule is in; therefore, in
keeping with perspective expressed above, in which a state is
associated with the probabilities expected for measurements, the
appearance of classical probabilities in eq 7 is necessary to
properly describe our knowledge of the probabilities of
measuring physical observables.18 We shall see below that the
concept of a mixed state also is needed to describe states of a
subsystem, and that is the main reason for introducing them in
the present article.

Notice that there are two types of statistical probabilities
implicit in the previous paragraph. Even if a system were in a
pure quantum state and we knew which state, there would be a
quantum mechanical probability distribution of measuring
certain outcomes. Furthermore, sometimes we do not know
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the exact state, or the system is not a pure state; then there is an
additional classical probability distribution on top of the
quantum mechanical probability distribution.

Recall that we only consider orthonormal bases. One may
show that a density matrix is Hermitian and has a trace of unity
and that its eigenvalues are non-negative numbers between 0
and 1. For a pure state, one eigenvalue is 1 and the rest are zero;
the eigenvector associated with the unit eigenvalue is the state
vector (wave function). If there are two nonzero eigenvalues, the
density matrix represents a mixed state. One can show that

Tr( ) Tr( )2 (8)

where the equality holds for a pure state, and the inequality holds
for a mixed state; Tr(ρ2) is sometimes called the purity of the
quantum state.19Equation 8 is true in any orthonormal basis.

For either a pure state or a mixed state of an isolated system
(i.e., an entire system), the time dependences of the density
matrix can be derived from the time-dependent Schrödinger
equation, which yields16,18−22

= [ ]i
t

H,
(9)

where H is the Hamiltonian matrix, and [,] denotes a
commutator. This is similar in form to the classical Liouville
theorem,21,23

= { }
t

H ,
(10)

where t is time, ρ is the density in phase space, H is the
Hamiltonian, and {,} denotes a Poisson bracket. Equation 9 is
called the Liouville−von Neumann (LvN) equation or the
quantum Liouville equation. The quantum analogue of the
classical conservation of phase space volume is discussed
elsewhere22 but is not needed here.

Evolution of the state vector according to the time-dependent
Schrödinger equation is equivalent to a unitary transformation
of the state vector at one time to a different state vector at a later
time.16,18,19 This also corresponds to a unitary transformation of
the density operator. For this reason, evolution of the density
matrix according to eq 9 is often referred to as unitary evolution.
Unitary evolution maintains purity and coherence.

Note that the pure state content of a mixed state is not
uniquely definable,18,24 and, in this sense, the language “mixed
state” is somewhat unfortunate. Therefore, some workers call
such states nonpure states, but the mixed state language
pervades the literature, and so we shall usually use this language.
2.3. Composite Systems: Separable and Entangled.To

explain entanglement, we consider a system composed of two
two-level subsystems: A and B.19 Let the states (wave functions)
of A be a1 and a2 and the states of B be b1 and b2. A direct product
basis for the composite system has four elements:

| | |a b 111 1 1 (11)

| | |a b 122 1 2 (12)

| | |a b 213 2 1 (13)

| | |a b 224 2 2 (14)

Such a basis is sometimes denoted using direct product notation
as {|aI⟩ ⊗ |bJ⟩}. We now prepare system A in state

= +a a1 1 2 2 (15)

and system B in state

= +b b1 1 2 2 (16)

and consider these two systems to be noninteracting subsystems
of a composite system AB. The state of the composite system is

= = | + | + | + |11 12 21 221 1 1 2 2 1 2 2
(17)

Now consider a general state of the composite system:

= | + | + | + |11 12 21 2211 12 21 22 (18)

with no special relation among the coefficients γIJ except for the
normalization constraint, which is

| | = 1
IJ

IJ
2

(19)

In general, the coefficients in eq 18 cannot be written in the
product form of eq 17. (This can be done only if γ11/γ21 = γ12/γ22
and γ11/γ12 = γ21/γ22.) A state of the form of eq 17 is called
separable or unentangled, and a state of the form of eq 18 that
cannot be written as eq 17 is called nonseparable or entangled. If
we create the composite system in such a way that A and B do
not interact, we may obtain the separable state of eq 17, but
usually A and B will interact, and AB will become entangled (we
will briefly discuss the entanglement process at the start of
subsection 2.6 on the decoherence process).
2.4. Subsystems and Reduced Density Matrices. In

order to discuss subsystems, we need the concept of a reduced
density matrix. Let us call the system A and the environment B;
then we will consider A and B as subsystems of the composite
system AB. The key observation is that an entangled wave
function for the entire system is a pure state in the state space of
the entire system, but usually it corresponds to a mixed state in
the state space of the subsystem. “If a composite system is in a
pure state, its subsystems are in general in mixed states”.16

Just as the state of an entire system is specified by the density
matrix of the entire system, the state of a subsystem is specific by
the reduced density matrix of the subsystem. The reduced
density matrix of the subsystem can be calculated from the
density matrix of the entire system. Therefore, we can translate
the above observation as follows: the reduced density matrix of a
subsystem is generally impure, even when calculated from a pure
density matrix for the entire system.

As an example, we next calculate the reduced density matrix of
subsystem A when the entire system is described by eq 18. The
density operator of combined system AB is obtained by applying
the operator of eq 6 to eq 18. In the basis of eqs 11−14, this
yields

= * | | | |a b a b
IL JM

IJ LM I J L M
A, B (20)

Now the reduced density operator ρ̂(A) for subsystem A is
obtained by tracing ρ̂ over the space of subsystem B, which yields

i

k
jjjjjjj

y

{
zzzzzzz

= = | |

= * | | | |

b b

b a b a b b

Tr ( ) (21)

(22)

K
K K

K
K

IL A JM
IJ LM I J L M K

(A)
B

B

B , B

Since here we assume the basis {|bJ⟩} is orthonormal, the
reduced density operator for subsystem A becomes
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= * | |a a
IL K

IK LK I L
(A)

A, B (23)

Therefore, the reduced density matrix ρ(A) for subsystem A in
basis {|aI⟩} is

= *
IL

K
IK LK

(A)

B (24)

which leads to

= | | + | |11
(A)

11
2

12
2

(25)

= | | + | |22
(A)

21
2

22
2

(26)

= * + *
12
(A)

11 21 12 22 (27)

= *( )21
(A)

12
(A)

(28)

It can be shown that the eigenvalues, λ±, of reduced density
matrix ρ(A) are generally neither 0 nor 1:

= ± | |± ( )1
2

1 1 4 11 22 12 21
2

(29)

from which we conclude that the subsystem is in a mixed state.
This is confirmed by

= | | < =Tr ( ) 1 2 Tr 1(A) 2
11 22 12 21

2 (A)
(30)

2.5. Dynamics of a Mixed State. As already mentioned, a
subsystem is not usually in a pure state. Applying the
Schrödinger equation to the evolution of a system that is not
in a pure state is an approximation. Therefore, we need a new
equation of motion (EOM), not the time-dependent
Schrödinger equation and not eq 9, for the evolution of a
subsystem. This can be accomplished by adding another term to
the right-hand side of the LvN equation; this term involves the
system−environment interaction Hamiltonian. In particular, if
we call the primary subsystem A and the environment B, we
must replace eq 9 by5,25,26

= [ ] + [ ]
t

H Hi , Tr ( , )(A) (A) (A)
B

(AB)
(31)

where we have written the total Hamiltonian matrix as

= + +H H H H(A) (B) (AB) (32)

Equation 31 will be called a nonunitary LvN. It is not a closed
equation, because it still contains the entire system’s density
operator in the final term.5 In the general case, the final term of
eq 31 must account for dissipation and decoherence. For a
system in equilibrium with a thermal reservoir, the time
evolution of the reduced density matrix can be written in
terms of the dynamics in the primary subsystem and time-
correlation functions of bath operators that appear in the
system−bath interactions;5,24,27,28 however, our focus here is on
nonequilibrium, nonstationary systems. The mathematical
physics literature of nonunitary evolution contains many
attempts to develop practical approximations to the final term
of eq 31 and to determine constraints on its behavior and
functional form.19,29−43 In some cases, the approximations lead
to a master equation involving only populations without
coherences.44 We will consider the more general case, which
we will call a nonunitary LvN equation even when
approximations are made.

Another name for a nonunitary LvN is a generalized master
equation. In the literature, what we call a nonunitary LvN
equation is sometimes called a master equation, although we and
many others, especially in the statistical mechanics field, prefer
to save the term “master equation” for an equation involving
only populations. Thus, a nonunitary LvN involves the entire
reduced density matrix of the primary system, whereas a master
equation (in our notation) involves only the populations. The
solutions of a nonunitary LvN equation tend toward those of a
master equation at long times. Note that the master equation is
sometimes called the Pauli master equation.45

A wide variety of approximate nonunitary LvN equations have
been proposed. The literature is large, and it is beyond the scope
of the present article to review it in a comprehensive fashion,
although it is worthwhile to mention two well-known
approaches. One widely used approximation for the last term
of eq 31 is the Lindblad approximation,27,31,46,47 which is
suitable for weak, Markovian system−environment interactions
in which the environmental time scale is much faster than the
system time scale. Another commonly used approximation is the
Redfield equation,29,30,48 originally proposed for a nuclear spin
system weakly coupled to a thermal environment. We do not use
the Lindblad approximation or the Redfield equations, and we
will not discuss them further.
2.6. Decoherence. When we introduced a mixed state

above, we postulated a situation where full knowledge of the
state of the system is not available. However, mixed states also
arise as a result of time evolution, even when the system is
initially in a known pure state. Even if we start with a coherent
state, when the system interacts with an environment, it will
undergo nonunitary evolution that will lead to a mixed state.
Decoherence refers to this process and also to the process of the
evolution of a mixed state, because a mixed state may have
nonzero coherences, and its evolution can diminish or destroy
the remaining coherence.

Consider a system or subsystem described by the coherent
pure state

= +c c1 1 2 2 (33)

where ψJ is an eigenfunction of the physical observable X with
eigenvalue XJ, and cJ is a coefficient. The expectation value ofX is
given by eqs 3−5. But a basic postulate of quantum mechanics is
that, if the measurement did not perturb X, the measured
average value of X will be

= | | + | |X c X c X1
2

1 2
2

2 (34)

where

| |X X XJ JJ J J (35)

We expect eq 34 because the probability XJ will be equal to |cJ|2.
More generally, the measurement might perturb X, and then the
measured average value of X will be

= +X p X p X1 1 2 2 (36)

where pJ is a probability.
Equations 34 and 36 differ from eq 5 in that the off-diagonal

elements of the density matrix are not present. Therefore, either
prior to the measurement of X or during the measurement of X,
the off-diagonal elements of the density matrix (in the
representation of eigenstates of X) must have decayed to zero.
This is the central fact of decoherence; a coherent superposition
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of state vectors decays into a mixed state characterized by
classical probabilities:

i

k
jjjjjjj

y

{
zzzzzzz

i

k
jjjjjj

y

{
zzzzzz

| | *

* | |

c c c

c c c

p

p

0

0
1

2
1 2

1 2 2
2

1

2 (37)

2.7. Pointer State. The above discussion shows that the
coherences must decay, either continuously due to continuous
monitoring of the primary system by the environment or rapidly
during a measurement, or both. But in what basis do they decay?
In the case of a well-designed measurement, the answer is clear.
A measurement of property X should cause the coherences to
vanish in a basis of the eigenstates of X. But the problem is much
harder for continuous environmental monitoring.

Our own approach follows the original wok of Zeh13 and
Zurek.10,49−52 This leads to the concept of a pointer basis:

Interaction with the environment will typically single out a
preferred set of states [basis]. These pointer states [pointer
basis] remain untouched in spite of the environment, while
their superpositions lose phase coherence and decohere.
Their name−pointer states−originates from the context of
quantum measurements.... They are the preferred states of
the pointer of the apparatus.10

Thus, each case of subsystem−environment interaction
selects its own preferred basis, called the pointer basis, and
this selection is called environment-induced superselection
(einselection).49 The pointer basis of a given subsystem−
environment combination remains stable in the presence of that
combination.

In summary, the nature of the measurement (or, more
generally, the nature of the subsystem−environment inter-
action) selects a preferred basis, called the pointer basis, and the
subsystem decoheres into an effectively classical mixture in the
pointer basis.10

2.8. Decoherence Process. We showed in eq 24 that the
reduced density matrix of subsystem A is generally a mixed state.
Next, we discuss how the entangled state of eq 18 arises. Let A be
the primary system and B be the environment. The Hilbert
spaces of A and B are {|rI⟩} and {| }s , respectively. Any
environment state J can be expressed in the basis {| }s :

= |sJ J J
(B)

B (38)

where J is a coefficient. We consider a process where
subsystem A is initially a pure state,

= |c r
I

I I
(A)

A (39)

where cI is a coefficient. When any state of A interacts with the
environment B, the environment state will adjust according to
the subsystem state.10,12,49 If the subsystem is in state Ψ(A) = |r1⟩,
the environment state will adjust to a state that we will call ϕ1.
Therefore, the combined system−environment state becomes

= | |c r
I

I I I
(AB)

A (40)

The states {|ϕI⟩} are not necessarily orthogonal. Expanding eq
40 according to eq 38, we arrive at

= | | = | |c r s r s
I

I I I
I

I I
(AB)

A B A, B

(41)

where
= cI I I (42)

As in eqs 11−14, we consider two states each for the subsystem
A and the environment B:

= | |r s1 1 1 (43)

= | |r s2 1 2 (44)

= | |r s3 2 1 (45)

= | |r s4 2 2 (46)

Equation 41 is equivalent to eq 18 with
= c11 1 11 (47)

= c12 1 12 (48)

= c21 2 21 (49)

= c22 2 22 (50)

But, generally, eq 41 is not equivalent to eq 17, i.e., γ11/γ21 ≠ γ12/
γ22.

Equation 40 is critical for understanding coherence decay.
The density operator for the entire system AB with state Ψ(AB)

shown in eq 40 is

= *| | | |c c r r
IJ

I J I I J J
A (51)

The reduced density operator for the primary subsystem A is
then given by

= * | | |c c r r
IJ

I J I J I J
(A)

A (52)

Therefore, the coherences (off-diagonal elements) of the
reduced density matrix include factors proportional to the
overlaps of environment states, and the density matrix elements
become

= * |c cIJ I J I J
(A)

(53)

Equation 53 is identical to eq 24, which can be shown by using
eq 42. However, eq 53 gives a clear physical picture about how
the coherence decays to zero. In particular, as the overlaps of the
environmental states decay, the superposition of states is
continuously reduced to a classical mixture with off-diagonal
elements equal to zero.

Equation 53 also illustrates the transition to a classical world.
From eq 38, we have

| = *
I J I J

B (54)

When the number of degrees of freedom is very high
(macroscopic), the state vectors of the environment have a
high probability to be orthogonal,53 so that the coherence decays
almost instantaneously on a macroscopic time scale.
2.9. Decoherence Time. Generally, initial conditions

should be chosen according to the experiment one is simulating,
and decoherence may show a short-time induction period where
it has no simple functional form, but eventually it can conform to
a decay law. At these longer times, it includes an exponentially
decaying contribution, which can be seen in model sys-
tems.54−59 In other cases, the theory yields Gaussian
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decay.60−68 Yan and Zurek69 have emphasized that, generally,
the decay function is a convolution f * g of exponential decay f(t)
and Gaussian decay g(t),

i
k
jjjjj

y
{
zzzzz=f t

t
( ) exp

IK1, (55)
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(56)

* =f g t t f t g t t( )( ) d ( ) ( )
(57)

where t and t′ are time, and τ1,IK and τ2,IK are, respectively,
exponential and Gaussian decay parameters with units of time.
Therefore, coherences decay as

= *t f g t( ) (0)( )( )IK IK
(A) (A)

(58)

Yan and Zurek69 noted that the suppression of coherence
involves contributions both from decay of overlap (i.e., ϕI and ϕJ
in eq 54 becoming more and more different) and from spreading
out of spectral density (i.e., the increase of the number of
significant nonzero coefficients J in eqs 38 and 54); the
overlap decay follows an exponential decay law, while spreading
of spectral density causes a Gaussian decay. Therefore, the
Gaussian decay may potentially contribute significantly for
condensed-phase systems with many degrees of freedom.
However, for molecular systems in the gas phase, the number
of degrees of freedom over which the environmental amplitude
may spread is limited, and overlap decay may dominate. These
are just general considerations; further research is needed to
better understand the nature of the decay, but our models
assume exponential decay of mixing as a way to mimic decay of
coherence.

With that rationale, we seek to model the decay of the
coherence between state I and state K with the following form
for gas-phase systems:
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(59)

where t is the time, kIK is the first-order rate constant, and τIK is
called the decoherence time. At small t,

k t k texp( ) (1 )IK t IKsmall (60)

i.e., the initial decay of the decay law is linear in t.

3. QUANTAL AND QUASICLASSICAL DYNAMICS
Systems with only a very few atoms may be treated fully
quantum mechanically, with a quantum mechanical treatment of
the electrons producing a potential energy surface or a set of
potential energy surfaces and their couplings, and with quantum
mechanical scattering theory for the nuclear motion. The
accurate quantum mechanical scattering theory may be either
time-independent70−74 or time-dependent.72,75−77

When the dynamics is calculated by a converged quantum
mechanical algorithm, coherence and decoherence are auto-
matically treated properly. However, when one uses a mixed
quantum mechanical−classical method for a system with more
than one electronic state, we must include the coherence of the

electronic subsystem and its decoherence by the nuclear
subsystem as explicit parts of the algorithm.

A converged quantum mechanical treatment of the nuclear
motion is impractical for most problems of interest, and, instead,
one uses a semiclassical method�also called a mixed quantum
mechanical−classical method�in which the potential energy
surface or a set of potential energy surfaces and their couplings is
produced by a quantum mechanical treatment of the electrons,
and the nuclear motion is treated classically,78 quasiclassi-
cally,79,80 or semiclassically.81,82 In this context, the word
“semiclassical” means that we contend with the intrinsically
nonclassical feature that each electronic state provides a different
potential energy function for nuclear motion. In most of the
chemical dynamics literature, the word “quasiclassical” has a
different meaning; in particular, it is usually used to refer to
trajectory calculation that involves an average over a classical
ensemble of classical trajectories, with the only nonclassical
element (the reason why we say “quasi”) being that�for each
trajectory�the initial energy in one or more than one of the
vibrational modes is restricted to be a quantum mechanically
allowed value determined by a previous (accurate or
approximate) calculation. Our considerations for single-surface
trajectory calculations will apply to both purely classical
calculations and quasiclassical trajectory calculations. In both
types of calculations, one computes trajectories for an ensemble
of initial conditions and then averages the results over the
ensemble.

Molecular dynamics on a single potential energy surface
requires (1) a potential energy function, usually obtained by
electronic structure calculations (although for nonreactive
electronically adiabatic processes, the potential energy function
can be modeled by molecular mechanics), and (2) a calculation
of nuclear dynamics. The Born−Oppenheimer approximation
states that the total electronic energy in a given electronic state
plus the nuclear repulsion provides a potential energy surface for
nuclear motion. The electronic structure calculations needed for
this purpose can be performed in advance, and the quantities
needed for dynamics may be fitted to analytic functions, or the
electronic structure calculations can be performed as needed by
the dynamics algorithm; the latter is called “direct dynamics”.
How Quasiclassical Trajectory Calculations Simulate

Quantum Dynamics. Let us first review the method for
calculating quantum mechanical vibrational-state-to-vibrational-
state quantum mechanical transition probabilities for a Born−
Oppenheimer process (i.e., a process involving only a single
electronically adiabatic potential energy surface) by localized
time-dependent wave packets. We do this because a localized
wave packet method provides a good way to understand the
approximations involved in trajectory calculations.83−85 The
quantum mechanical method is as follows:

(1) Express the initial wave function for vibrational state j as a
linear combination of basis functions that are localized
multidimensional, many-particle Gaussian wave packets.

(2) Propagate the coupled motion of the wave packets using
the time-dependent Schrödinger equation.

(3) When the process is complete, project the coherent linear
combination of Gaussian packets onto an accurate final-
state vibrational wave function for state k to calculate the
j → k transition probability.

(4) Increase the number of Gaussians in step 1 until the
results of step 3 converge.
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To make a connection of such quantum mechanical
calculation to a quasiclassical trajectory calculation, we make
the following changes:

(a) Choose a frozen Gaussian basis so that each time-
dependent Gaussian basis function has a classical energy
(i.e., an energy computed from its mean momentum ⟨p⟩
and mean position ⟨x⟩) equal to the total energy of the
process under consideration.

(b) In propagating the wave function in step (2), propagate
each Gaussian separately using a local quadratic
approximation to the potential (a multidimensional
Taylor series centered at ⟨x⟩, so there is a new Taylor
series at every time step). Because of this approximation.
the coordinate and momentum parameters of each
Gaussian wave packet become a classical trajectory.

(c) In step (3), average the results over the ensemble of
independent trajectories instead of adding Gaussian wave
packets coherently. The initial conditions of these
trajectories should, in some way, represent the initial
state of the system to be simulated; for example, if a
system has two vibrations, we should average over the
initial relative (classical) phases of these vibrations.

These three approximations reduce the quantum mechanical
calculation to a trajectory calculation. A widely used convention
is to call this a quasiclassical trajectory if the initial conditions
simulate a definite quantum state of the system (for example, if
the initial energy is one of the quantized energies of the system)
and to call it a classical trajectory if the initial conditions ignore
quantization.

Mixed quantum−classical dynamics has been discussed in the
context of the LvN equation by Kapral and Ciccotti.25

4. MULTISURFACE SEMICLASSICAL DYNAMICS
With the background provided above, we are now ready to
discuss multisurface semiclassical trajectories. According to the
generalized Born−Oppenheimer approximation, each electronic
state of the system is associated with its own potential energy
surface. As compared to the single-surface trajectories briefly
discussed in Section 3, an algorithm for the multisurface case
needs five new ingredients:

(1) We must propagate the electronic density matrix as well as
the trajectory, because the effective potential energy for
the trajectory depends on the time evolution of the
electronic density matrix.

(2) We must decide on what potential energy surface or what
weighted average of all the available potential energy
surfaces to use for the trajectory.

(3) We must decide which basis to treat as the pointer basis.
(4) We need a practical algorithm that mimics eq 37.
(5) We need a model for the decoherence time.

Next, we consider these five ingredients in turn.
4.1. Unitary Propagation of the Electronic Density

Matrix. Here, we consider propagation of the electronic density
matrix without decoherence; we will add decoherence in
ingredient (4).

We consider independent trajectories whose results will be
averaged, as discussed in section 3 and in the previous paragraph.
Although semiclassical trajectory calculations may be performed
in either the electronically adiabatic basis (electronic wave
functions determined in the usual way with fixed nuclei) or a
diabatic basis,86 we restrict the present treatment to the
adiabatic basis. Note that when spin−orbit coupling is included,

the adiabatic basis is sometimes called the diagonal basis87 or the
fully adiabatic basis,88 but we will simply refer to it as the
adiabatic basis. (Note that spin−orbit coupling is relativistic, and
the label “adiabatic” is sometimes used for diagonalizing only the
nonrelativistic part of the electronic Hamiltonian, but here, we
use it to mean diagonalizing the entire electronic Hamiltonian,
even when spin−orbit coupling is included.)

LetR denote nuclear Cartesian coordinates of the 3Natoms, and
let r denote the electronic coordinates. Write the total molecular
Hamiltonian as

= +H T Hnuc elec (61)

where Helec is the electronic Hamiltonian including nuclear
repulsion, and Tnuc is the nuclear kinetic energy, which is given
by

=T
M2

N

R
nuc

2

,
2

atoms

(62)

where η is the index of an atom, Natoms is the number of atoms,
and ∇R,η is a three-dimensional gradient operator. The
electronic basis functions {ϕI

elec} satisfy the relation

| | =H Vr R r R R( ; ) ( ; ) ( )I J IJ Jr
elec elec elec

(63)

where ⟨···|···|···⟩r denotes a matrix element in electronic state
space, and VJ(R) is the potential energy function for nuclear
motion when the electronic state is J. We also define the
nonadiabatic coupling vector, which will be required below, as

= | |dIJ I JR r
elec elec

(64)

where ∇R is a (3Natoms)-dimensional gradient. The nonadiabatic
coupling vector is often called the NAC. It is an element of an
Nstates × Nstates matrix d, each of whose elements is a 3Natoms-
dimensional vector. We will also find it convenient to define the
real part of any complex variable z as

= + *Re z z z( )
1
2

( )
(65)

We start with a molecular wave function that can be factorized
into a product form of electronic and nuclear parts:89

= t tr R R( ; ( )) ( ( ))elec nuc (66)

where t is the time, R(t) is a trajectory, and χnuc is a nuclear-
motion wave packet centered (as discussed in Section 3) on the
trajectory. By substituting eq 66 into the time-dependent
Schrödinger equation,

=i
t

H
(67)

one obtains the electronic mean-field equation,

= | |i
t

H R
elec nuc nuc elec

(68)

and the nuclear mean-field equation,

= | |i
t

H r
nuc elec elec nuc

(69)

The combination of eqs 68 and 69 is called “time-dependent
self-consistent field theory”. Next, we replace the wave packet
with the trajectory, so that only the electronic subsystem is
treated quantum mechanically. This reduces eq 68 to
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=i
t

H tr R( ; ( ))elec elec elec
(70)

where the electronic Hamiltonian Helec(r;R(t)) becomes
parametrically dependent on the nuclear coordinates and,
therefore, it changes along a trajectory. Expanding the electronic
wave function in the adiabatic space gives

=
=

c t tr R( ) ( ; ( ))
I

N

I I
elec

1

elec
states

(71)

where Nstates is the number of electronic states. In the following
discussion, we will always employ capital letters I, J, K, L, M as
electronic state indices, and ignore the Nstates in the summation
operator for simplicity.

Next, we substitute eq 71 into the electronic mean-field
equation; we make the substitution

= · ·
t t

R
R( )

d
d

I
I IR R

elec
elec elec

(72)

Projecting with ⟨ϕJ
elec|, we notice that the diagonal elements of

the d matrix are null vectors, we redefine cI(t) by removing a
time-dependent phase factor (as in eq 6 of the Tully−Preston
paper81), and we use eq 4. These steps yield the following time
dependence for the elements of the reduced density matrix:90

= ·Re R d2 ( )II
J I

JI IJ
(73)

and

= · + · *i V V I JR d R d( ) ( ( ) ) ( )IJ IJ J I
L

LJ IL IL JL

(74)

When spin−orbit coupling is neglected, the adiabatic basis
functions can be taken as real, which makes dIJ real; in such a
case, eq 73 can be reduced to

= ·Re R d2 ( )II
J I

IJ IJ
(75)

Notice that, although eqs 73 and 74 involve a reduced density
matrix for the electronic subsystem, we simplified ρ(elec) to ρ, and
we will simply refer to this as the density matrix in the rest of the
article. Notice also that the diagonal elements of the density
matrix are real, which is consistent with them being treated as
populations, and the off-diagonal elements are complex.
4.2. The Effective Potential Energy Surface. In Section

4.1, we presented the EOM for electronic density matrix.
Equation 69 involves the nuclear wave packet propagating on a
mean-field potential that is generated by the electrons. Replacing
the wave packet by a trajectory then reduces the problem to a
classical particle propagating on an effective potential given by

= | |V H reff
elec elec elec (76)

This is called the Ehrenfest approximation, and the effective
potential is called the self-consistent potential (SCP).108 A
general form of the nuclear EOM that conserves energy is given
by
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where Ṗ is the time derivative of the (3Natoms)-dimensional
nuclear momentum, and GIJ can be any nonzero vector that is
not perpendicular to the velocity vector Ṙ.91 The combination of
eqs 75 and 77 is called the generalized semiclassical Ehrenfest
method. Usually GIJ is taken to be dIJ, and this reduces eq 77 to
the following widely used nuclear EOM:
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One can also write eq 78 as
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Equations 74 and 79 constitute the semiclassical Ehrenfest
method.

The semiclassical Ehrenfest method or generalized semi-
classical Ehrenfest method is the starting point for our preferred
method for including decoherence, but we note that much of the
literature is based on a simpler method called “trajectory surface
hopping” (TSH).81 The TSH method employs the same
electronic equation of motion as the semiclassical Ehrenfest
method, and this equation of motion is overcoherent, because
decoherence is neglected. (The original surface hopping
calculations81,92 employed the Landau−Zener approxima-
tion93,94 rather than the electronic EOM, but the electronic
EOM was introduced95 into surface hopping calculations in
subsequent work and is the preferred method for most TSH
calculations today, although some calculations use an
algorithm96 based on the Zhu−Nakamura extension of the
Landau−Zener approximation.) Before discussing the incorpo-
ration of decoherence in surface hopping and in semiclassical
Ehrenfest, we here give a brief introduction to TSH.

In TSH, the trajectory propagates on a single adiabatic
potential energy surface (PES),

= V
P

R
K

TSH (80)

where K is called the active state in TSH, and the electronic
density matrix propagates in the same way as that of
semiclassical Ehrenfest, i.e., by eqs 70−75. To allow for
electronic nonadiabaticity, a TSH trajectory can hop to a
different state along the trajectory. The most widely used
algorithm for this is the fewest-switches algorithm,97 based on
the electronic EOM. In the fewest-switches algorithm, the
number of switches of the active state is minimized with the
objective that, in an ensemble of trajectories where switching is
performed stochastically, the number of trajectories propagating
on surface K is proportional to the electron population (ρKK) of
state K. In practice, this goal is strictly achieved only for the case
where the surfaces are degenerate98,99 and when no hops are
frustrated (frustration is discussed in the next paragraph).
Although propagating on a single surface is ad hoc, and although
the surfaces are often far from degenerate, TSH has been used
successfully in many applications, and it is popular because of its
ease of implementation. The method can be made more
accurate by introducing time uncertainty into the positions of
the surface switches,100 yielding a method called fewest switches
with time uncertainty (FSTU); however, even with this
improvement, it is less accurate than our preferred method,
which, as explained in section 4.4, is obtained by introducing
decoherence into the generalized semiclassical Ehrenfest
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method. For this evaluation, accuracy is ascertained by
comparison to accurate quantum dynamics for electronically
nonadiabatic atom−diatom collisions, where accurate quantum
dynamics is achievable.39,101

An especially troublesome aspect of the fewest switches TSH
method is that sometimes the trajectory tries to make a hop that
is forbidden by local conservation of energy or local
conservation of the component of momentum in the direction
coupled to the surface hop. This is not possible since nuclear
motion is classical in this semiclassical method (and, hence, does
not penetrate tunneling regions); such attempted hops are called
“frustrated hops”. Although strategies have been developed for
dealing with frustrated hops,102 they are still a cause for concern,
because they destroy the self-consistency of the electronic and
nuclear motion. One of the advantages of employing an SCP
instead of a single PES is that the nuclear and electronic EOMs
are always self-consistent. And therefore, when decoherence is
introduced into electronic density matrix, as will be discussed in
the next subsection, it influences the nuclear EOM as well. A
direct consequence of this consistency is that the approaches
based on the decoherence-corrected semiclassical Ehrenfest
method or generalized semiclassical Ehrenfest method do not
suffer from the problem of frustrated hops.
4.3. The Pointer Basis. In general, the pointer basis is

unknown, although in cases where the adiabatic approximation
is valid, i.e., where the primary system adjusts adiabatically to
changes in the environment, the adiabatic basis is the pointer
basis.103 As we will discuss below, decoherence is expected to be
fastest where the potential energy surfaces are widely separated.
In these regions, the Born−Oppenheimer electronically
adiabatic approximation is often a good approximation. This
implies that it is usually best to take the pointer basis to be
adiabatic basis, and we shall assume that is being done in the rest
of this article.
4.4. Decoherence. A very clear (and pedagogically

elucidating) example of the importance of including decoher-
ence in the intervals between strong coupling regions was
provided by Thachuk et al.104 A practical example of how
decoherence can make a qualitative change in the outcome of a
photochemical example is provided by recent study of
thioformaldehyde.105

The earliest semiclassical treatments of electronically non-
adiabatic dynamics ignored decoherence. The first introduction
of noninstantaneous decoherence into multistate semiclassical
calculations is due to Bittner and Rossky.106 They considered a
liquid-phase system, where the primary subsystem consists of
the electronic degrees of freedom of the solute, and the
environmental bath is a macroscopic liquid. They concluded
that “even for weakly interacting baths, the effect of quantum
decoherence must be considered in order to make realistic
predictions of condensed-phase phenomena.” Prezhdo later
emphasized the importance of decoherence in large systems and
condensed phases107

A key difference of the treatment in the previous paragraph
from the treatment used in our work and here is that we
recognize that even a small gas-phase molecule shows significant
decoherence of the electronic degrees of freedom.99,108 A key
conclusion99 in one of our early papers treating electronic
decoherence by the nuclear environment is that electronic
decoherence “plays a critical role even in small-molecule gas-
phase systems”. A later analysis by Hwang and Rossky,109

showed that intramolecular decoherence contributions tend to
be dominant in nonadiabatic dynamics, compared to solvent

effects. For an electronically excited molecule in the gas phase,
the primary subsystem consists of the electronic degrees of
freedom of the molecule, and the environmental subsystem
consists of the nuclear degrees of freedom of the molecule. For
an electronically excited molecule in a liquid-phase solvent, the
environment would be a combination of the nuclear degrees of
freedom of the solute and all the degrees of freedom of the
solvent.

Section 2 presented the concepts necessary to explain
decoherence. In this subsection, we discuss the application of
these concepts to electronically nonadiabatic dynamics of
molecules. A direct consequence of decoherence discussed in
section 2 is that the off-diagonal matrix elements of density
matrix represented in the pointer basis should decay to zero
exponentially with a rate constant that is the reciprocal of the
decoherence time. Therefore, incorporating decoherence into
the electronically nonadiabatic dynamics should involve three
pieces of information: pointer basis, decoherence time, and an
algorithmic representation of the decay of coherence. We have
already discussed the preferred choice of pointer basis in section
4.3, and we will focus on algorithms in this subsection.
Decoherence time will be discussed in detail in the next
subsection.

Equations 74 and 75 govern unitary (i.e., coherent)
propagation of the electronic density matrix. However, it is
important to recognize that state changing is primarily promoted
in regions where the electronic states are strongly coupled. In a
polyatomic system, one can pass through strong coupling
regions more than once (which is typical in many processes, for
example, most photochemical reactions), and it is important to
recognize that decoherence occurs between such strong
coupling regions. Incorporating decoherence requires propagat-
ing the electronic density matrix according to a nonunitary LvN
equation, as shown in eq 31. We distinguish three types of
methods to mimic the decay of coherence, namely, (i) decay of
mixing, (ii) decay to a block, and (iii) decay of off-diagonal
density matrix elements.

(i) The decay of mixing algorithms36,39,99,101,110−115 decay all
the coefficients in eq 71 to zero except one, which we
denote as cK(t). And, therefore, when decay of mixing is
finished, only one diagonal element of the density matrix
ρKK survives as unity; all the rest of the density matrix
elements decay to zero. At the end of semiclassical
nonadiabatic dynamics simulations, the ensemble in-
volves a classical mixture of quantum electronic states in
the pointer basis. This is the origin of the name “decay of
mixing”; each trajectory not only involves a decay of
coherence, but also a decay from a classical mixture. In
semiclassical nonadiabatic dynamics employing methods
of type (i), we employ a large ensemble of initial
conditions with the goal that the final ensemble-averaged
result is comparable to the reduced electronic density
matrix computed from quantum simulation of the entire
molecular system. Thus, we do not explicitly treat the
decay of coherence in a single trajectory but rather our
treatment has the goal that the results averaged over an
ensemble should mimic full quantum dynamics; that is,
averaging over an ensemble of trajectories reconstructs
the classical probabilities in a mixed-state electronic
density matrix.

(ii) In decay to a block,116 only the coherence between the
states inside and outside of a subset of the Nstates is
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decayed. This has been shown to have certain advantages
in simulations of systems with a dense manifold of states.

(iii) Enforcing the decay of the off-diagonal matrix elements of
the density matrix but not the non-pointer-state diagonal
ones would attempt to mimic the quantal results with a
single trajectory. Combining this method with the
semiclassical Ehrenfest method would not eliminate the
problem of the trajectory ending in a nonphysical state.
Therefore, we do not recommend this, and we will not
consider it further.

4.4.1. Decay-of-Mixing Methods. We next focus on the
decay-of-mixing methods for adding decoherence to the
semiclassical Ehrenfest method. We first discuss the self-
consistent decay of mixing (SCDM) method that incorporates
decay of mixing by strategy (i) into eqs 74 and 75.99,110,115,117 In
particular, this method assumes that

= [ ] + [ ]IJ IJ IJC D (81)

where [·]C and [·]D respectively denote the coherence
contribution to the time evolution and the decay-of-mixing
contribution. Notice that the two terms in eq 81 correspond to
the two terms in eq 31. Therefore, [ρ̇IJ]C is given in eqs 74 and
75, and for [ρ̇IJ]D, we write
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where state K is the pointer state, and τIK is the decay-of-mixing
time (our algorithmic substitute for the decoherence time) from
state I to state K. In the following discussion, we will always
employ K to denote the pointer state.

The overall effect of eqs 82 and 83 is to increase the
population ρKK, of the pointer state and reduce all the other
elements. One can show that this decay-of-mixing algorithm is
unitary, i.e., the electronic density matrix is propagated
according to the time-dependent Schrödinger equation plus an
additional decay-of-mixing term, but the total propagator is still
a unitary propagator. It is the ensemble averaging that makes the
final result nonunitary. Because the algorithm is unitary, the
electronic density matrix of a single trajectory maintains the
status of a pure-state density matrix; therefore, one can
equivalently write the EOM in terms of the coefficients of eq
71, and the resulting equations are

= [ ] + [ ]c c cI I IC D (84)
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Because the nuclear and electronic density matrix equations of
motion should be consistent, the additional decay-of-mixing
term imposes an additional decay-of-mixing force on the nuclear
motion, which maintains conservation of energy, momentum,
and angular momentum of the entire molecular system:

= [ ] + [ ]P P PC D (87)

where the decay-of-mixing force is
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where sIK is called the decay-of-mixing vector. From a purely
mathematical point of view, sIK can be any real vector that is not
perpendicular to Ṙ. In our methods, sIK is defined as

i
k
jjjjj

y
{
zzzzz=

| |
+Re

a
s

P d
d

d PIK
IK

IK
IK

0 vib
vib

(89)

where a0 = 1 bohr ≈ 0.529 Å, and Pvib is the vibrational
momentum (computed by removing the overall angular and
center-of-mass motion of the molecule).

So far, we have specified the pointer basis, but we have not
specified the pointer state. We start with the pointer state being
the initial state, but then we stochastically switch the pointer
state with the objective that the ensemble average of populations
will agree as well as possible with accurate quantum dynamics.
The method we chose to accomplish this is to switch the pointer
state with the fewest-switches algorithm97 that is used to
determine the hopping probability in TSH.

The above equations in which the electronic density matrix is
propagated according to eq 81, and the nuclear EOM that is
defined in eq 87 describe the SCDM method.117 In this method,
decoherence is always present. This works well, but our
experience113 shows that it is even more accurate to base the
switching probabilities on a completely coherent passage
through each region of strong coupling of the potential energy
surfaces. Therefore, in our most successful method, which is
called “coherent switching with decay of mixing”
(CSDM).101,112,113,115 we modify SCDM such that the
electronic density matrix controlling the switching of the
pointer state is treated fully coherently in the electronic EOM
for each complete passage through a strong interaction region,
while the trajectory follows the path based on including
decoherence. This involves propagating two density matrices.
The SCDM density matrix still controls the trajectory, but the
switching is controlled by a separately propagated coherent
density matrix. At every point of minimum state coupling
between strong coupling regions, the coherent density matrix is
synced to the SCDM density matrix.90

SCDM and CSDM are included in the ANT118 and SHARC-
MN115 computer programs. SHARC-MN also includes two
versions of CSDM that are more convenient because they do not
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require NACs, namely, time-derivative CSDM119 (tCSDM) and
curvature-driven CSDM120 (κCSDM).

4.4.2. Trajectory Surface Hopping (TSH) Methods. One may
also incorporate decoherence into TSH methods, although the
practical formulation varies.121−125

A straightforward way to include decoherence in TSH was
proposed by Granucci et al.;122 this method is included in the
SHARC87 and SHARC-MN115 programs, in which it is called
trajectory surface hopping with energy-based decoherence
(TSH-EDC). In this method, the coefficients of all the nonactive
electronic states are caused to decay exponentially at every time
step.

A different strategy for adding decoherence to TSH has also
been proposed123 in which it is added to the FSTU method,
yielding FSTU with stochastic decoherence (FSTU/SD);
FSTU/SD is available in the ANT118 program. The FSTU/SD
method involves stochastic reinitialization of the density matrix
based on exponential decay of coherence.

One can also add EDC-type decoherence to FSTU, yielding
FSTU-EDC, which is in SHARC-MN.

4.4.3. Comparison of Methods. Important differences
between CSDM and decoherence-adapted TSH include the
following:

(1) CSDM involves consistent nuclear and electronic EOMs,
and therefore it does not suffer the frustrated hop
problem; in fact, there are no hops, and the momentum
changes continuously.

(2) Because CSDM is based on the semiclassical Ehrenfest
approximation, it is robust on the choice of representa-
tion, i.e., CSDM results do not depend significantly on the
electronic representation involved, and therefore one can
obtain similar results when the trajectory is propagated in
adiabatic, diabatic, or other representations. However,
unlike the semiclassical Ehrenfest approximation, each
CSDM trajectory yields a unit probability for producing a
pure state if the trajectory proceeds to a region where the
states are no longer strongly coupled.

We recommend CSDM, tCSDM, or κCSDM as the preferred
methods, but if, for some reason, TSH is chosen, we recommend
that one should always add decoherence, and the FSTU-EDC
method is recommended, because of its simplicity and broad
applicability.
4.5. Decoherence Time. The CSDM, tCSDM, κCSDM,

TSH-EDC, FSTU/SD, and FSTU-EDC methods all involve a
decoherence time parameter that governs the exponential decay
of coherence as in eq 59. An important difference among
methods including decoherence is the formula used for the
decoherence time. Note that we label the time parameter as the
decoherence time, even when it governs both decoherence and
decay of mixing. A more precise name might be algorithmic
decoherence time, because, as explained in section 4.4, the decay
of mixing algorithm is an algorithmic way to model decoherence
with the objective that the ensemble average of the populations
agrees well with the expected quantum mechanical result.

Two classes of methods have been used to model the
decoherence time for electronically nonadiabatic processes. One
class is based on a wave packet derivation with various
assumptions, and this usually leads to a result that depends on
the forces on the two surfaces, as well as other variables. The
other is based on energies and does not involve forces.

4.5.1. Approaches Based on Wave Packets. The key
ingredient in deriving a decoherence time is the insight extracted

from eqs 52 and 53. These equations show that coherence
decays in a reduced density matrix, because the overlaps of
environment wave functions decay. Our derivation starts with
the assumption that nuclear wave packets on different potential
energy surfaces are frozen Gaussians; then, we compute how fast
the overlap integral of the frozen Gaussians will decay.

The early approaches by Bittner and Rossky,106 Schwartz,
Bittner, Prezhdo, and Rossky,126 and Prezhdo and Rossky,61

derived the decoherence time by computing the decay of overlap
of two frozen Gaussians that start on two different potential
energy surfaces but with the same position and momentum, and
their derivations yield a Gaussian shape for the time dependence
of the decoherence, where the Gaussian exponent depends on
the difference in forces on the two potential energy surfaces and
on the temperature. The force on the trajectory on surface I is
given as

= V
F

RI
I

(90)

This result is not useful for general photochemical simulations,
because photochemical processes are not usually described by a
temperature. Furthermore, wave packets on different potential
energy surfaces have different momenta (except when the
system passes through an intersection where the surfaces are
degenerate); therefore, the assumption that the two wave
packets start with the same momentum is wrong. The wave
packets will get out of phase not only because of different forces
on the two surfaces but also because of different initial momenta.
Neglecting the difference of initial momenta may be appropriate
when considering the full ensemble of trajectories; therefore, it it
is possible that it might be appropriate in some methods to
approximate decoherence time. However, we want to emphasize
that, here, we are interested in decay of mixing time, which is an
algorithmic replacement for decoherence time, and only the final
population distribution of the full ensemble is physically
meaningful. Decay of mixing time is employed as a simulation
tool for individual trajectories.

The analytic decay derived by analytically computing the
overlaps of nuclear frozen Gaussian wave packets with the
assumption of neglecting the difference in initial momenta
follows a Gaussian law, but this should not be confused with the
Gaussian-law decay discussed in subsection 2.9 that arises from
the spreading of spectral density.

Note that when the decoherence is Gaussian, the initial decay
is quadratic in time, which differs from the linear time
dependence anticipated at the end of Section 2. We will see in
the following that allowing the initial momenta to be different
gives an exponential (which has a linear term). Hence, the equal-
initial-momenta assumption loses the leading term in the decay.

A derivation that (i) incorporates more of the physics by
releasing the constraint that the initial momenta of the frozen
Gaussians are the same and (ii) is not limited to systems
described by a temperature yields an exponential decay of
coherence.127 The derivation was performed for systems with
only one nuclear degree of freedom, and it yields

= + +( )k k k( ) ( )IK IK
F

IK IK
FP 2 2

1

(91)

where

=
+

k
F F

P P
( )

IK
F I K

I K (92)
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where ṘI and PI are velocity and momentum of the nuclear wave
packet on the Ith potential energy surface (associated with the
Ith electronic state). For applications, one needs a multidimen-
sional generalization of this formula. Then, the decoherence
time may depend on PI,η, FI,η, ṘI,η, and RI,η, which are the ηth
components of momentum, force, velocity, and position (where
η is the index of the nuclear degrees of freedom of the primary
subsystem) of the nuclear wave packet on the Ith potential
energy surface (associated with the Ith electronic state). In
practice, since semiclassical nonadiabatic trajectory calculations
involve a single trajectory, one does not know what velocities
and momenta the nuclear wave packets have on different
surfaces, and this gives some flexibility in the generalization. For
example, the difference in momentum on two surfaces may be
approximated as in a surface hop.123 Depending on the system
and initial conditions of the trajectories, either the force-change
term or the momentum-change term may dominate.

A similar approach to the above wave packet derivation is the
overlap decoherence correction of Granucci, Persico, and
Zoccante.128 These authors explicitly compute the overlap
matrix in real time by spawning frozen Gaussians to different
states (although they propagate these spawned Gaussians in an
approximated way).128

Subotnik and Shenvi also proposed a way to estimate the
decoherence time based on explicitly modeling the decoherence
of wave packets; in their case, this was accomplished by
propagating additional variables along with the trajectories.129

To cut down on the expense, a simplified version was
proposed,130 and it has also been used by Plasser et al.131

Some models in the literature assume that there is no
decoherence on parallel surfaces, but that neglects decoherence
due to wave packets getting out of overlap (see eqs 52 and 53),
because they have different momenta. Therefore, we recom-
mend that such models should not be used.

4.5.2. Energy-Based Decoherence. The second class of
formulas for the decoherence time is based on energies without
involving forces. Although not derived from wave packets, these
energy-based decoherence time formulas have been used in
several successful applications, and they are probably more
widely used than the wave packet-derived formulas. The first
such formula was developed as an ingredient in the natural decay
of mixing (NDM) method:99

=
V V

E
TIK

I K

NDM

vib (94)

where Tvib is vibrational kinetic energy, and E is the total energy
of the system, i.e., nuclear kinetic energy plus relative potential
energy. The motivation was as follows:99

“Wave packets in degenerate electronic states will not
separate in space, and therefore no decoherence will occur;
the relaxation time is infinite. The relaxation time should
also become infinite if the internal vibrational energy
becomes zero, since it is the relative movement of the
particles through space that causes decoherence. We note
that in the absence of Coriolis coupling, which vanishes for
zero total angular momentum and which is often small even
when it does not vanish, rotation of the system as a whole
does not result in decoherence; hence Tvib is used instead of
the total kinetic energy, T”.

In the later versions of the decay of mixing methods, eq 94 was
modified.111,112,114 In the SCDM method, we used

i
k
jjjjj

y
{
zzzzz= +C

V V T4IK
I K

SCDM

vib (95)

where C is a user-defined parameter. We considered the first
term (with C = 1) to be a physical lower limit for the
decoherence time. This term also ensures that the decoherence
time is large when the system is in a region where the electronic
states are strongly coupled, so that passage through such a region
is reasonably coherent. The second term makes the decoherence
time tend to ∞ as the speed of internuclear motions decreases
toward zero, which is reasonable, since it is the internuclear
motion that is causing the decoherence. The constant C is
assumed to be greater than or equal to 1, which allows the system
to be more coherent during passages through strong coupling
regions. Empirically, it was found thatC values in the range of 6−
9 worked best, although in the adiabatic representation, the
accuracy was only slightly dependent on C.

In the CSDM method, we again enforced ℏ/(VI−VK) as the
shortest possible decoherence time, and we also required that
decay of mixing cannot occur when the momentum in the
direction that couples electronic and nuclear motion is
insufficient to support the required accompanying energy
transfer. These considerations yielded
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1IK
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where E0 is 1 hartree ≈ 27.2 eV, and

=
·
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M
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IK ,

2
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where Pη is the ηth component of nuclear momentum, sÎK,η is the
ηth component of the decoherence direction, and Mη is the
atomic mass corresponding to the ηth component of the nuclear
degrees of freedom.

A similar formula was used by Granucci and Persico122 for
TSH-EDC:
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1IK
I K

EDC

(98)

where T is the full kinetic energy, and C is a parameter, usually
set as 0.1 hartree ≈ 2.72 eV.

Although the formulas for the wave packet-based based
decoherence time and the energy-based decoherence time look
very different, some studies have shown that they can yield
similar results, because one can change the parameters in eqs
94−98.128,132

5. CONCLUDING REMARKS
In this Perspective, we have pedagogically introduced the
theoretical concepts that are essential to understand decoher-
ence in electronically nonadiabatic molecular events. Specifi-
cally, we emphasize that the reduced density matrix of a
subsystem will evolve according to a nonunitary Liouville−von
Neumann (LvN) equation, even if the full density matrix of the
combined subsystem and environment remains pure. Therefore,
it is incorrect to describe the evolution of a subsystem by the
time-dependent Schrödinger equation. When governed by a
nonunitary LvN equation, the off-diagonal elements of the
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subsystem reduced density matrix decay to zero. This is the
central fact of decoherence, and this decay of coherence is
caused by the decay of the overlaps of environmental states. The
parameter controlling the time scale of this decay is called the
“decoherence time”.

Decoherence is essential in understanding the propagation of
the electronic reduced density matrix in chemical and physical
systems, not just in a condensed phase due to the solvent but
even in a small molecule in the gas phase, where the electronic
subsystem is decohered by the nuclei, which act as an
environment. The continuous monitoring of electrons by the
nuclei causes decoherence of the reduced electronic density
matrix.

Simulations of the decoherence effect in nonadiabatic
dynamics are achieved by a combination of a decay-of-mixing
algorithm and an ensemble average over initial conditions. We
recommend an approach called “coherent switching with decay
of mixing” (CSDM). Finally, we discuss the methods used to
approximate the decoherence time.

■ APPENDIX

Classical Coherence
Note that “coherence” is a word with multiple meanings. In the
present article, we are discussing quantum mechanical
coherence, but the reader should be aware that the literature is
replete with discussions of classical coherence, which is a
different phenomenon, as discussed elsewhere.133−136 An
example of classical coherence is a classical harmonic oscillator
that continues oscillating with a given amplitude and given
frequency because it is not interacting with an environment that
damps (one might say “decoheres”, although that word is not
usually used in a classical context) the oscillations.
Classical Entanglement
A warning about a second possible source of confusion may also
be useful. A commonly used example of quantum entanglement
is the dissociation of singlet H2. If we let the two hydrogen atoms
(A and B) continue to separate, they will eventually be a mile
apart. Before we do a measurement, the probability that the spin
of B is up is 50%, and the probability that it is down is also 50%. If
we now measure the spin of A and find that it is up, this
measurement event immediately changes the probability that
the spin of faraway B is “down” to 100%; that is because
subsystems A and B are entangled in the total wave function of
singlet AB. If we regard the wave function as expressing our
knowledge of the probabilities of observing various results upon
measurements of a system (a point of view espoused in the
discussion in Section 2 of Born’s interpretation of the wave
function), this change in our knowledge of the probability of
measurements on B may be considered to be a change in the
wave function of B. Now consider a situation that we might call
classical entanglement.15 We have a black marble and a white
one. We give Jack and Jill closed containers that each contain
one marble, but we do it in an uncontrolled fashion with our eyes
closed so we do not know who has the black marble. Jack and Jill
now walk a mile in opposite directions. The probability that Jill
has the black marble is 50%. But Jack now opens his container
and finds the black marble. This measurement (witnessing
event, monitoring event) immediately changes the probability
that faraway Jill has a white marble to 100%. This classical
entanglement should not be confused with quantum entangle-
ment.
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