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Abstract

How to recognize the structural fold of a protein is one of the challenges in protein structure prediction. We have developed
a series of single (non-consensus) methods (SPARKS, SP2, SP3, SP4) that are based on weighted matching of two to four
sequence and structure-based profiles. There is a robust improvement of the accuracy and sensitivity of fold recognition as
the number of matching profiles increases. Here, we introduce a new profile-profile comparison term based on real-value
dihedral torsion angles. Together with updated real-value solvent accessibility profile and a new variable gap-penalty model
based on fractional power of insertion/deletion profiles, the new method (SP5) leads to a robust improvement over previous
SP method. There is a 2% absolute increase (5% relative improvement) in alignment accuracy over SP4 based on two
independent benchmarks. Moreover, SP5 makes 7% absolute increase (22% relative improvement) in success rate of
recognizing correct structural folds, and 32% relative improvement in model accuracy of models within the same fold in
Lindahl benchmark. In addition, modeling accuracy of top-1 ranked models is improved by 12% over SP4 for the difficult
targets in CASP 7 test set. These results highlight the importance of harnessing predicted structural properties in
challenging remote-homolog recognition. The SP5 server is available at http://sparks.informatics.iupui.edu.
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Introduction

Fold recognition refers to recognizing the structural fold of a

protein, given its sequence information. Fold recognition is one of

the key bottlenecks for protein structure predictions as the protein

data bank now appears to contain the complete (or near complete)

set for all possible structural folds of proteins, at least for small

domain proteins [1,2].

Recently completed assessment of automated servers for protein

structure prediction (CASP 7) [3] reveals the power of post-treatment

of models predicted by individual fold recognition methods through

consensus predictions (For example, ROBETTA [4], Pmodeller6 [5],

Fams-ace [6]) and/or constrained template-fragment recombination

and refinement (For example, Chunk-TASSER [7], I-TASSER [8]).

The prediction quality of these methods, however, relies heavily on

the accuracy of initial models generated by individual fold recognition

methods in the first step. Another observation is that the accuracy of

top single servers can rival with most consensus methods. Thus,

developing and/or improving individual methods are critically

important for further advancement of the accuracy of fold recognition

and structure prediction.

We have developed a series of single fold-recognition methods

(SPARKS, SP2, SP3, SP4) that are based on weighted matching of

multiple profiles that include sequence profiles generated from

multiple sequence alignment [9], predicted versus actual secondary

structures [10,11], knowledge-based profile (single-body) score

function [10], depth-dependent sequence profiles derived from

template structures [11], and predicted versus actual solvent

accessible surface area [12]. There is a robust improvement of the

accuracy and sensitivity of fold recognition as the number of

matching profiles increases [10,11], and [12]. SPARKS, SP3, and

SP4 were ranked among the top performers for automatic servers in

recent CASP 6 [13,14] and 7 [12,3]. This exemplifies the importance

and effectiveness of multiple-dimensional use of the structural

information of templates in developing fold-recognition techniques.

In this paper, we introduce the fifth ‘‘dimension’’ for fold

recognition by incorporating predicted backbone torsion angles

(SP5). The backbone torsion angles (w and y) are two rotation

angles about the Ca – N bond (w) and the Ca – C bond (y).

Because the polypeptide backbone of a protein is a linked sequence

of rigid planar peptide groups, these two angles essentially

determine the backbone conformation of proteins. While a

three-state classification of secondary structures is a coarse-grained

one-dimensional representation of local backbone conformation,

backbone torsion angles encode the backbone tertiary structure, at

least in principle.
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Traditionally, dihedral torsion angles are predicted as a few

discrete states based on local (fragment) structural patterns using

either machine-learning techniques or classification schemes [15–

22]. However, there were only a few limited applications of

predicted angle states to fold recognition [18] and sequence

alignment [23]. The former uses torsion-angle states as a

replacement of simple three-state secondary structures to build

an iterated alignment hidden Markov model [18]. The latter [23]

predicts angle states by hidden Markov model and employs the

predicted angles to build structural context-based substitution

matrices. Here, we propose to match predicted and actual torsion

angles as a new profile term in a multi-dimensional profile-profile

alignment. This represents a novel use of predicted torsion angles

as a complementary to rather than a replacement of secondary

structures for fold recognition. The angel profile used in this work

is built on a recent advancement in real-value prediction of torsion

angles [24]. By taking advantage of angle periodicity and using

integrated neural networks, we have obtained ten-fold-cross-

validated mean absolute errors of 38u for y and 25u for w [24].

This accuracy of real-value prediction was found comparable to or

more accurate than those based on multi-state classification of the

w – y map.

In SP4, the effect of solvation was taken into consideration by

matching the predicted and actual solvent accessibility (SA). The

SA profiles are based on two states (exposed and buried) classified

according to an arbitrary threshold of 25%. The two-state

classification increases the accuracy of prediction by reducing

number of states in SA. This is at the cost of losing the detailed

fluctuation pattern of SA along the sequence. We recently have

developed method (called Real-SPINE) for real value SA

prediction, which yields a 10-fold cross-validated Pearson’s

correlation coefficient (PCC) of 0.74 between predicted and actual

solvent SA [25]. We thus have updated the original two-state SA

profile with the new real-value one in developing SP5 scoring

function.

In addition to the torsion angle and real-value SA term, we will

introduce a new variable gap-penalty model to replace the original

constant gap-penalty model. The new model is based on insertion

and deletion probability profiles generated from PSIBLAST.

Several studies [26–28] have indicated the usefulness of these

context-dependent profiles for improving alignment accuracy.

Here, we propose an implementation by using insertion and

deletion probability profiles to a fractional power.

The above-proposed algorithm leads to the new method called

SP5. SP5 is tested in two alignment benchmarks and two structure-

modeling benchmarks. Results suggest a significant improvement

of SP5 over SP3 and SP4 in fold recognition.

Results

Parameter Optimization by the PREFAB Benchmark
Weight factors and gap parameters in SP3 and SP4 were

optimized by using Prosup benchmark [38]. In this study, we use

PREFAB 4.0 to optimize SP5 parameters [39]. We use PREFAB

because its reference alignment is made from the consensus of two

separate structural alignment programs (CE [40] and FSSP [41])

rather than one in Prosup. Ninety one pairs of proteins are

randomly selected from PREFAB benchmark, with sequences

identity less than 30% from each other. We optimized the

parameters for SP5 (with new profile-based gap model) by

maximizing the percent of matches between the reference

alignment in PREFAB and the alignment made SP5. The

optimization is done by sequential grid-search until further

iterations do not improve the alignment accuracy [11]. The final

parameters used are w0 = 5.6, w1 = 0.68, sshift = 20.27,

w2ndary = 0.52, wstruc = 0.46, wsa = 2.3, wD = 1.33, with the accuracy

of one-to-one match 62.3%.

Testing Alignment Accuracy by ProSup and SALIGN
Benchmarks

The alignment accuracy of the methods trained by PREFAB

benchmarks is tested by the ProSup and SALIGN benchmarks.

Prosup benchmark, prepared by Sippl’s group, consists of 127

pairs of proteins with alignment by structural alignment program

Prosup [38]. SALIGN benchmark [42] contains 200 selected pairs

with an average pair sharing 20% sequence identity and 65% of

structurally equivalent Ca atoms superposed with an rmsd of 3.5 Å

[42]. Reference alignment is obtained from the structural

alignment obtained from the TMalign program [43] [i.e., TM

overlap]. The sequence identity between PREFAB training set and

test sets SALIGN and Prosup are 18% and 20%, respectively.

Table 1 shows the alignment accuracy of different methods given

by different benchmarks along with the standard errors estimated by

bootstrap simulation on 10,000 re-sampling of the data. There is a

consistent improvement from SP3, SP4 to SP5. The absolute changes

range from 1.9% to 2.4% (3.4%) from SP4 (SP3) to SP5 while the

relative increases are between 3–5% (5–6%) [SP5 relative to SP4

(SP3)]. These changes are significantly greater than the estimated

standard errors. The improvement is remarkable considering the

fact that ProSup benchmark was used as the training set to optimize

the parameters of SP3 [11] and SP4 [12].

Testing Fold Recognition with Lindahl Benchmark
The ultimate purpose of improving alignment is to make more

accurate fold recognition and structure prediction. Lindahl

Benchmark is a large data set of 976 proteins, with 555, 434,

and 321 pairs of proteins in the same family, superfamily, and fold,

respectively [44]. However, DSSP [30] failed to produce results for

9 proteins. Thus, the actually used proteins in this study are 967

and the number of proteins in family, superfamily and fold is 550,

430, and 317, respectively. Here, the fold recognition sensitivity of

each method is tested by aligning each protein with the rest 966

proteins, and checking whether or not the method can recognize

the member of same family, superfamily or fold as the first rank or

within the top 5 ranks. Thus, the benchmark tests both modeling

accuracy and ranking methods of proposed methods.

Table 2 shows the fraction of correctly recognized match of

proteins in the same family, superfamily, fold as first rank or within

top 5 rank of the templates given by various SP methods and

several other methods. Although many published methods have

been applied to this benchmark [45–47,10], we only list most

recent ones [10,11,48,12]. This is because of the time dependent

nature of sequence database for sequence profiles. For facilitating

Table 1. The alignment accuracies for Prosup and SALIGN
benchmark.

SP3 SP4 SP5

Prosupa 65.360.22%c 66.860.20% 68.760.20%

SALIGNb 56.360.14% 57.360.13% 59.760.15%

aOne-to-one match given by the method and Prosup.
bOne-to-one match given by the method and TMalign.
cMean value and the standard error (estimated by bootstrap simulation on
10,000 re-sampling of the data set).

doi:10.1371/journal.pone.0002325.t001

Fold Recognition by SP5
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the comparison within SP methods, we used original sequence

profiles from Ref. [11].

Table 2 indicates that the improvement over SP3 and SP4 in

success rate of fold recognition by SP5 exists in all three levels (family,

superfamily, and fold). The largest improvement over SP4 is observed

in fold level (7% absolute increase in Top 1 and 5% absolute increase

for the best in Top 5; 22% relative increase in Top 1, 9.5% in top 5).

This is somewhat expected because the method was trained for

remote homolog recognition (structurally similar protein with less

than 30% sequence identity, PREFAB benchmark). Again the

relative improvement of SP5 over SP3 and SP4 is significantly larger

than the standard errors estimated from bootstrap simulations. We

further removed 43 proteins that have .30% sequence identity with

the training sequences in the PREFAB benchmark. Their effect on

the final result is negligible. For comparison, we also include the

results of PSIBLAST [9], SPARKS [10], HHsearch / HHpred [27]

and FOLDpro [48]. The performance of SPAKRS and Foldpro was

from Ref. [10] and Ref. [48], respectively. We further performed

PSIBLAST and HHpred locally with their default parameters.

Among all methods listed [9–12,27,48], SP5 method has the highest

success rate on the fold level (both first and top 5 ranks) and the

superfamily for the first rank.

Above success rates of matching sequences within the same

SCOP classification are based on somewhat subjective SCOP

definition of family, superfamily and fold [49]. A more direct

measurement of accuracy is to calculate the accuracy of the first-

ranked model built from the fold-recognition alignment. The

model is first built by transferring the Ca coordinates of the

template structures to the aligned residues in the query sequence.

The constructed model is then assessed by using the MaxSub score

between the model and the known native structure. MaxSub score

[37] between the predicted (model) structure and the native

structure is a measure of similarity between 0.0 (no similarity) and

1.0 (perfect similarity). The value is calculated by searching the

largest subset of well-superimposed residues (#3.5 Å). Table 3

reports the MaxSub scores for the models built by SP3, SP4 and

SP5 methods averaged over the number of proteins. Again SP5

improves over SP4 and SP3 in all levels. The relative improvement

of SP5 over SP4 in MaxSub score is 1.4%, 3.1% and 32.2% in

family, superfamily and fold levels, respectively.

CASP7 test set
We use CASP 7 targets [50] as an additional test set for SP5

method. The test set consists of 95 targets and was released

between May and July of 2006. The 95 targets were officially

classified into 109 template-based-modeling (TBM) domains and

19 free-modeling (FM) domains, based on whether or not the

structurally similar template (deposited in PDB) had been

identified and used in prediction.

We test SP3, SP4 and SP5 methods on the CASP7 test set. The

template library for SP methods was built in the same way. This

was done by using the 40% representative domains of SCOP 1.61.

The entire chains of multiple-domain proteins are also contained

in the library. The library was then updated with new proteins

released after SCOP 1.61 if they have less than 40% sequence

identity with the sequences already in the library. To make a strict

test, we only include template proteins released before May of

2006 for this test, and we also excluded the templates with

sequence identity .20% to the query. The performance of

Table 2. The success rate for recognizing proteins within the same family, superfamily, or fold in the Lindahl benchmark.

Methods Family only (%) Superfamily only (%) Fold only (%)

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST 62.4a 67.6 16.0 25.8 2.2 9.8

SPARKSb 81.6 88.1 52.5 69.1 24.3 47.7

HHpred 82.9 87.1 58.8 70.0 25.2 39.4

FOLDproc 85.0 89.9 55.5 70.0 26.5 48.3

SP3,d 81.660.07h 86.860.06 55.360.11 67.760.11 28.760.14 47.460.16

SP4,e 80.960.07 86.360.06 57.860.11 68.960.11 30.860.15 53.660.15

SP5,f 82.460.07 87.660.06 59.860.11 70.060.11 37.960.15 58.760.16

SP5,g 81.6 87.0 59.9 70.2 37.4 58.6

aThe percentage in each cell is the fraction of correctly recognized match of proteins in the same fold, super family, and family as first rank or within top 5 rank of the
template .

bFrom Ref. [10].
cFrom Ref. [48].
dFrom Ref. [11].
eFrom Ref. [12].
fThis work.
gThis work (The 43 proteins with .30% sequence similarity to PREFAB training set are removed).
hThe standard error was estimated by bootstrap simulation on 10,000 re-sampling of the data set.
doi:10.1371/journal.pone.0002325.t002

Table 3. The model quality of top-1 ranked models in Lindahl
benchmark per protein.

Totala Familyb Superfamilyc Foldd

SP3 0.358 (60.03%)e 0.529 (60.05%) 0.232 (60.05%) 0.107 (60.05%)

SP4 0.361 (60.03%) 0.532 (60.05%) 0.251 (60.05%) 0.116 (60.05%)

SP5 0.374 (60.03%) 0.538 (60.05%) 0.257 (60.05%) 0.153 (60.06%)

aAll 976 proteins.
bFamily only.
cSuperfamily only.
dFold only.
eThe mean MaxSub score and the standard error (estimated by bootstrap
simulation on 10,000 re-sampling of the data set) for the first-ranked models.

doi:10.1371/journal.pone.0002325.t003

Fold Recognition by SP5
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different SP method is evaluated by the Maxsub score of the first

ranked Ca model, which is transferred from the alignment.

Table 4 compares the model quality predicted by SP3, SP4, and

SP5. Overall, there is a consistent 3% (5% to 6%) improvement

from SP5 to SP4 (SP3) for the CASP 7 targets regardless the

evaluation based on domains or full chains. For the 109 TBM

domains, SP5 is 3% (6%) better than SP4 (SP3). For the most

difficult free-modeling targets, there is a 12% improvement from

SP4 to SP5. This pattern of improvement is consistent with that

from Lindahl benchmark. That is, the most significant improve-

ment from SP4 to SP5 is on the most challenging targets.

Discussion

This paper reports several significant changes over previously

developed SP method: the torsion-angle term for profile-profile

matching, real-value-based SA profile, and variable gap-penalty

model based on fractional-powered insertion/deletion profiles. We

showed that by integrating these new features with existing

sequence-derived profile, secondary structure profile, residue

depth-dependent structure-based profile, the new method SP5

makes a robust improvement over previously developed SP serial

methods. Comparing with SP3 and SP4, there is a 2–6% absolute

improvement in one-to-one match of alignment accuracy depending

on benchmarks. Application of SP5 to the large Lindahl benchmark

reveals 1%, 2% and 7% improvements over SP4 in success rates in

recognizing proteins within the same family, superfamily and fold,

respectively. The improvement in recognition leads to 1%, 3% and

32% improvement in modeling accuracy based on the top-1 ranked,

family, superfamily and fold-level models, respectively. Additional

test on CASP 7 targets yields 3–6% improvement in 109 template-

based modeling targets and 12% improvement in 19 free-modeling

targets. Thus, SP5 marks a significant improvement over SP3 and

SP4 in fold-recognition, as designed.

This paper represents a full exploitation of predicted torsion-

angles for fold recognition. Previous similar studies [18,23] are

limited to view discrete torsion-angle states as an expansion of

secondary structures. This paper, however, treats predicted angles

as complementary information to predicted three-state secondary

structures. The two quantities are complementary because three-

state secondary structures represent a coarse-grained description of

local structures while torsion angles contain detailed local and

nonlocal structural information if they are predicted accurately.

Indeed, our limited initial test indicates that removing secondary

structures from SP5 will reduce its alignment accuracy. Obviously,

the success of SP5 is made possible because of reasonably accurate

real-value prediction of torsion angles [24].

Recent progress in sequence alignment and structure prediction

has suggested the importance of variable gap penalties in protein

sequence alignment [51]. Different form of context (either

structure or sequence context or both)-dependent gap-penalty

model has been proposed [52,53]. Employing fractional-powered

gap insertion/deletion profiles is another new feature introduced

in SP5. While these insertion/deletion profiles were used,

previously [26–28], our trial-and-error analysis indicates that the

fractional-powered gap insertion/deletion profiles with a power of

0.1 seem to be more suitable for improving alignment accuracy.

However, more systematic comparative studies are needed to

check if any other functional forms are more appropriate.

To analyze the usefulness of the new gap model, we made a

version of SP5 with the previously used gap model and found that

new gap model leads to a small but positive increase in alignment

accuracy (0.5% in PREFAB, 1.5% in ProSup and 0.1% in

SALIGN). Thus, the main contribution for improved ability in

fold recognition by SP5 is due to introduction of torsion angles.

SP3 and SP4 were among the top performers in automatic

servers in CASP 6 and 7 [13,12]. It is noted that in CASP7, SP3

scored higher than SP4 according to GDT-HA, TMscore, and

AL0 for all targets. A close examination [12] indicates that SP4 is

slightly more accurate than SP3 in hard targets (FM category), but

slightly worse than SP3 in other targets (TBM category). This is

perhaps because all parameters were optimized for fold recogni-

tion targets. On the other hand, SP4 performs consistently better

than SP3 at both FM and TBM categories if the cumulative Z-

score is used [12]. The development of SP5 continues our

emphasis on searching a more sensitive method for fold

recognition. Significant improvement of SP5 over SP4 and SP3

indicates that SP5 is among the most accurate automatic servers

for fold recognition.

In the SP serial methods, the alignment generated for fold

recognition is used directly in modeling. It is quite possible that a

separate alignment method optimized for modeling may further

improve the accuracy of predicted model. This will be a subject of

future studies.

Methods

Alignment Score
The alignment score of SP5 for aligning query position i with the

template position j is

S i,jð Þ~{ 1{wstrucð ÞF seq
query ið Þ.M

seq
template jð Þ

{wstrucF struc
template jð Þ.Mseq

query ið Þ

{w2ndarydsi,sj{wsa 1{2 sa ið Þ{sa jð Þj jð Þ

{wD 1{D=90ð Þzsshift

ð1Þ

with four weight parameters (wstruc, w2ndary, wsa, and wD) and a

constant shift sshift. This score represents weighted matching of five

profiles that are described in detail below.

The first term in Eq. (1) is the profile-profile comparison

between the sequence profile from the query sequence and that

from the template sequence. Fseq
query ið Þ is the sequence-derived

frequency profile of the query sequence, M
seq
template jð Þ and

Mseq
query ið Þ are the sequence-derived log odd profile of the template

sequence and that of query sequence, respectively. These sequence

profiles are constructed by three iterations of PSIBLAST [9]

searching (E value cutoff 0.001) against non-redundant (NR)

sequence database, which was filtered to remove low-complexity

regions, transmembrane regions, and coiled-coil segments [29].

Table 4. The model quality of top-1 ranked models for CASP7
test set.

Fulla ALLb TBMc FMd

SP3 0.364 (60.20%)e 0.375 (60.17%) 0.408 (60.19%) 0.152 (60.37%)

SP4 0.373 (60.20%) 0.387 (60.17%) 0.420 (60.19%) 0.153 (60.32%)

SP5 0.383 (60.21%) 0.397 (60.17%) 0.431 (60.18%) 0.171 (60.38%)

a95 full chain targets.
bAll 124 domains (There are 4 targets belonging to both TBM and FM

categories).
c109 Template-based Modeling domains.
d19 Free Modeling domains.
eThe mean Maxsub score and the standard error (estimated by bootstrap
simulation on 10,000 re-sampling of the data set) for top 1 model.

doi:10.1371/journal.pone.0002325.t004

Fold Recognition by SP5
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The second term in Eq. (1) compares the sequence profile from

the query sequence and that derived from the template sequence

(sequence profiles that would ‘‘fit’’ to the structure). Fstruc
template jð Þ is a

depth-dependent sequence profile generated from the sequences of

those structural fragments that are similar to 9-residue segment

structures of the template [11].

The third term in Eq. (1) measures the difference between the

predicted secondary structure of the query sequence and the actual

secondary structure of the template. dsi,sj is a simple function of the

secondary structure element si of the query at sequence position i

and sj of the template at sequence position j. dsi,sj = 1 if si = sj and

dsi,sj = 21 if si?sj. We use a three-state definition of secondary

structures (H for helix, E for strand, and C for coil). The secondary

structures of templates are from DSSP [30].We have used the

convention: (H, G, I) RH, (E, B) RE, and others RC. The

secondary structure for query sequences is predicted by SPINE

[31]. The first three terms constitute the method SP3 [11] except

that PSIPRED [29] rather than SPINE [31] was used in SP3 to

predict the secondary structure of the query sequence. DSSP [30]

is used for analyzing template structures because SPINE was

trained based on the DSSP definition of secondary structures.

The fourth term in Eq. (1) is the matching score between the

predicted solvent accessibility of the query sequence and solvent

accessibility of the template structure. sa(i) and sa(j) are the

predicted residue solvent accessibility of query sequence and that

of the template structure, respectively. The residue solvent

accessibilities of query sequence are predicted by Real-SPINE

[25] while residue solvent accessibilities of template structures are

calculated from DSSP [30] and normalized by unfolded solvent

accessible surface areas [32]. The first four terms constitute the

method SP4 [33] except that in SP4, PSIPRED [29] rather than

SPINE [31] was employed to predict the secondary structure of

the query sequence, and the real values of solvent accessibility

from Real-SPINE [25] rather than two-state classifications by

SABLE [34] are used to predict the residue solvent accessibility of

the query sequence.

The fifth term in Eq. (1) is a new addition in SP5. It

characterizes the difference between predicted angles (y(i) and

w(i)) of the query sequence and actual angles (y(j) and w(j)) of the

template structure with

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
y ið Þ{y jð Þð Þ2z w ið Þ{w jð Þð Þ2

h ir

Real values of angles for the query sequence are from Real-SPINE

2.0 [24] while these angles are calculated by DSSP [30] for the

template structure. Real-SPINE 2.0 is a method for real-value

prediction of torsion angles by using back-propagation neural

networks trained with a sliding 21-residue window of sequence

profiles, representative amino acid properties, and predicted

secondary structures. The ten-fold-cross-validated mean absolute

errors are 38u for y and 25u for w, respectively.

Profile-based Gap Model
SP3 [11] and SP4 [12] employ a simple secondary-structure

dependent gap penalty. No gaps are allowed if si = sj = a (helix) or

si = sj = b sheet). The gap opening (w0) and gap extension (w1)

penalties are applied to other regions. In this paper, we construct a

profile-based gap model from the multiple sequence alignment

made by PSIBLAST [9]. The multiple sequence alignment allows

us to calculate the probability of deletion at sequence position i,

Pdel
seq ið Þ, and the probability of insertion at sequence position i,

Pinsert
seq ið Þ, Pdel

seq ið Þ~ndel
i

�
N and Pinsert

seq ið Þ~ninsert
i

�
N where ndel

i ,

ninsert
i , and N are number of deletions in sequence position i,

number of insertions in sequence position i, and total number of

aligned sequences, respectively.

Thus, we have four profiles: two for query sequences and two for

template sequences (Pdel
query ið Þ, Pinsert

query ið Þ, Pdel
template ið Þ, and Pinsert

template ið Þ)
The gap penalty is calculated as follows. We still use w0 as the

gap opening penalty. The extension gap penalty is modified by

w1 1{ Pdel
query ið Þ

� �c
z Pinsert

template jð Þ
� �c� �.

2
h i

for residue i in the

query sequence that is aligned with a gap after residue j in

template. Similarly, the extension gap penalty is modified by

w1 1{ Pinsert
query ið Þ

� �c
z Pdel

template jð Þ
� �c� �.

2
h i

or residue j in tem-

plate that is aligned with a gap after residue i in query. Here, w1 is

a to-be-optimized weight factor. Usually, lnP
del=insert

query=template
jð Þ is an

energetic term. Here, we use P
del=insert

query=template
jð Þ

� �c
rather than

lnP
del=insert

query=template
jð Þ to avoid singularity at P

del=insert

query=template
jð Þ~0. We

set c= 0.1 by trials and errors.

Dynamic Programming and Template Ranking
Similar to SP3 and SP4, we used the Smith-Waterman local

alignment algorithm [35] to optimize the score that matches the

query profiles with template profiles based on Eq. (1) with the

revised gaping method described above. Note that the optimiza-

tion of alignment is to minimize the total alignment score due to

the negative signs in Eq. (1).

The templates are ranked based on the difference score between

the raw alignment score and the reverse alignment raw score in

which the alignment is made with the reversed query sequence

[36]. The results of fold-recognition alignment are used to build

Ca models based on native template structure. This is done by

directly transferring the Ca coordinates of the template structures

to the aligned residues in the query sequence. If there is no

structural similarity between first two models (defined as zero

MaxSub score [37]), templates will be re-ranked by the greater one

of two Z-scores, which are calculated based on the raw alignment

score normalized by the full alignment length and the non-end-gap

alignment length, respectively. Here, the Z-score for a template i is

given by Z ið Þ~ Sn ið Þ{Save
n

� ��
Ssd

n , where ave and sd denotes the

average and standard deviation of normalized score for all the

templates. This ranking mechanism was based on an empirical

observation. We found that ranking based on the difference score

between the raw alignment score and the reverse alignment raw

score works well only if there is some structural similarity between

the top-two ranked models (i.e. a significant structural cluster

detected). Otherwise, ranking based on Z-scores works better [11].
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