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MOTIVATION Single-cell RNA sequencing (scRNA-seq) is a high-resolution RNA profiling technology that
estimates distribution of expression levels across cells. However, missing values that arise due to technical
limitations, also known as dropout events, complicate scRNA-seq analysis and limit its utility. Existing
imputation methods have a limited ability to reveal cell-cell relationships, complicating cell clustering
and trajectory analysis. We reasoned that a more efficient way to recover dropout events would be to incor-
porate available gene-specific or cell-specific information. Here, we introduce amatrix factorizationmethod
to recover dropout eventswithin each cell type and better differentiate cell relationships.We achieve that by
decomposing the count matrix into the product of gene-specific and cell-specific feature matrices. Addi-
tional gene- or cell-related information available can then be incorporated into the model by Bayesian infer-
ence.
SUMMARY
Single-cell RNA sequencing (scRNA-seq) offers opportunities to study gene expression of tens of thousands
of single cells simultaneously, to investigate cell-to-cell variation, and to reconstruct cell-type-specific gene
regulatory networks. Recovering dropout events in a sparse gene expression matrix for scRNA-seq data is a
long-standing matrix completion problem. In this article, we introduce Bfimpute, a Bayesian factorization
imputation algorithm that reconstructs two latent gene and cell matrices to impute the final gene expression
matrix within each cell group, with or without the aid of cell type labels or bulk data. Bfimpute achieves better
accuracy than ten other publicly notable scRNA-seq imputation methods on simulated and real scRNA-seq
data, as measured by several different evaluation metrics. Bfimpute can also flexibly integrate any gene- or
cell-related information that users provide to increase performance.
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has been widely used

to study genome-wide transcriptomes in single-cell resolution.

The cellular resolution made possible by scRNA-seq data distin-

guishes it from bulk RNA-seq and makes it advantageous in

investigating cell-to-cell variation (Tang et al., 2009). Today,

different commercial platforms are available to perform

scRNA-seq, including Fluidigm C1, Wafergen ICELL8, and 10x

Genomics Chromium. Droplet-based methods via 10x Geno-

mics Chromium can process tens of thousands of cells;

microwell-based, microfluidic-based methods via Fluidigm C1

and Wafergen ICELL8 process fewer cells but with a higher
Cell Rep
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sequencing depth. For all these platforms, missing values

make up a large proportion of scRNA-seq data, ranging from

40% to 90% in the gene expression count matrix (Chu et al.,

2016; Tang et al., 2017; Petropoulos et al., 2016; Zheng et al.,

2017; Qiu, 2020; Scialdone et al., 2016; Vladoiu et al., 2019).

This large percentage of missing events is defined as the so-

called dropout phenomenon (Kharchenko et al., 2014). Gene

dropout means a gene is observed at a moderate expression

level in one cell but it is not detected in another cell of the

same type. Analyses of scRNA-seq data, including dimension-

ality reduction, clustering, differential expression (DE), and pseu-

dotime analysis have shown that effective imputations for

dropout events improve downstream analyses and assist
orts Methods 2, 100133, January 24, 2022 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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biological interpretations (Lönnstedt and Speed, 2002; Love

et al., 2014; Gong et al., 2018).

To date, several notable imputation methods have been pro-

posed: scImpute (Li and Li, 2018), DrImpute (Gong et al.,

2018), MAGIC (Van Dijk et al., 2018), SAVER (Huang et al.,

2018), VIPER (Chen and Zhou, 2018), PBLR (Zhang and Zhang,

2021), netNMF-sc (Elyanow et al., 2020), and SCRABBLE

(Peng et al., 2019). scImpute first performs clustering to identify

cell subpopulations and further identifies dropout events through

a Gamma-Normal mixture model, finally imputing dropout

events by a non-negative least-squares regression (Li and Li,

2018). DrImpute optimizes the step of identifying cell subpoplu-

ations to impute dropout events by averaging the imputation

frommultiple clustering results (Gong et al., 2018). MAGIC builds

a Markov affinity-based graph for imputation relying on cell-to-

cell interactions (Van Dijk et al., 2018). SAVER uses a

Bayesian-based model by various prior probability, and alters

all gene expression values (Huang et al., 2018). VIPER imputes

dropout events relying on local neighborhood cells via non-

negative sparse regression models (Chen and Zhou, 2018).

PBLR first separates the expression matrix into low-rank

matrices and then applies an efficient alternating direction

method of multi-pliers algorithm for imputation (Zhang and

Zhang, 2021). netNMF-sc implements a network-regularized

non-negative matrix factorization and leverages gene-gene

interaction to accomplish imputation (Elyanow et al., 2020).

SCRABBLE has been recently introduced to impute dropout

events by adopting bulk RNA-seq data (Peng et al., 2019).

Even though a lot of efforts have been taken into analyzing and

imputing real dropout events, imputation of dropout events is still

a difficult problem because of the high dropout rate and complex

cellular heterogeneities for different scRNA-seq datasets. A

recent study performed a systematic benchmark comparison

and evaluation of 18 state-of-the-art scRNA-seq imputation

methods by dividing them into three categories: (1) model-based

imputation methods, (2) smooth-based imputation methods,

and (3) data reconstruction methods (Hou et al., 2020). The tools

wementioned above, such as scImpute, SAVER, and VIPER, are

exemplars of model-based imputation methods, MAGIC and

DrImpute are exemplars of smooth-based imputation methods,

and PBLR represents the data reconstruction method by using

a low-rank matrix-based approach. The benchmark study

observed that most imputation methods were most effective

for providing a point estimate of the activity of individual genes;

however, they were less effective in recovering cell-to-cell rela-

tionships resulting in less improvement in cell clustering and tra-

jectory analysis. Thus, it is important to design new imputation

methods to further improve the analysis of cell-to-cell relation-

ships or DE that takes into account cell variability.

Relying on low-rank matrix completion to impute missing

values is a long-standing question and has been investigated

in biological sciences, including gene expression prediction,

miRNA disease, protein-protein interaction (Simm et al., 2017),

etc. Even though similar mathematical models could be applied

to different biological problems to solve the matrix completion

problem in scRNA-seq (recovering the dropout events), it is

crucial to take the features of scRNA-seq into consideration.

Most of existing scRNA-seq imputation methods have shown
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that it is advantageous for imputation to borrow and leverage in-

formation from similar cells. In recent years, researchers also

start to integrate additional gene- or cell-related information

(e.g., gene-gene interactions for netNMF-sc, bulk data for

SCRABBLE) to assist imputation, which is important in matrix

completion problem.

In this study, we present Bfimpute, a powerful imputation tool

for scRNA-seq data that recovers dropout events by factorizing

the count matrix into the product of gene-specific and cell-spe-

cific feature matrices (Mnih and Salakhutdinov, 2008; Salakhut-

dinov and Mnih, 2008). Bfimpute uses full Bayesian inference to

describe the latent information for genes and cells and carries

out a Markov chain Monte Carlo scheme that is able to easily

incorporate any gene- or cell-related information to train the

model and perform the imputation (Simm et al., 2017) (Figure 1).

Deviating from common matrix-factorization-based methods,

Bfimpute performs clustering or uses given cell type labels to

group cells to leverage the information from similar cells more

accurately and also make different cell types more distinguish-

able. Bfimpute extracts the information from each cell based

on its gene expression to construct a cell-type-specific latent

matrix for each cell group. Cells within each cell group are

more likely to have similar latent vectors than cells from different

cell groups, therefore enhancing cell-to-cell relationships. We

demonstrate that Bfimpute performs better than the eight other

notable published imputation methods mentioned above (scIm-

pute, SAVER, VIPER, DrImpute, MAGIC, PBLR, netNMF-sc, and

SCRABBLE) and two other matrix-fatorization-based methods

(mcImpute [Mongia et al., 2019], ALRA [Linderman et al.,

2018]) in both simulated and real scRNA-seq datasets on

improving clustering, data visualization, differential gene expres-

sion analysis, and recovering gene expression temporal dy-

namics (pseudotime inference analysis) (Cannoodt et al., 2016;

Ji and Ji, 2016; Trapnell et al., 2014).

RESULTS

Bfimpute improves both visualization and cell type
identification
Principal-component analysis (PCA) and t-distributed stochas-

tic neighbor embedding (t-SNE) (Van der Maaten and Hinton,

2008; McCarthy et al., 2017) are two popular dimensionality

reduction techniques often used to visualize high-dimensional

scRNA-seq datasets. Since dropout values are unknown in

real datasets, we first tested accuracy of all different imputation

methods using a simulated dataset where the ground truth was

known. We applied the Splatter (Zappia et al., 2017) package to

generate simulated datasets, which captured many features

observed in the scRNA-seq data, including zero-inflation,

gene-wise dispersion, and differing sequencing depths be-

tween cells. To test the strength and robustness of different

imputation methods, we simulated a wide range of datasets

to include 5, 6, 7, and 8 different cell types (see STAR Methods).

Bfimpute achieved the most compact and well-separated clus-

ters on the simulation, followed by scImpute and DrImpute

(Figure 2). For all different cell type simulations, we also evalu-

ated the clustering performances by evaluation metrics, where

Bfimpute achieved the best scores for adjusted Rand index,
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imputes dropouts by performing product of the latent matrices. The details are shown in STAR Methods.
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Jaccard index, normalized mutual information, and purity score

compared with the raw data and five other imputation methods

(see STAR Methods).

We further used two real datasets for this analysis. The first

two principal components (PCs) from PCA were plotted to

compare every dataset across seven different conditions: the

raw dataset and six imputed ones through the Bfimpute, scIm-

pute, SAVER, VIPER, DrImpute, and MAGIC methods. We first

applied all imputation methods to a real scRNA-seq dataset

from a human embryonic stem cell (ESC) differentiation study

(Chu et al., 2016) to demonstrate the capacity of Bfimpute for

improving the performance of data visualization. The dataset

contains 1,018 single cells from 7 cell groups: neuronal progen-

itor cells (NPCs), definitive endoderm cell (DEC), endothelial cells

(ECs), and trophoblast-like cells (TBs) are progenitors differenti-

ated fromH1 human ESCs. H9 human ESCs and human foreskin

fibroblasts (HFFs) were used as controls cells. The raw dataset

(i.e., without imputation) clearly identified the cluster of HFF cells;

however, five other cell types were clustered very closely. After

imputation by Bfimpute, the homogeneous subpopulations of

H1 and H9 human ESCs were observed to substantially overlap

and were well separated from the rest of the progenitors. The

DECs, ECs, HFFs, NPCs, and TBs were also compactly clus-

tered and well separated on the PCA plot (Figure 3A). Compared

with the raw dataset, SAVER, VIPER, and DrImpute had no sig-

nificant improvement for cell group identification. scImpute was

the second best and generated similar compact cell groups as
Bfimpute. We then compared clustering results of the spectral

clustering algorithms (John et al., 2020) on the first several PCs

to demonstrate the capability of Bfimpute to improve clustering

accuracy in cell type identifications. For the true labels, we had

seven cell types for this dataset, and we evaluated the clustering

results by four different metrics: adjusted Rand index, Jaccard

index, normalized mutual information (nmi), and purity (see

STAR Methods). All four metrics suggested that Bfimpute

achieved the best clustering accuracy compared with the raw

data and the other five imputation methods (Figure 3B). We

also show the comparison of the visualization performance

through t-SNE. t-SNE on the raw dataset can better identify

the seven cell types comparing to PCA. Bfimpute, DrImpute,

and SAVER can further separate different cell groups and

improve the visualization; however, the other four imputation

methods demonstrated worse t-SNE results than raw data

(Figure S1A).

To illustrate the recovering of dropouts in individual cells by

imputation, we calculated the Pearson correlation from log10-

transformed read counts between every pair of cells in the

same type and from different cell types. This result indicated

that imputation did recover the zero counts in every cell and

the Pearson correlation increased from 0.70 to 0.87 for Bfimpute,

0.85 for scImpute, 0.72 for SAVER, 0.73 for VIPER, 0.78 for DrIm-

pute, and 0.97 for MAGIC (Figure 3C, blue bars). One scatter plot

of correlations between two randomly selected stem cells of the

same cell type was demonstrated in Figure S1B. As we
Cell Reports Methods 2, 100133, January 24, 2022 3
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expected, imputation methods usually increased the Pearson

correlation between any two cells in the same cell type. Imputa-

tion should not increase the correlation between cells in different

cell types by disregarding the biological variation between them.

Among all imputation methods, MAGIC achieved the highest

correlation in the same cell type, but the correlation between

different cell types was also the highest (Figure 3C, red bars).

Bfimpute demonstrated the best balance by maximizing the dif-

ference between correlation for the same over different cell

types, which proves its ability to improve the analysis of cell-

to-cell relationships.

Since Bfimpute performs clustering prior to imputation if the

cell type information is unavailable, it is necessary to test

whether the final clustering results are improved following impu-

tation compared with the initial clustering. The scatter plots of

the first two PCs from PCA results in the final clustering were

more consistent with the true labels than the initial clustering re-

sults (Figures S1C–S1F). Especially, group 1 and group 2 in Fig-

ure S1F are separated well and show better consistency with

DEC and EC in Figure S1E compared with corresponding groups

in Figures S1D and C. In addition, we evaluated the initial and

final clustering results relative to the true cell labels by the four

types of evaluation metrics. The results confirmed that imputa-

tion with Bfimpute improved the performance of clustering

(Figure S1G).
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In addition to imputation, the latent gene matrix for each cell

type generated by Bfimpute can facilitate the understanding of

gene-gene relationships and cell functions. We launched a sim-

ple attempt to analyze gene-gene interaction networks and

perform gene ontology (GO) enrichment analysis based on the

gene latent matrix of NPCs from the Chu dataset with the

assistance of WGCNA (Langfelder and Horvath, 2008) and

clusterProfiler (Yu et al., 2012) (Figure S2; see details in STAR

Methods). We identified one cluster (module) of highly correlated

genes that were most involved in synaptic membrane, cation

channel complex, and several other cellular components, which

confirmed the functionality of NPCs.

We further investigated Bfimpute’s performance of visualiza-

tion and cell type identification on a zebrafish (Tang et al.,

2017) scRNA-seq dataset. This dataset contains 246 single cells

from 6 cell groups, and hematopoietic stem and progenitor cells

(HSPCs) and HSPCs/thrombocytes among them come from one

defined cell type with expected heterogeneity. After the quality

control step, this Tang dataset was still sparse with zeros

composing over 87.5% of the total counts. The comparison of

visualization performance via PCA on the raw and six imputed

datasets is shown in Figure S3. The raw dataset only coarsely

identified the cluster for neutrophil cells, whereas cells from other

cell types were mixed and spread wildly. After imputation by

Bfimpute, four distinct immune cell subpopulations can be
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(B) The adjusted Rand index, Jaccard index, nmi, and purity scores of clustering results based on the raw and imputed data.

(C) Average Pearson correlations between any two cells from same type and different type. Data are represented as mean ± SD.
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identified for neutrophils, T cells, natural killer (NK) cells, and B

cells, where the cluster members were much more compact

compared with those of the raw dataset. Neutrophils, and T,

NK, and B cells, were distantly positioned on the PCA plot.

HSPCs and HSPCs/thrombocytes were from one defined cell

type with expected heterogeneity; so, after Bfimpute’s imputa-

tion, they were still spatially closer than other cells (Figure S3A).

The raw data and the imputed data by other five imputation

methods did not correctly identify the four immune cell subpop-

ulations. Clustering accuracy results from the four metrics for

Bfimpute were better than the other five imputation methods,

and Bfimpute achieved a better correlation for the same cell

type without losing variation between different cells types (Fig-

ures S3B and S3C).

Bfimpute improves DE and pseudotime analysis
DE analysis is widely used in bulk RNA-seq data. Performing DE

analysis for scRNA-seq data to reveal the stochastic nature of

gene expression in single cells is challenging since scRNA-seq

data suffer from high dropout events. However, it has been

proven that good imputation methods could lead to a better
agreement between scRNA-seq and bulk RNA-seq data of the

same biological condition on genes known to have little cell-to-

cell heterogeneity. We utilized the Chu dataset with both bulk

and scRNA-seq data available on human ESCs and DECs to

compare Bfimpute with the raw dataset and the other five impu-

tationmethods for DE analysis (Wang et al., 2011, 2012). This da-

taset contained 6 samples of bulk RNA-seq (4 in H1 ESCs and 2

in DEC) and 350 samples of scRNA-seq (212 in H1 ESCs and 138

in DEC). The percentages of zero entries were 8.8% in bulk data

and 44.9% in scRNA-seq data, respectively. We first performed

DE analysis in the bulk data and identified the top 200 DE genes

by DESeq2 (Love et al., 2014). We then plotted the expression

profiles of these scRNA-seq data for 7 conditions: raw dataset,

Bfimpute, scImpute, SAVER, VIPER, DrImpute, and MAGIC.

We found the expression profiles of these top 200 genes after

Bfimpute’s imputation demonstrated better concordance with

those in bulk data (Figure 4A). To further evaluate whether impu-

tation improves DE analysis in scRNA-seq data, we first used

DESeq2 to identify DE genes for raw scRNA-seq dataset and

scRNA-seq datasets after six different imputations. We then

generated different lists of DE genes for the bulk data by applying
Cell Reports Methods 2, 100133, January 24, 2022 5
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(A) The expression profiles of the top 200 DE genes detected in the bulk data by DESeq2 for 7 conditions: raw dataset, Bfimpute, scImpute, SAVER, VIPER,

DrImpute, and MAGIC.

(B) Time course expression patterns of the example gene ANGPT1 that is annotated with the GO term ‘‘endoderm development.’’ The small black triangles marks

the average bulk data for each time point.

(C) The barplots of POS and Kendall’s rank correlation score between the true time labels and pseudotime ordering inferred by Monocle and TSCAN on the Chu,

Scialdone, and Petropoulos datasets.

(D) Visualization of lineage reconstruction of the Chu dataset by TSCAN. The lines show the edges of the minimum spanning tree (MST) of each cluster of cells.

(E and F) Visualization of lineage reconstruction byMonocle of the Scialdone and Petropoulos datasets, respectively. The lines connecting every point indicate the

edges of the MST constructed by Monocle. The solid black line represents the main diameter path of the MST and denotes the backbone of the pseudotime

ordering.
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Table 1. The barplots of POS and Kendall’s rank correlation score between true time labels and pseudotime ordering inferred by

Monocle and TSCAN on the Chu, Scialdone, and Petropoulos datasets without or with imputation

Datasets Scores

Monocle TSCAN

Raw Bfimpute scImpute DrImpute Raw Bfimpute scImpute DrImpute

Chu et al. (2016) POS 0.770 0.921 0.907 0.883 0.610 1.000 0.994 0.989

Kendall 0.633 0.783 0.752 0.721 0.317 0.902 0.890 0.880

Scialdone et al. (2016) POS 0.826 0.933 0.879 0.829 0.860 1.000 0.910 0.917

Kendall 0.610 0.739 0.670 0.611 0.651 0.839 0.708 0.717

Petropoulos et al. (2016) POS 0.502 0.841 0.959 0.602 0.734 1.000 0.992 0.805

Kendall 0.334 0.641 0.808 0.422 0.554 0.871 0.852 0.625
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different thresholds for false-discovery rates of genes. Finally, for

every threshold, we compared the DE genes for the bulk data

and scRNA-seq data of those seven different conditions and

calculated the AUC values for each condition. The AUC values

suggested that all imputation methods improved DE analysis.

Bfimpute generated DE genes most consistent with the bulk

data (AUC values raw, 0.568; Bfimpute, 0.670; scImpute,

0.665; SAVER, 0.624; VIPER, 0.639; DrImpute, 0.657; and

MAGIC, 0.668).

If bulk data for the same biological condition were provided,

they could be used as a gold standard to compare the average

gene expression level with the scRNA-seq data, even though

the scRNA-seq data presented more cell-to-cell variation. We

expected that average gene expression level in the scRNA-seq

data was highly correlated with bulk RNA-seq data. To investi-

gate this, we plotted correlations between gene expression in

single-cell and bulk data and found that all imputation methods

did improve the correlation between bulk and scRNA-seq

data, and that Bfimpute, MAGIC, scImpute had the best

improvement (Figure S1H). We further selected several genes

(e.g., ANGPT1,GDF3, BMP4, EPB41L5) of DECs from different

time points to plot their average gene expression levels in both

bulk and scRNA-seq data. These genes were annotated with

the GO term ‘‘endoderm development,’’ and they were likely to

be affected by dropout events (Gong et al., 2018; Blake et al.,

2017). Imputed read counts for these genes by Bfimpute showed

higher gene expression correlation and better consistency with

the bulk data (Figures 4B and S4A–S4D).

In addition to the DE analysis, we also used three datasets

across developmental stages: time course scRNA-seq data

(Chu et al., 2016) from the same study; stages of mouse meso-

dermal development (Scialdone et al., 2016); and stages of hu-

man preimplantation development (Petropoulos et al., 2016).

The results showed that Bfimpute improved gene expression

temporal dynamics through pseudotime inference analysis.

The Chu dataset comprises a total of 758 single cells captured

and profiled by scRNA-seq at 0, 12, 24, 36, 72, and 96 h of differ-

entiation. The Scialdone dataset contains 1,205 cells from four

stages at embryonic day 6.5 (E6.5), E7.0, E7.5, and E7.75. The

Petropoulos dataset includes 1,529 cells from 5 stages, from

developmental day E3 to E7. We first applied Bfimpute to the

raw scRNA-seq data with true cell type labels, and then exam-

ined how the time course expression patterns changed in the

imputed data using TSCAN (Ji and Ji, 2016) and Monocle (Trap-

nell et al., 2014; Qiu et al., 2017), which were designed to infer
pseudotime from the biological process. We then calculated

pseudo-temporal ordering score (POS) and Kendall’s rank corre-

lation score to evaluate the consistency between the true time la-

bels and pseudotime ordering inferred by TSCAN and Monocle.

Both POS and Kendall’s rank correlation score increased after

imputation by Bfimpute compared with the raw data and other

imputation methods (Figure 4C; Table 1). Figure 4D depicts the

PCA plot of human ESCs from the Chu dataset and the time

course in 2D space constructed using PCA without (left panel)

or with (right panel) imputation by Bfimpute. The trajectory in

this subplot was constructed using TSCAN. Without imputation,

this trajectory started from 0 h and ended at 36 h, while, with

imputation, the pseudotime trajectory fitted the true time labels

perfectly from 0 h (blue) to 96 h (yellow). Both POS and Kendall’s

rank correlation score increased significantly (POS increased

from 0.61 to 1, and Kendall’s rank correlation increased from

0.317 to 0.902). In Figures 4E and 4F, depicting the Scialdone

and Petropoulos datasets, respectively, scRNA-seq results

were plotted in 2D space using independent component analysis

and pseudotime trajectories were constructed by Monocle. The

results demonstrated that POS and Kendall’s rank correlation

scores in both datasets increased further. Besides, in Figure 4E,

the backbone pseudotime trajectory from E6.5 (blue) to E7.75

(cyan) constructed from data imputed by Bfimpute clearly

showed the time course, and with minimal overlap between

stages, unlike the raw data. In Figure 4F, prior to imputation,

E3 and E4 stages were not reached at all by the backbone trajec-

tory. In contrast, after imputation using Bfimpute, the backbone

pseudotime trajectory started from E3, traversed through E4, E5,

and terminated at E6 and E7.

In summary, all these results demonstrated that imputation

using Bfimpute was able to enhance downstream analysis.

Especially, Bfimpute significantly improved the performance of

DE analysis using DESeq2 and pseudotime inference using

Monocle and TSCAN. In the next section, we discuss imputation

with the aid of cell type labels in more detail.

Bfimpute improves performance with the aid of
additional experimental information
Imputation methods, including Bfimpute, scImpute, DrImpute,

and PBLR, all first identify similar cells based on clustering,

and imputation is then performed by leveraging the expression

values from similar cells. Being able to first identify the appro-

priate cell groups enhanced the ability of imputing the dropout

events. A substantial number of scRNA-seq studies have
Cell Reports Methods 2, 100133, January 24, 2022 7
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Figure 5. Bfimpute with labels improves PCA and t-SNE visualizations and cell type identification

(A) The first two PCs calculated from the raw data, and the imputed data by Bfimpute, scImpute, DrImpute, and PBLR for the Chu dataset (human embryonic stem

cell differentiation study).

(B) The t-SNE results from the raw data, and the imputed data by Bfimpute, scImpute, DrImpute, and PBLR for the Tang dataset (zebrafish data).

(C) The t-SNE results from the raw data, and the imputed data by Bfimpute, scImpute, DrImpute, and PBLR for the Petropoulos dataset (human preimplantation

embryonic development data).

(D) The t-SNE results from the raw data, and the imputed data by Bfimpute, scImpute, DrImpute, and PBLR for Zheng dataset (PBMCs).
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identified cell types from experimental design or marker genes.

We applied Bfimpute, scImpute, DrImpute, and PBLR to the

raw scRNA-seq data with true cell type labels on five datasets

in total.

We again investigated the PCA and t-SNE visualizations for

identification of cell subpopulations. Our results showed that

Bfimpute outperformed the other three methods and clearly

differentiated almost every cell group in different datasets. For

the Chu dataset, Bfimpute further correctly identified three

outlier cells into correct groups compared with the previous

imputation without cell labels (see Figure 5A versus Figure 3A:

one EC [orange point], one DEC [blue point], and one NPC [yel-

low point] cell were brought back to the corresponding EC,

DEC, and NPC cell groups, respectively). H9 cells were also
8 Cell Reports Methods 2, 100133, January 24, 2022
further apart from H1 cells in the vertical dimension. For the

Tang dataset, even the most mixed B, NK, and T cells (blue,

green, and yellow colors) from the raw dataset were separated

from each other after Bfimpute’s imputation, and HSPCs and

HSPCs/thrombocytes cells were spatially close, but split into

two cell groups (Figures 5B and S5A). For the Petropoulos data-

set, whose cells are distinguished by development stages other

than the cell type, the five different stages were clearly distin-

guished from each other after Bfimpute’s imputation (Figures

5C and S5B).

We also applied four imputation methods to a large 10x data-

set generated by the high-throughput droplet-based system. To

generate this dataset, we randomly selected 500 cells from 9 im-

mune cell types, so that it contained a total of 4,500 peripheral
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blood mononuclear cells (Li and Li, 2018; Zheng et al., 2017). In

the raw data, 98.3% read counts are exactly zeros. Our PCA and

t-SNE results indicated that Bfimpute’s imputation identified

nine immune cell types from raw data (Figure 5D).

For all datasets mentioned above, we further estimated the

silhouette score to evaluate the quality of the spectral clustering

results after imputation based on how well its data points are

clustered (Table S1; Figure 6A). Bfimpute achieved the best

score in all but one set. We also calculated the Pearson correla-

tion coefficient between every pair of cells from the same cell

type and from different cell types (Figure 6B). Bfimpute was

confirmed to be the best in all imputation methods.

To compare Bfimpute to several related methods using matrix

factorization, we additionally ran ALRA and mcImpute on these

four datasets. Some of them achieved above-average results

but none of them performed better than Bfimpute (Figures

S5C–S5J).

Due to the importance of scalability for imputation in big data-

sets, we further applied Bfimpute on an extremely large 10x-

based dataset containing cells from multiple lineages (Vladoiu

et al., 2019). The Vladoiu dataset contains 62,893 mouse cere-

bellum cells collected at 9 time points (E10, E12, E14, E16,

E18, and postnatal day 0 [P0], P5, P7, and P14) with 91.9%

dropout rate. As shown in Figure S6A, Bfimpute significantly

improved t-SNE visualization. For example, cells at the P5 stage

were better separated from cells at the P7 stage, and cells at the

E14 and E16 stages were revealed. We also applied scImpute,

DrImpute, SAVER, and PBLR with cell labels, and MAGIC and

VIPER, on this dataset. After imputation, we used TSCAN to infer

pseudotime. Bfimpute showed the best performance on both

POS and Kendall’s rank correlation score (Figure S6B). We

further evaluated clustering performance using four types of

evaluation metrics and all of them suggested that Bfimpute
achieved the best clustering accuracy (Figure S6C). The compu-

tation time cost was ordered in the following ascending order:

MAGIC, PBLR, Bfimpute, scImpute, and SAVER; DrImpute and

VIPER failed to complete (Figure S6D).

SCRABBLE is an approach introduced recently integrating bulk

data as a constraint to impute dropout events in scRNA-seq data.

netNMF-sc is another tool to leverage gene-gene interactions for

imputation. Since Bfimpute can easily adopt bulk data as addi-

tional information into the gene latent matrix, we also tested if

bulk data can further improve performance. In the scRNA-seq da-

taset of human ESCs with bulk data, we did not observe

significant differences with or without bulk data as additional in-

formation (Figures S1I and S1J versus Figure 5A). The reason

could be that similar gene level information has less effect than

similar cell level information for the imputation of dropout events.

We also found that the performances of SCRABBLEand netNMF-

sc after integrating accurate estimate of the gene expression dis-

tributions and gene-gene interaction information with bulk data,

were not better than Bfimpute (Figures S1I and S1J).

DISCUSSION

scRNA-seq has become an indispensable tool in recent years, as

it has made it possible to study genome-wide transcriptomes in

single-cell resolution. Unfortunately, the large proportion of

dropout events in scRNA-seq data limits its efficacy. Recently,

there has been a debate about whether scRNA-seq datasets

with unique molecular identifiers are zero-inflated. Some re-

searchers have modeled droplet-based scRNA-seq data reason-

ably well without assuming that zero values are artificial (Svens-

son, 2020; Silverman et al., 2020). However, a recent study

designing scRNA-seq imputation models without zero-inflation

suggests that imputation is necessary and able to facilitate
Cell Reports Methods 2, 100133, January 24, 2022 9
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downstream analysis (Tang et al., 2020), because missing values

are unavoidable at present due to sequencing technical limita-

tions. The main point we can glean from the discussion regarding

the types of zeros in this debate is the importance of discrimi-

nating the difference between zero values due to technical and

biological factors (Silverman et al., 2020). In this study, we intro-

duce Bfimpute, which applies a mixture model to identify zeros

due to technical factors within each cell group after clustering

or using cell type labels, and performs Bayesian factorization to

recover dropout events in scRNA-seq data.

In this study, we thoroughly tested Bfimpute on both simulated

and real datasets by comparison with ten other tools. By utilizing

a Bayesian matrix factorization method to recover zeros due to

technical factors in each cell cluster, we have shown that Bfim-

pute is most effective in recovering cell-to-cell relationships

that further improve downstream analyses, including identifica-

tion of cell subpopulations, differential expressed genes, and

trajectory analysis. Bfimpute can be easily incorporated into

the existing downstream pipelines and analyses.

Bfimpute is an example of low-rank matrix-based imputation

methods. Several scRNA-seq imputation methods based on

matrix factorization, such as mcImpute and ALRA, have been

proposed recently. However, almost all of these methods are

using majorization-minimization algorithms to find a single point

estimate of the parameters, which are prone to overfitting.

Bfimpute uses a fully Bayesian probabilistic matrix factorization

by substituting hyperparameters with hyperpriors and perform-

ing Gibbs sampling for the approximate inference. The advan-

tage of this Bayesian model is that it provides a predictive

distribution instead of just a single number during recovering

each dropout event to avoid overfitting, and the confidence in

the prediction can be quantified and considered into the model.

The use of a full Bayesian model proved to be a considerable

advantage for Bfimpute to outperform other imputation

methods. For the time complexity of the full Bayesian-based

model, the most time-consuming aspect of training Bfimpute

is the inversion of the D3D matrices for latent and feature

vectors, which are O(D3) operations. In this case, Bfimpute is

not as significantly affected by the size of the count matrix as

the other methods. We have used D = 32 (by default) and

also tested D = 16 for all the experiments and there were no

significant differences for smaller D in downstream analyses.

Bfimpute imputes two latent cell and gene matrices for each

cell group through a Gibbs sampling process, and reaches a sta-

tionary state to generate the final cell-gene expression matrix, in

which the dropout events will be recovered. Another advantage

of Bfimpute is being able to integrate any gene- or cell-related in-

formation of scRNA-seq data into these two latent gene and cell

matrices to impute missing values. Information from both similar

cells or/and bulk data can be easily integrated into our model.

Even though some other methods have a similar functionality

in this respect, which allows them to impute dropout events

with the aid of number of cell types or cell labels, they fail to

achieve as good performance as Bfimpute for most of scRNA-

seq data that we tested. Any resource provided by the users

from the cell level and gene level could be used as additional in-

formation to improve dropout events imputation in scRNA-seq

data in the future.
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Limitations of the study
As more imputation methods become available, a systematic

evaluation is necessary. Two recent benchmarking studies

demonstrated that the performance of imputation methods var-

ied across evaluation criteria, experimental protocols, datasets,

and downstream analyses (Hou et al., 2020; Zhang and Zhang,

2020). There is no consensus about which imputation method

is the best. Although we benchmarked several simulated and

real datasets and Bfimpute outperformed ten other notable

imputation methods, it is premature to conclude that Bfimpute

will achieve better performance across all datasets and improve

downstream analysis. Imputation methods such as Bfimpute

may also increase false positives for downstream analysis. De-

pending on the application, users may constraint parameters

to maximize true positives or minimize false positives.
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cell-gene-expression/datasets

Mouse cerebellum cells Vladoiu et al. (2019) GSE118068
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DrImpute Gong et al. (2018) https://github.com/gongx030/DrImpute
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METHOD DETAILS

Cell clustering and dropout detection
Bfimpute first provides an optional normalization step to smooth the gene expression values (counts per million, followed by loga-

rithm base 10 with bias 1.01). Bfimpute then performs a local imputation within each cell group. We adopt the same approach as

scImpute (Li and Li, 2018) to detect cell clusters, which applies spectral clustering methods on the result of Principal Component

Analysis (PCA) to reduce the impact of dropout events. We integrate the ’Spectrum’ function of the Spectrum R package (John

et al., 2020) and the ’specc’ function of the kernlab R package (Ng et al., 2001) for spectral clustering. Bfimpute also adopts the

Gamma-Normal mixture distribution model to determine dropout events (Li and Li, 2018).

Probabilistic model for scRNA-seq expression matrix imputation
After above-mentioned steps, we then adapted a multi-variate priors model from Bayesian Probabilistic Matrix Factorization (BPMF)

(Salakhutdinov andMnih, 2008) to recover dropouts for scRNA-seq datasets. Since every cell group ismathematically equivalent, we

arbitrarily choose one to demonstrate local imputation in Bfimpute. Suppose we have N genes andM cells in one cell group, and the

expression matrix is E˛RN3M. Each entity Eij represents the expression level of gene i in cell j. Bfimpute factorizes E into G˛ RD3N

and C˛RD3M which are defined as gene and cell latent matrix, respectively, where D is the dimension of the latent factor. Column

vectorGi andCj represent the gene-specific and cell-specific latent vector, respectively. The imputedmatrix to recover Ewill be given

as bE = GTC.

We introduce the Gaussian noise model for the gene expression profile E with precision a, which was firstly proposed by Proba-

bilistic Matrix Factorization (PMF) (Mnih and Salakhutdinov, 2008):

pðEjG;C;aÞ=
YN
i = 1

YM
j =1

h
N
�
Eij

��Gi
TCj;a

�1
� i

Iij (Equation 1)

where Iij is the indicator function that is 0 if the Eij is a dropout and equal to 1 otherwise.

To get use of gene or cell related information such as bulk data or other data user provided, we add entity features SG˛ RFG3N and

SC˛RFC3M as gene and cell feature matrix, respectively, where FG and FC are the dimentionalities of these additional features. The

Gaussianmodel for the prior distributions over genes and cells latent vectors adapted fromMacau (Simmet al., 2017) will be given by:

p
�
Gi

���SG
i ;mG;LG;bG

�
=N

�
GijmG + bG

TSG
i ;LG

�1
�

p
�
Cj

���SC
j ;mC;LC; bC

�
=N

�
Cj

��mC + bC
TSC

j ;LC
�1
� (Equation 2)

where {mG, mC} and {LG, LC} are the means and precisions, and bG˛RFG3D and bC˛RFC3D are the weight matrices for the entity fea-

tures. Weight initialization by a zero mean normal distribution is used and they will be updated iteratively by the Bayesian inference

steps (details described later). Also, direct imputation of single cell RNA-seq data could be applied by initiating zeros into feature

vectors SG and SC(where FG = FC = 1) if no additional information is given.

The characteristics of each specific gene are represented in the D dimension of the gene latent matrix. If two genes are sharing

similar functions, they will have similar latent vectors and thus, similar dot products with the cell latent matrix, which lead to similar

expressions. The gene feature matrix is expected to represent additional information relative to the expression matrix. For instance, it

could be a binary matrix showing the substructure information of the candidate genes or a bulk RNA-seq matrix which has the same

genes with the scRNA-seq count matrix. The cell-specific matrices have similar biological meaning to gene-specific matrices but for

cells.

To performBayesian inference, we introduce the priors referring to BPMF (Salakhutdinov andMnih, 2008) for {mG,LG} and {mC,LC}.

pðmG;LGjm0;b0; n0;W0Þ=N
�
mG

���m0; ðb0LGÞ�1
�
WðLGjW0; n0Þ

pðmC;LCjm0;b0; n0;W0Þ=N
�
mC

���m0; ðb0LCÞ�1
�
WðLCjW0; n0Þ

(Equation 3)

where W is the Wishart Distribution with n0 as the degrees of freedom and W0 as the scale matrix.

We also set a zero mean normal distribution as bG and bC’s priors and a gamma distribution as the problem dependent aG and aC’s

hyperpriors (Simm et al., 2017):

p
�
bGjLG;aGÞ=N

�
vecðbGÞj0;LG

�15ðaGIÞ�1
�

p
�
bCjLC;aCÞ=N

�
vecðbCÞj0;LC

�15ðaCIÞ�1
� (Equation 4)
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pðaGjk; qÞ=GðaGjk=2;2q=kÞ
pðaCjk; qÞ=GðaCjk=2;2q=kÞ (Equation 5)

where vec(bX) is the vectorization of bX, 5 represents the Kronecker product and aX is the precision ðX˛fG; CgÞ. k/2 and 2q/k are

shape and scale, respectively. k and q are hyperparameters which are set to 1.

Gibbs sampler to impute dropout events
We use Markov Chain Monte Carlo (MCMC) algorithm to train Bfimpute, which is a sampling based approach to tackle the Bayesian

inference problem. Bfimpute constructs a Markov Chain from a random initial value and after running the chain for ~K steps, it will

eventually converge to its stationary distribution. Bfimpute then uses the average of (K� ~K) stationary stages to approximate the

real distribution of E and gain the estimated values bEij for dropouts:

p

 bEijjE;G;CÞz 1

K � ~K

XK
k = ~K + 1

p
� bEij

��GðkÞ
i ;C

ðkÞ
i ;a

!
(Equation 6)

More specifically, Bfimpute chooses Gibbs sampler to achieve Bayesian matrix factorization. In every cycle, we sample the con-

ditional distribution from the posterior distribution in Bayes’ theorem. Since the probabilistic models of genes and cells are symmet-

ric, the conditional distributions over genes and the conditional distribution over cells have the same form. In particular, based on

Equations (1) and (2), the conditional probability for Gi is:
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where 8>>>><>>>>:
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According to Equations (2) and (3), we can derive the conditional probability for mG and LG:

p
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where 8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Considering Equations (4) and (5), we get the conditional probability for aG:

pðaGjbG;LG; k; qÞ = GðaGjk0 = 2; 2q0 = k0ÞfpðbGjLG;aGÞ 3 pðaGjk; qÞ (Equation 9)

where
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From Equations (2) and (4), we are able to know the conditional probability for bG:
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Because the size of the precision matrixL fb Gg is too large to compute, we consider to do this part in an alternative way (Simm et

al., 2017) by calculating:

~bG =
�
SGT

SG +aGI
�
�1
�
SGT ð ~G+E1Þ+ ffiffiffiffiffiffi

aG

p
E2

�
(Equation 11)

where ~G = ðG� mGÞT , and each row of E1˛RN3D and E2˛RFG3D is sampled fromNð0;L�1
G Þ. The Gibbs sampling framework of Bfim-

pute is shown below:
Gibbs sampling for Bfimpute
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ð0Þ
G ;b

ð0Þ
C ;a

ð0Þ
G ;a
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C g

2. For k = 1, 2, ., K
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b. Sample gene and cell latent matrices {G, C}:

d For each i = 1, ., N sample gene latent vectors in parallel:
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Generation of simulated data
We first simulated a single cell RNA-seq count matrix with 20,000 genes and 500 cells evenly split into 5 groups using the scater (Mc-

Carthy et al., 2017) package and Splatter (Zappia et al., 2017) package. The parameter which controls the probability that a gene will

be selected as DE was set to 0.08 while the location and scale factor were set to 0.3 and 0.5, respectively. We used ’experiment’ to

add the global dropout for every cell. In order to show the universal applicability of Bfimpute, we further generated 6, 7, 8 groups of

cells with 600, 700, 800 as total cell numbers and 10 runs for each data with different seeds using the same parameters mentioned

above.

Quality control for real datasets
We did quality control (QC) (function from R package scDatasets) for all real datasets to ensure fairness for all methods before impu-

tation except for Zheng dataset (PBMCs) and the Vladoiu dataset. As they are based on 10x Genomics platform with an extremely

high dropout rate, the QC step for them may remove and lose nearly 80% genes.

Evaluation metrics of clustering results
Weused four evaluationmethods: adjusted Rand index (Morey and Agresti, 1984), Jaccard index (Jaccard, 1912), normalizedmutual

information (nmi) (Strehl and Ghosh, 2002), and purity score, to analyse the agreement between true cluster labels and the spectral

clustering (John et al., 2020) results on the first several Principle Components (PCs) of imputed matrix. Most of these four measure-

ments vary from 0 to 1, with 1 indicating perfect match between them, except the adjusted Rand index which could yield negative

values when agreement is less than expected by chance. The adjusted Rand index is an adjusted version of Rand’s statistic (Rand,

1971) which is the probability that a randomly selected pair is classified in agreement. The Jaccard index is similar to Rand Index, but

disregards the pairs of elements that are in different clusters for both clusterings (Wagner andWagner, 2007). The normalized mutual

information combines multiple clusterings into a single one without accessing the original features or algorithms that determine these

clusterings. The purity score shows the rate of the total number of cells that are classified correctly.

We also used silhouette scores to evaluate the quality of spectral clustering (John et al., 2020) results on the first several Principle

Components (PCs) of the imputed matrix based on how well its data points are clustered. Each data point is assigned to a silhouette

measure to represent how close a data point is to its own cluster in comparison to other clusters. The silhouette varies from�1 to +1,

with a high value indicating the data point is well matched to its own cluster and poorly matched to neighboring clusters.

Measurement of pseudotime ordering
We used two measurements: Pseudo-temporal Ordering Score (POS) and Kendalls rank correlation score, to evaluate the consis-

tency between the pseudotime ordering and the time labels. POS is a quantitative measure of the reliability of numerous possible

pseudotime course proposed by TSCAN (Ji and Ji, 2016). Kendall’s rank correlation score is a traditional statistical measurement

for ordinal association between two measured quantities.

Gene-gene interaction and gene ontology enrichment analysis on gene latent matrix
Bfimpute is able to generate cell and gene latent matrices for each cell type after imputation which allow us to further investigate the

gene-gene relationships and cell functions. To first analyze gene-gene interactions network, we used the ’blockwiseModules’ func-

tion from theWGCNA package (Langfelder and Horvath, 2008) to construct the weighted gene co-expression network from the gene

latent matrix of one cell type and obtain a number of gene clusters (modules) of highly correlated genes. We then performed Gene

Ontology (GO) enrichment analysis using ’enrichGO’ from the clusterProfiler package (Yu et al., 2012) and detected ’Cellular Compo-

nent’ related GO items in each gene module.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details and software used for various types of data analyses in this work are cited in the appropriate sections in the STAR

Methods. The agreements between true cluster labels and spectral clustering results from scRNA-seq data without or with imputa-

tionwere calculated using adjusted Rand index, Jaccard index, nmi, purity score, and silhouette score. The agreements between true

time label and pseudotime trajectory built from scRNA-seq data without or with imputation were calculated using POS and Kendalls

rank correlation score.
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