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De novo main-chain modeling for EM maps using
MAINMAST
Genki Terashi 1 & Daisuke Kihara 1,2

An increasing number of protein structures are determined by cryo-electron microscopy

(cryo-EM) at near atomic resolution. However, tracing the main-chains and building full-atom

models from EM maps of ~4–5 Å is still not trivial and remains a time-consuming task. Here,

we introduce a fully automated de novo structure modeling method, MAINMAST, which

builds three-dimensional models of a protein from a near-atomic resolution EM map. The

method directly traces the protein’s main-chain and identifies Cα positions as tree-graph

structures in the EM map. MAINMAST performs significantly better than existing software in

building global protein structure models on data sets of 40 simulated density maps at 5 Å

resolution and 30 experimentally determined maps at 2.6–4.8 Å resolution. In another

benchmark of building missing fragments in protein models for EM maps, MAINMAST builds

fragments of 11–161 residues long with an average RMSD of 2.68 Å.
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An increasing number of protein structures have been
determined by cryo-electron microscopy taking advantage
of recent technological advancements which have enabled

structure determinations at improved resolutions1–3. More EM
maps were determined at near-atomic resolution in the past 2
years than in all other previous years combined: by the end of
year 2015, only 114 EM maps had been released in the Electron
Microscopy Data Bank (EMDB)4 with resolution of 4 Å or better.
In 2016 and 2017, 241 and 315 such high-resolution maps were
released in EMDB, respectively, which totaled up to 731 at the
end of 2017. The significant progress of the cyro-EM poses a
pressing need for software for structural interpretation of EM
maps, which include identifying a main-chain trace, building all-
atom structure models, and model validation. Particularly, tools
are needed for maps determined around 4 Å resolution, because
maps near this resolution is often difficult to handle by software
for X-ray crystallography5,6 and also by conventional tools for
EM maps that are for a lower resolution7. Considering that maps
will be routinely determined in this resolution range for various
proteins, tools are needed that can model structures de novo by
detecting and tracing main-chain positions in an EM map
without starting from fitting of existing template structures to the
map. Compared with tools that aim to fit reference structures and
refining a structure in EM maps8–15, de novo modeling methods
are still sparse in the field. Pathwalking is one such available de
novo methods that constructs a protein Cα model from an EM
map by connecting dense local map points using a Traveling
Salesman Problem solver16,17. In Pathwalking, human interven-
tion is needed for manual assignments of constraints and to
determine the direction of protein sequence on the Cα model.
Another de novo method is provided in the Rosetta protein
modeling suite, which builds an initial model by assembling
fragment structures taken from a protein structure database,
followed by all-atom optimization to achieve better fit to an EM
map18,19.

Here we describe a de novo protein structure modeling method
for EM maps of near atomic resolution. The method, named
MAINMAST (MAINchin Model trAcing from Spanning Tree),
has substantial advantages over existing methods: (i) MAIN-
MAST directly constructs protein structure models from an EM
density map without requiring reference structures; (ii) The
procedure is fully automated and no manual setting is required;
(iii) a pool of models are produced, from which a confidence level
is computed that indicates accuracy of structure regions. We
evaluated the MAINMAST’s performance of constructing global
protein structure models on two benchmark sets, a set of simu-
lated density maps at a 5.0 Å resolution and a set of experimental
EM maps. On the set of 40 simulated maps, MAINMAST pro-
duced high quality Cα models with an average root mean square
deviation (RMSD) of 1.8 Å. On 30 experimental EM density maps
of 2.6 to 4.8 Å resolution, on average MAINMAST produced
models with 75.8% of Cα positions within 2.0 Å and 87.3% within
3.0 Å. These results were substantially more accurate than the two
existing de novo methods, Pathwalking and Rosetta. MAINMAST
was further tested in building missing fragments in proteins
models for EM maps. MAINMAST showed comparable results
with RosettaES building 44 fragments of 11 to 161 residues long
at an average RMSD of 2.68 Å to the native conformation.

Results
Overview of the MAINMAST procedure. MAINMAST builds
protein main-chain structures from an EM map of around 4–5 Å
or better by tracing local dense regions of the map. This method
does not use existing structures including fragment structures
because such an approach limits its application to globally or

partially known structures and often has difficulty when con-
structing chains that contain uncommon conformations. When a
map is determined at a resolution around 4–5 Å or better, the
majority of the main-chain can be recognized in a map as dense
regions. Figure 1 illustrates the overview of MAINMAST’s pro-
cedure. The procedure starts by identifying local dense points in a
given EM map, which are likely to correspond to the main-chain
and sidechains of a protein. Then, these points are connected into
a tree structure in a way that the total distance of connected
points is minimized (i.e., the minimum spanning tree; MST). It
was found that the main-chain of the protein is well covered by
the MST because the number of points is large enough so that
neighboring points are found in a short proximity to one another.
The MST is constructed in two steps, first by constructing local
MSTs for local regions around dense points to capture local
topology of the chain, followed by construction of the MST that
connects all the points using the local MSTs as constraints. Once
the MST is constructed, it undergoes extensive conformational
modification using an efficient search method, a tabu-search, to
generate a pool of alternative trees. Trees are generated by
changing parameters for defining density points and branches in
a tree. The generated trees are then finally ranked with a score
called the threading score, which evaluates the agreement to the
density of each amino acid in the protein sequence. The top 500
Models selected by the threading score are subject to full-atom
reconstruction and refinement using PULCHRA20. Finally, the
full-atom models are refined using molecular dynamics flexible
fitting (MDFF)21, a molecular dynamics-based method, and
selected according to the scoring function implemented in MDFF.
Refer to Methods for more details.

Models built for simulated EM maps. First we evaluated the
performance of MAINMAST on a data set of 40 simulated
density maps, which were originally used by the paper of
Pathwalking16,17. The maps were generated at a resolution of 5.0
Å with a grid spacing of 1.0 Å/voxel using the e2pdb2mrc.py
program in the EMAN2 package22. The 40 proteins include 5, 20,
14, and 1 structures from the α, β, α/β, and the few secondary
structure classes, respectively, according to the CATH protein
structure classification database23.

For each of the 40 maps, MAINMAST built 2688 Cα models
with different parameters settings, which were ranked by the
threading score that examines the agreement of the protein
sequence to a Cα model. MAINMAST constructed accurate Cα
models with an average RMSD of 1.79 Å to the native structures
for all the 40 maps (Supplementary Table 1). Comparing the top
scoring models by the threading score and overall the best (i.e.,
the smallest RMSD) models among 2688 models generated, it is
found that the threading score was very successful in selecting
models that are close to the best choice. On average, the RMSD
between the best model in the model pool and the selected top-
scoring model was only 0.39 Å (Supplementary Table 1).

Comparison against structure models constructed by
Pathwalking16 ver. 2016 is shown in Fig. 2a, b. For the
Pathwalking algorithm, data are taken from the 2016 publica-
tion16. The figures indicate that MAINMAST built significantly
better models than Pathwalking. For this performance compar-
ison, the CLICK method24 was used for evaluating models
because it was used in the Pathwalking papers16,17. CLICK
identifies similar local structures between a model and its native
structure that have consistent inter-residue distance, the second-
ary structures, and the residue exposures, and computes RMSD
(Fig. 2a) for the common local structures. It also reports the
fraction of residues that are within 3.5 Å when the two structures
are overlapped (Fig. 2b). Figure 2a shows that most models by
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MAINMAST have lower local RMSDs than Pathwalking models.
Consistent with the results in Fig. 2a, Fig. 2b shows that
MAINMAST models have a larger overlap to native than
Pathwalking models for most of the cases. Supplementary Fig. 1
provides comparison with two versions of Pathwalking, ver. 2012
and ver. 2016.

The models by MAINMAST were further compared with those
built with Rosetta (Fig. 2c, d). Using the Rosetta package,
fragment structures were first assigned to a map by the Rosetta
fragment assembly protocol, denovo_density, followed by Roset-
taCM25, which builds a full residue models by filling gaps between
fragments and optimizing the whole structure. The details of the
modeling steps and commands used in the Rosetta package are
provided in the Supplementary Note 1. The global Cα RMSD of
the MAINMAST and Rosetta models are shown in Fig. 2c, while
Fig. 2d presents the distribution of the fraction of residues in the
native structure that were modeled within 2.0 Å to the correct
positions (model coverage). In the two figures, top-scoring
models (solid circles) as well as the best model among the top
10 scoring models (open circles) were compared. Among the 40
maps tested, MAINMAST achieved a smaller Cα RMSD than
Rosetta on 26 maps, while the Rosetta’s model was better for the
rest of 14 maps when the top 1 models were considered (Fig. 2c).
RMSD values of the models by MAINMAST distributed in a
small range between 0.95 and 2.92 Å. On the other hand, Rosetta

generated high-quality models of less than a 1.0 Å RMSD for the
14 models that were better than MAINMAST; however, it also
generated significantly high RMSD models. There were 21
Rosetta models which had an RMSD over 10.0 Å. Where the
coverage is concerned, all MAINMAST models had a coverage
over 0.9, while that of Rosetta models had a wider variation, from
0.28 to 1.0 in the coverage (for top 1 models, solid circles)
(Fig. 2d). Interestingly, however, when MAINMAST and Rosetta
models were compared for each map, Rosetta models had a larger
overlap for 22 cases, when top 1 models were considered. To
understand the nature of the Rosetta models, we further analyzed
them by evaluating accuracy assigned fragments and full residue
models in Supplementary Fig. 2. It turned out that the Rosetta
protocol assigns fragment structures to an EM map accurately
most of the time, but often could not assign fragments for the
entire protein structure in the map, which led to inaccurate
modeling in the subsequent step of filling gaps between assigned
fragments.

In the four bottom panels in Fig. 2, we further examined the
performance of the MAINMAST procedure. Figure 2e, f shows
how well the threading score ranked Cαmodels. Threading scores
and RMSDs of models for an EM map have a negative correlation
since the higher threading scores are better. Figure 2e is a
histogram of correlation coefficient between threading scores and
RMSDs of models for the 40 EM maps. A negative correlation

EM density MAP

Find representative
points by mean shifting

Connect all points by
mininmum spanning tree

Refine tree structures by
Tabu-search

Construct full-atom
model by PULCHRA

Refinement by MDFF

Final model

Cα model

Fig. 1 Flowchart of MAINMAST. Steps of the MAINMAST algorithm is illustrated with a modeling example for an EM density map of structural protein 5 of
cytoplasmic polyhedrosis virus solved at a 2.9 Å resolution (EMD-6374). First, points with high local density are identified with the mean shift algorithm.
The color scale of the points indicate density, blue to orange for low to high density. Identified local dense points are connected by minimum spanning tree
(MST) (cyan). Using tabu-search, the initial MST is refined and a few thousands of alternative MSTs are generated. For each MST, the amino acid
sequence of the query protein is mapped on the longest path in the tree by matching the volume of amino acids to the density of the local dense points
(threading). Cα models from each MST are ranked with the density–volume matching (threading) score. In the third panel on the right, the blue chain
represents a Cα model and the structure in magenta is the native structure. Selected Cα models are refined with a sequential application of PULCHRA and
MDFF to obtain final full-atom models (turquoise)
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was observed for all of the maps, including 29 maps that have a
correlation higher than −0.5. Figure 2f shows such an example,
threading scores and RMSDs of models for ferripyochelin binding
protein (PDB: 1V3W) (correlation coefficient: -0.767).

The last two panels show the extent to which Cα models by
MAINMAST can be further refined. Model refinement was
performed in two steps. From a Cα model, a full atom model is

constructed using PULCHRA20, which is then refined with
MDFF21. Figure 2g demonstrates that the PULCHRA-MDFF
refinement procedure improved Cα positions (Fig. 2g) over
models for 28 out of 40 cases (70.0%). A larger improvement was
observed for models that have a relatively high quality, those with
Cα RMSD less than 2.0 Å. On an average of the 40 cases, the
refinement procedure improved Cα RMSD from 1.79 to 1.66 Å.
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Comparing before and after MDFF (Fig. 2h), structures were
improved for all but two cases. Note that PULCHRA and MDFF
do not need human intervention such as manual parameter
setting. Thus, the entire modeling procedure from the Cα model
tracing by MAINMAST to the refinement is automated.

Models built from experimental maps. Next, we tested the
methods on the second benchmark set of 30 experimental EM
density maps obtained from EMDB (Supplementary Table 2).
The resolutions of the maps ranged from 2.6 to 4.8 Å. The protein
structure models deposited in PDB were used as the native
reference structures. For each density map, a single subunit was
manually segmented from a whole density map using UCSF
Chimera’s “zone tool” with the deposited structure26. For per-
forming the Rosetta de novo modeling protocol, a single subunit
was segmented out from the whole map at a distance of 4.0 Å as
described in the Rosetta paper19. With MAINMAST, 500 full-
atom models were built for each EM map, which were ranked by
the scoring function used by MDFF (See Methods). With Rosetta,
two parameter settings were used; the default setting19 and
another setting with a relaxed value, 0.8, for the consensus_frac
parameter, which was used in the fragment mapping phase. With
0.8 of this parameter, fragment conformation of a position in an
EM map is kept if 80% of the assigned fragments have consistent
structures. The default is 1.0.

Figure 3a shows RMSD of models built by the MAINMAST
procedure (Fig. 1) in comparison with models by Rosetta. For
Rosetta, results using 0.8 for consensus_frac are shown because it
gave better results than the default setting (Supplementary Fig. 3).
The detailed results are provided in Supplementary Table 3. The
average RMSD value of the MAINMAST models was 18.3 Å and
13 out of 30 top scoring (top1) models had an RMSD of less than
10.0 Å. On the other hand, Rosetta failed to model structures for
two maps (points above the panel) and the average RMSD of the
remaining 28 models was 27.0 Å. Rosetta often made models with
over 50 Å RMSD and there were only six top 1 models that have
an RMSD of less than 10.0 Å. Figure 3b presents sequence-
alignment free quality measures, i.e., the fraction of residues in
the native structure that are close (within 3.0 Å) to any residues in
the model (coverage) and vice versa (precision). All MAINMAST
models have both measures over 0.6 (average coverage, 0.88; and
average precision: 0.89) while the fraction of Rosetta models
varies from 0.17 to 0.99 with an average of 0.69. Thus, overall
MAINMAST was more successful than Rosetta.

The latter three panels examine the performance of MAIN-
MAST in details. Comparison between top 1 and top 10 models
(Fig. 3c) shows that the model selection was successful when the
structure pool contained a high quality model with an RMSD of
less than 10.0 Å while top 10 choices had better models by often
over 10 Å than the top 1 model when the quality of top 1 model
was not high. Figure 3d summarizes the results of structure
refinement with PULCHRA followed by MDFF. For the majority
of the cases the refinement improved the structures including

cases with drastic improvements of over 20 Å RMSD. The largest
improvement was achieved for the top 1 model of EMD-6478,
where the model was improved from 40.9 to 3.7 Å RMSD. The
large improvements occurred when the MDFF score selected
better (lower RMSD) structures than the selection made by the
threading score before the refinement. The model quality by
MAINMAST showed a weak correlation to the map resolution
(Fig. 3e).

Figure 4 illustrates models built by MAINMAST. The first
model is for EMD-6555, an EM map of the porcine circovirus
capsid protein determined at a 2.9 Å resolution. This protein has
a β sheet with eight strands, which is in general difficult to trace
by a software, as also evidenced by a 31.6 (30.4) Å RMSD model
generated by Rosetta (the result with a 0.8 consensus setting is
shown in parenthesis). Despite of the difficulty, the top 1 model
by MAINMAST correctly traced the main-chain, yielding a 2.4 Å
model. The next one (Fig. 4b) is another successful example of
MAINMAST. This is a structure of the magnesium channel
CorA, whose density map was determined at a 3.8 Å resolution
(EMD-6551). In the figure, we showed two models from
MAINMAST, the final top 1 model (turquoise) as well as the
Cα model (blue) for which the full-atom building and refinement
was applied to yield the final model. RMSD values of the models
to the native were 3.8 and 4.4 Å, for the final and the Cα model,
respectively. As shown in the figure, the refinement step
substantially improved structures at helical regions of the protein,
reproducing helical pitches close to the native. Rosetta models
had an RMSD of 20.4 (12.3) Å. The next example, Fig. 4c is a
model by MAINMAST for eL6 protein from yeast 60 S ribosomal
subunit (EMD-6478, 2.9 Å resolution). In this case, the top-
scoring Cα model by the threading score (blue) aligned the amino
acid sequence in the opposite direction, resulting in an RMSD of
40.9 Å. Coverage and precision of this model are 0.73 and 0.74,
respectively, which are not as low as one may think from the
RMSD value because the traced path is almost on the main-chain.
There was also a shift in the sequence mapping, which also
contributed to the large RMSD. However, the model selection
using the MDFF score after the full-atom building and refinement
managed to select the near-native model, which has an RMSD of
2.6 Å. Rosetta models had an RMSD of 21.3 (10.6) Å for this
protein. Figure 4d is a case that modeling by MAINMAST failed
at a local region due to a low local map resolution (Measles virus
nucleocapsid protein, EMD-2867, resolution 4.3 Å). The model-
ing was successful in the N-terminal to the middle part of the
protein (the left side of the figure), but the main-chain from
residues 32–34 and 93–95 (the zoomed region in the figure) were
incorrectly traced. It turned out that the local resolution for these
residue positions are significantly lower, 5.6–6.6 Å according to
the ResMap program27, which likely caused this problem.

Confidence level of models. As MAINMAST generates a large
number of structure candidates, consensus among top scoring
models are more reliable than other parts. Figure 5a, b shows the

Fig. 2Modeling results of the 40 simulated maps by MAINMAST in comparison with Pathwalking and Rosetta. a local RMSD and b structure overlap of the
models by MAINMAST compared with Pathwalking models computed with the CLICK server. For the Pathwalking algorithm, data are taken from the
publication in 2016. For the MAINMAST results, the model with the best threading score among the generated 2688 models were used. Structure overlap
by CLICK in panel b is defined as the percentage of residues in a structure placed within 3.5 Å to residues in the other superimposed structure. c, d show
comparison of the models by MAINMAST and Rosetta in terms of c the global RMSD and d the coverage, which is defined as the fraction of residues in a
model that have some residues in the model within 2.0 Å. Solid /open circles, the highest scoring models/the best models among generated models were
used for MAINMAST and Rosetta, respectively. Lines show y= x. e A histogram of correlation coefficients between the threading scores and RMSD of
2688 models generated by MAINMAST for the 40 EM maps. The correlation coefficient values are negative because the threading score is a high positive
value for a near native model with a small RMSD. f correlation between the threading scores and RMSD values of models generated for 1V3W. The
correlation coefficient is -0.767. g Comparison of Cα RMSDs of models before and after the full atom reconstruction and refinement using Pulchra and
MDFF (g-scale used was 0.5) for the 40 maps. h Comparison of full-atom RMSDs of models before and after structure refinement by MDFF
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top 1 model of F420-reducing hydrogenase α subunit (EMD-
2513, the density map determined at a 3.36 Å resolution) and
rotavirus VP6 capsid protein (EMD-6272, the map at 2.6 Å
resolution), respectively, with a color code showing the degree of
consensus among top 100 scoring models. The protein of EMD-
2513 was modeled at an RMSD of 3.8 Å, which implies the
modeling was reasonably successful overall; however, when
examined closely, the topology of the N-terminus was incorrectly
traced as shown in a magnified window on the left. The consensus

color code of this region is blue, indicating that this conformation
was not supported by many alternative models. In contrast, high
consensus regions (orange) are indeed well modeled as shown in
the right window. Regarding the model built from EMD-6272
(Fig. 5b), the consensus color code indicates that the domain on
the right is better modeled than the left domain. This is actually
the case as the left domain in blue has incorrect connections in its
β-sheet as shown in the magnified window, while the right
domain with a higher consensus has nicely modeled helical
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Fig. 3 Modeling results of the 30 experimental EM maps by MAINMAST. a Cα RMSD of the top scoring (solid circles) and the best RMSD model among
the top 10 scoring models (empty circles) by MAINMAST in comparison with the Rosetta top scoring models. The refinement by Pulchra and MDFF were
applied to the models. For Rosetta, results using 0.8 for the consensus fraction was used, because it showed better results than the default setting
(Supplementary Fig. 3). The points above the frame indicate that Rosetta could not model these proteins while MAINMAST made full models at the RMSD
values. b Comparison between MAINMAST and Rosetta (with a 0.8 consensus setting) in terms of coverage and precision of models. Coverage (precision)
is defined as the fraction of Cα atoms in the native structure (the model) which are closer than 3.0 Å to any Cα atoms in the model (the native structure). c
Comparison between the top scoring (Top 1) model and the best RMSD model among the top 10 scoring model for each of the 30 EM maps. d Comparison
of MAINMAST models before and after the refinement by Pulchra and MDFF. Models before the refinement were selected by the threading score while the
scoring function of MDFF was used after the refinement. e RMSD of the models (the best among the top 10 socring models) by MAINMAST after
refinement relative to the map resolution
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C (native and final model)

N (native and final model)
C (Cα model)

N (Cα model)

a b

c d

Fig. 4 Examples of models generated by MAINMAST for experimental EM maps. The models were ranked first by the MDFF’s score. Structures in
turquoise are computed by MAINMAST and structures in magenta are the native structure. a capsid protein of porcine circovirus at 2.9 Å resolution
(EMD-6555). MAINMAST model: 2.4 Å RMSD. Coverage and precision were both 0.88. Coverage and precision are defined as the fraction of Cα atoms in
the native and the model, respectively, which are closer than 2.0 Å to any Cα atoms of the counterpart. Rosetta models have RMSDs of 31.6 and 30.4 Å
with the default and a 0.8 consensus setting, respectively. Cov: 0.36, Prec: 0.36. b magnesium channel CorA at 3.8 Å resolution (EMD-6551). MAINMAST
model (turquoise), RMSD: 4.4 Å, Cov: 0.91, Prec. 0.92. blue, the main-chain model prior to PULCHRA/MDFF refinement, RMSD: 10.7 Å, Cov: 0.81, Prec:
0.84. Rosetta models, 20.4/12.3 Å RMSD, Cov: 0.75/0.79, and Prec: 0.75/0.79 with the default/a 0.8 consensus setting. c eL6 protein from yeast 60S
ribosomal subunit, at 2.9 Å resolution (EMD-6478). MAINMAST model, RMSD: 2.6 Å, Cov: 0.90, Prec: 0.90; blue, the main-chain model prior to
PULCHRA/MDFF, RMSD:40.9 Å, Cov: 0.73, Prec: 0.74. This large RMSD is due to the failure of scoring a model with the correct sequence orientation by
the threading score. However, a model with the correct sequence orientation was selected by MDFF after refinement. Rosetta models, 25.6/42.0 Å RMSD,
Cov: 0.63/0.42, and Prec: 0.63/0.42 with the default/a 0.8 consensus settings. d helical Measles virus nucleocapsid protein at a 4.3 Å resolution (EMD-
2867). MAINMAST model, RMSD: 9.3 Å, Cov: 0.68, Prec: 0.68; Rosetta models, RMSD: 21.3/10.6 Å, Cov: 0.68/0.72, Prec: 0.68/0.72 with the default/a
0.8 consensus setting

N (native)
N (final model)

a

b

Fig. 5 Models with confidence level in colors. a F420-reducing hydrogenase α subunit at 3.36 Å resolution (EMD-2513). The top-scoring MAINMAST full-
atom model after the refinement had an RMSD of 3.8 Å, a coverage of 0.92, and a precision of 0.91 while the Cα model before the refinement was at an
RMSD of 4.3 Å, a coverage of 0.88, and a precision of 0.88. The color code shows confidence of residue positions, which was computed by the degree of
consensus among top 100 MDFF score models with blue to orange for low to high confidence regions. When only the residues that had consensus
positions (within 3.5 Å) for over 50 models were considered (orange regions; 129 out of 385 residues), the RMSD was 2.1 Å. b rotavirus VP6 capsid protein
at 2.6 Å resolution (EMD-6272). MAINMAST modeled it at 17.6 Å RMSD, Cov: 0.87, and prec: 0.86. Consensus residue positions over 50 models (orange
regions) had an RMSD of 4.6 Å (180 out of 397 residues)
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regions. Supplementary Fig. 4 shows that the error of Cα posi-
tions of these two models monotonically decreases as the degree
of consensus increases. The correlation between the consensus
degree and the accuracy is a general trend for MAINMAST
models as shown in Fig. 6. It can be seen that the error decreases
substantially, to around 3 Å on average, if a position is in con-
sensus with 50 or more models.

Building missing fragments. We also compared MAINMAST
with a recently published modeling protocol in the Rosetta
package, RosettaES28, on the data set used in their paper. The data
set consists of 44 segments of between 11–160 residues from nine
proteins, which have EM maps of a 3-5 Å resolution and
deposited tertiary structures (Supplementary Table 1 in the
RosettaES paper28). The average backbone RMSD of the modeled
fragments by RosettaES, RosettaCM25, which was compared with
RosettaES in their paper, and MAINMAST were 2.4, 10.3, and
2.68 Å, respectively. Table 1 shows summary of a direct com-
parison between RosettaES and MAINMAST. Out of 44 frag-
ments in the data set, the model by MAINMAST had a lower or

identical RMSD with RosettaES models for 16 cases, and better or
worse but within an RMSD margin of 0.5 or 1.0 Å to RosettaES
models for 26 and 32 cases, respectively. Considering a recent
study that investigated variability of structure models from EM
maps29, a difference within 1 Å is not meaningful for maps
determined at a resolution of 3 Å. Thus, overall the performance
of MAINMAST was comparable to RosettaES. The modeling
results of individual fragments by MAINMAST are provided in
Supplementary Table 4.

Discussion
We have developed MAINMAST, a fully automated de novo
structure modeling method that constructs main-chain models
from an EM density map. When benchmarked on 40 simulated
EM maps and 30 experimental EM maps, the MAINMAST
procedure showed better performance in comparison with other
two existing methods, Pathwalking and Rosetta. In this work,
Rosetta was run following the authors’ tutorial and their paper19

(Supplementary Note 1). It is noted that a completely fair com-
parison is not possible and different ways of running Rosetta may
lead to better models. The purpose of the comparison between
MAINMAST and the two existing methods is to characterize the
strengths and weaknesses of MAINMAST.

We demonstrated that EM maps of around 4 Å resolution have
sufficient information for MAINMAST to construct near native
protein structure models and it can be accomplished without
using any reference structures and or fragments. This is an
advantage in that it generates a fully connected model, which is
often a problem for methods that build models by assigning
fragments. Another strength is that MAINMAST produces
alternative models, which users can compare, examine, and
choose from. Moreover, by computing consensus regions among
top scoring models, MAINMAST provides a confidence level to
structure regions in a model, which is shown to correlate well to
the actual accuracy. On the other hand, MAINMAST has an
intrinsic weakness that modeling can often have some difficulty at
local low dense regions.
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Fig. 6 Average accuracy of residue positions relative to the degree of consensus among top 100 models for the 30 real EM maps. Cα positions of top
1 scoring model of 28 experimental EM maps were compared from those from top 2 -99 models, which were ranked by the MDFF score. Two maps, EMD-
3073 and EMD-8116 were excluded because the top 1 protein models generated for these two maps were exceptionally bad (RMSD: 40.42 Å and 49.78 Å,
respectively). Consensus on the x-axis shows the fraction of the models that have a residue within 3.5 Å. Black circles, the average error of each Cα
positions (the bar on the left) of top 1 scoring model relative to the consensus fraction. Triangles, the total number of residues in the 30 models (the bar on
the right) that have a certain consensus value. It is evident that the quality of regions with a consensus of 0.5 or higher are modeled well, on average within
less than 3.0 Å

Table 1 Comparison with RosettaES on the data set of 44
fragments

Criteria Number of cases

Better or equal RMSD model 16
Better or RMSD difference ≤0.5 Å 26
Better or RMSD difference ≤1.0 Å 32
Better or RMSD difference ≤1.5 Å 38
Better or RMSD difference ≤2.0 Å 40

The data set was taken from Supplementary Table 1 in the RosettaES paper28. These proteins
have their EM maps of a 3-5 Å resolution and deposited structure models available in EMDB.
The results of RosettaES and RosettaCM were taken from the columns of the best scoring
results in the Supplementary Table 1 of the RosettaES paper. The number of cases among the 44
modeled fragments were counted where MAINMAST constructed a lower RMSD conformation
to the native conformation than RosettaES or worse than RosettaES models but within a
specified margin.
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Structure modeling from an EM map requires different tools
depending on the conditions, including map resolution and
availability of homologous structures. Among such tools, de novo
main-chain tracing methods, such as the one we presented, is one
of the most fundamental and thus versatile. We expect the new
method, MAINMAST, will serve as an indispensable tool for
structure determination with EM.

Methods
The MAINMAST procedure. MAINMAST consists of five steps (Fig. 1): (1)
Identification of local dense points (LDPs) in an EM density map by the mean
shifting algorithm; (2) Connection of LDPs to a MST; (3) Generating many tree
structures by a tabu search; and (4) for each of the trees, aligning and evaluating the
protein sequence in two directions by the threading score. (5) Finally, top scoring
models by the threading score undergo refinement using PULCHRA and MDFF.
Models are reranked by the score of MDFF.

Identifying local dense points with mean shift. The first step of the algorithm is
to identify LDPs in an EM map, where protein atoms are more likely to exist. The
mean shift algorithm30, a non-parametric clustering algorithm originally developed
for image processing, is used for this task. The assumption is that a density
observed in a map is the sum of density functions that originate from atoms in the
map. The primary assumption of the mean shift algorithm is that each point in the
map represents a Gaussian density function and the local maxima of dense regions
correspond to the chain positions of proteins. This process significantly reduces the
number of points to consider in an EM map. For given grid points xi (i= 1, …, N)
of an EM map, initial seed points yð0Þj (j= 1, …, M) are chosen whose density value
is not less than a given threshold Φthr. The seed points yð0Þj are iteratively updated,
yðtþ1Þ
j ¼ f yðtÞj

� �
, as follows:

f yð Þ ¼
PN

n¼1 k y � xnð ÞΦ xnð ÞxnPN
n′¼1 k y � xn′ð ÞΦ xn′ð Þ ; ð1Þ

where k(p) is a Gaussian kernel function and Φ xð Þ is a density value of the grid
point x. The k(p) is defined as

k pð Þ ¼ exp �1:5
���
��� p

2

σ

���
���

� �
; ð2Þ

where the σ is a bandwidth, which is set to 1.0.
After the seed point positions yðtÞj are updated, the density value of the points

Θ yð Þ are computed as

Θ yð Þ ¼ 1
N

XN
n¼1

k y � xnð ÞΦ xnð Þ ð3Þ

The density is further normalized with the minimum density value Θmin and the
maximum density value Θmax of all the seed points

θ yð Þ ¼ Θ yð Þ � Θmin

Θmax � Θmin
: ð4Þ

Points are discarded if the density does not satisfy the threshold θthr. Also, seed
points that are closer than a threshold distance (0.5 Å) are clustered, and the
highest density, zk in cluster k, is chosen as the representative of the cluster. This
process is iterated until the positions of the selected representative points are
converged. The representative points in the clusters are called LDPs. Finally in this
step, LDPs zi and zj are labeled as adjacent if any pair of converged points, yðtÞn and
yðtÞm , in the two clusters where the LDPs belong to are originally adjacent at their
initial seed point position, yð0Þn and yð0Þm . This list of adjacent LDPs is used in the
next step of connecting LDPs. Typically, the number of clusters is about 40% of the
number of heavy atoms of the underlined protein in the map.

Construction of MST. The next step is to connect LDPs into a MST. MST is a
graph structure that connects vertices with the minimal total weight of edges
without forming cycles. Thus, a tree structure T of MST minimizes

W Tð Þ ¼
X
e2T

w eð Þ; ð5Þ

where w(e) is a weight for an edge e.
In MAINMAST, a weight of an edge is the Euclidean distance between

connected LDPs by the edge. We adopt MST to connect LDPs with the minimum
total distance because usually there are abundant LDPs along the main-chain of a
protein. On top of the conventional algorithm to construct the MST, MAINMAST
applies two heuristics: First, using the list of adjacent LDPs, two LDPs are
connected only if they are in the list. Second, we also compute local MSTs for a
local space defined by a sphere with a radius of rlocal centering at each LDP and

only edges in the local MSTs are considered in constructing the (global) MST. This
is effective to improve the accuracy of local connection of the global MST.

Refinement of tree structure. The obtained MST is further refined because the
longest path in the MST usually is not entirely correct with some wrong connec-
tions and disconnections. It turned out that the tree structure is further improved
for finding the protein main-chain if branches of the tree, but not only the longest
path, are also taken into account. Starting from the MST, a tree structure T is
evaluated with the following scoring function S:

S Tð Þ ¼
XN
n¼1

X
e2Pn

w′ eð Þ
 !2

; ð6Þ

where Pn is a n-th longest path in the given tree T, e is an edge in Pn, and w′(e) is a
cost function of the edge e, which is defined as a product of the length and
minimum value of Θ yð Þ on the edge e. P1 is the longest path of the tree. The second
longest path, P2, is obtained by finding the longest path after removing all the edges
in P1, and so on. N is the number of paths to be considered, which is set to 100.

Long branches are good candidates of partial paths to be included into the
longest path during the iterative refinement.

Using the evaluation function in Eq. 6, the initial tree structure (i.e., MST) is
refined in an iterative fashion using a tabu search31. A tabu search attempts to
explore a large search space by keeping a list of moves that are visited recently and
thus are forbidden (tabu list). Starting from a given tree (MST), in each iteration an
existing edge edelete is deleted, which will split the tree into two parts, and then a
different edge is added (eadd) to connect the two parts back to one tree. edelete is
selected from possible moves that are not listed in the tabu list and should have a
large weight, w(edelete) > dkeep, to avoid a minor change in the resulting tree. At the
same time, we restrict the move that gives a tree T with the similar total length, W
(T) (Eq. 5), to the MST, i.e., W(T) ≤ 1.01 ×W(TMST).

This procedure is repeated for 30 times for an iteration and a tree that has the
best score S (Eq. 6) among the generated 30 trees is selected. Then, the newly
generated tree overwrites the previous tree if the new one has a better score (Eq. 6).
Thus, at the end of Nit iterations, the tree that has the best score S among generated
at each iteration is kept.

Then, the chosen movement (i.e., the deleted edge and the added ege) and the
movement that goes backwards from the updated tree to the original tree are added
to the tabu list and the oldest edge pairs in the list are deleted. Since the size of the
tabu list is set to 100 and two edges are added to the list at each iteration, edges are
simply accumulated in the list for the first 50 iterations. The tabu search is efficient
because the conformation search is performed by manipulating lists of edges.

Threading target sequence on the longest path. Using different combinations of
parameters a pool of trees are generated, which are finally ranked by a scoring
function that evaluates the fit of the amino acid sequence of the protein to a path in
a tree (the threading score). The longest path of a tree is aligned with the expected
density value of the amino acid sequence using the Smith–Waterman Dynamic
Programming (DP) algorithm32. For a protein sequence, the density of each amino
acid at the position j, Aj, is estimated by considering the average density of the
amino acid in a set of simulated EM maps DAj, and a weight that depends on the
predicted secondary structure SSj, of the amino acid, WSSj:

Aj ¼ WSSj
DAj

ð7Þ

The secondary structure of the protein sequence is predicted using SPIDER233.
On the other hand, for the longest path in the tree, the density value Vj for a LDP zi
is initially given by the sum of the density values of grid points that belong to the
same cluster as zi. which is then subject to smoothing by a Gaussian filter to obtain
the final value as a weighted sum of neighboring LDPs:

Vk ¼
XL
i¼1

vk
1

σpath
exp

�jjzi � zkjj2
2σpath

 !( )
; ð8Þ

where L is the number of LDPs along the longest path, σpath is a standard deviation.
Thus, DP aligns the string of estimated densities of the amino acid sequence Aj

(j= 1, .. N; N is the number of amino acids) and the string of densities of LDPs in
the longest path Vk (k= 1, … L). The values of the densities are normalized by the
Z-score computed relative to the densities of each string, which is used to define the
similarity score SCOi,j for a pair of Aj and Vk to perform DP:

SCOi;j ¼ 1:00� Z Við Þ � Z Aj

� ����
���; ð9Þ

where Z Við Þ and Z Aj

� �
are Z-score of Vi and Aj , respectively. Using SCO, an

alignment is computed with by the following rule to fill a DP matrix, M:

M i; jð Þ ¼ max

M i; j� 1ð Þ þ gap

M i� 1; j� 1ð Þ þ wCαCα dist dð Þ þ SCO i; jð Þ
M i� 1; jð Þ

8><
>:

; ð10Þ
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where “gap” is a gap penalty for unassigned residues in the protein sequence, wCα is
a weight for a penalty score of Cα distance (set to 0.9), Cα_dist:

Cα dist dð Þ ¼ dstd � dj j ð11Þ

where dstd is the standard C⍺-C⍺ distance in protein chains and d is the distance
between the positions where residue i-1 and i are aligned in the map. Note that in
the third line in Eq. 10, a gap inserted to the amino acid sequence is not penalized
because the number of LDPs is much larger than the number of amino acids in the
protein (typically 1.6–3.5 times more than the protein length).

Parameter combinations. The whole procedure employs several parameters.
Multiple C⍺ models were constructed with different combinations of parameters.
For the models of the 40 simulated maps we employed all combinations of the
following parameters: The maximum number of the iterations (Nit): (10, 50, 100,
500); the threshold of the normalized density value (θthr): 0.3; the constraint for the
length (dkeep): (0.5, 1.0 Å); the threshold of the density value (thr): (9.0, 10.0, 11.0),
the sphere radius of local MST (rlocal): 5.0 Å. For each of the 24 (= 4 × 2 × 3)
combinations of the parameters, ten trees were generated, from each of which a
longest path was computed. For each of the ten paths, 112 (= 7 × 8 × 2 sequence
directions) C⍺ models were generated with combinations of wbond: 0.9; σpath: (0.8,
0.9, 1.0, 1.1, 1.2, 1.3, 1.4); dstd: (3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 Å), and two
sequence directions. Thus in the overall process, 24 × 10 × 112= 26,880 C⍺ models
were generated. These C⍺ models were ranked by their threading score. The top
scoring models often include those which have overall similar conformations but
with opposite sequence directions. In the results, up to top 10 best scoring models
were reported in the result section.

For the data set of 30 experimental EM maps, we used combinations of the map
density threshold (Φthr): (the author recommended contour level × 0.5, 0.25) for
Eq. 1; the density threshold (θthr): (0.0, 0.1, 0.2, 0.3); the local map radius (rlocal):
(5.0, 7.5, 10.0 Å); and the edge weight threshold (dkeep): (0.5, 1.0, 1.5 Å). Nit is set to
5000. The number of parameter combinations explored for the experimental maps
were more than the simulated map cases, because each real EM maps has a
different resolution and electron density distribution. Similar to the simulated map
cases, for each of the 72 (= 2 × 4 × 3 × 3) parameter combinations ten trees, i.e., ten
paths are generated, and the same 112 parameter combinations of wbond, σpath, dstd,
and two sequence directions were used to generate in total of 80,640 Cα models.
The models were ranked by their threading score and top 500 models were selected.

These 500 models underwent full-atom structure building and structure
refinement by PULCHRA20 and MDFF21 (g-scale: 0.5) and finally ranked by the
scoring function by MDFF. The MDFF’s score evaluates the molecular mechanics
energy and the fit of a model to the EM map. Thus, it is highly possible that top-
scoring models by MDFF are different from the threading scores’ selection.

Performance metrics. Accuracy of a model relative to the native structure (the
fitted structure for the EM map deposited to EMDB by the authors) was evaluated
in three metrics. Cα RMSD, RMSD computed between Cα atom positions of the
model relative to the corresponding Cα atoms of the native structure. Thus, the
amino acid sequence of the protein is taken into account. Coverage is defined as the
fraction of Cα atoms in the native structure that are within a certain distance cutoff
(e.g., 2.0 Å) to any Cα atoms in the model. Precision is computed from the opposite
side; the fraction of Cα atoms in the model that are within a certain distance cutoff
(e.g., 2.0 Å) to any Cα atoms in the native structure. Thus, coverage and precision
consider the conformation of the model, but do not explicitly consider sequence
information.

Model building with Rosetta. To construct a model for an EM map with the
Rosetta package (ver. 3.6), first a fragment library was generated for a protein
sequence that has 25 conformations per sequence position of 9 residue long using
the Rosetta server (http://rosettaserver.bakerlab.org/). Fragments from homologous
proteins were excluded. Next, following the tutorial of Rosetta tools, fragments
were chosen and assembled in the EM map using the denovo_density program in
the Rosetta package. Then, gaps in the structure that were not modeled by deno-
vo_density were filled and refined using the RosettaCM protocol25 following the
paper by Wang et al19. Concrete commands used are provided in Supplementary
Note 1. RosettaCM generates 1000 full-length models, from which the top 200
models in terms of the Rosetta energy were selected. Finally, the model that has the
best agreement with the EM density (i.e., the lowest density score) was selected as
the first model.

Code availability. The MAINMAST program is freely available for academic use
through http://kiharalab.org/mainmast/index.html. Parameters used in the study
are listed in the previous section, “Parameter combinations”.

Data availability. The raw data of the structure models built by our method are
provided in Supplementary Information, Supp. Table 1, 3, 4. The data that support
the findings of this study are available from the corresponding author upon
request.
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