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The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although
liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major
drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal
efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional
moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds.
This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives,
toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite
technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of
conventional liposomes for pharmaceutical applications.

1. Introduction

Over the past few decades, liposomes have received wide-
spread attention as a carrier system for therapeutically
active compounds, due to their unique characteristics such
as capability to incorporate hydrophilic and hydrophobic
drugs, good biocompatibility, low toxicity, lack of immune
system activation, and targeted delivery of bioactive com-
pounds to the site of action [1–4]. Additionally, some
achievements since the discovery of liposomes are controlled
size from microscale to nanoscale and surface-engineered
polymer conjugates functionalized with peptide, protein,
and antibody [5, 6]. Although liposomes have been exten-
sively studied as promising carriers for therapeutically active
compounds, some of the major drawback for liposomes used
in pharmaceutics are the rapid degradation due to the reticu-
loendothelial system (RES) and inability to achieve sustained
drug delivery over a prolonged period of time [7]. New

approaches are needed to overcome these challenges. Two
polymeric approaches have been suggested thus far. The first
approach involves modification of the surface of liposomes
with hydrophilic polymers such polyethylene glycol (PEG)
while the second one is to integrate the pre-encapsulated
drug-loaded liposomes within depot polymer-based systems
[3]. A study conducted by Stenekes and coworkers [8]
reported the success of using temporary depot of polymeric
materials to control the release of the loaded liposomes for
pharmaceutical applications. This achievement leads to new
applications, which requires collaborative research among
pharmaceuticals, biomaterials, chemistry, molecular, and cell
biology. Numerous studies in this context have been reported
in the literature dealing with temporary depot delivery sys-
tem to control the release of pre-encapsulated drug-loaded
liposomes [9–12]. This system was developed to integrate the
advantages while avoid the disadvantages of both liposome-
based and polymeric-based systems. The liposome-based
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systems are known to possess limitations such as instability,
short half-life, and rapid clearance. However, they are
more biocompatible than the polymer-based systems [13].
On other hand, the polymer-based systems are known to
be more stable and provide improved sustained delivery
compared to liposome-based systems. However, one of the
major setbacks is poor biocompatibility which is associated
with loss of the bioactive (i.e., the drug) during fabricating
conditions such as heat of sonication or exposure to organic
solvents [3, 11]. The benefits of a composite system, however,
include improvement of liposome stability, the ability of the
liposome to control drug release over a prolonged period of
time, and preservation of the bioactiveness of the drugs in
polymeric-based technology. In addition, increased efficacy
may be achieved from this integrated delivery system when
compared to that of purely polymeric-based or liposome-
based systems. The aim of this article therefore, is to review
the current liposome-based and polymeric-based technolo-
gies, as well as the integration of liposome-based technology
within temporary depot polymeric-based technology for
sustained drug release. The discussion will focus on different
types of liposome-based technology and depot polymeric
scaffold technologies, various methods for embedding drug-
loaded liposomes within a depot, and various approaches
reported to control the rate of sustained drug release within
depot systems over a prolonged period of time.

2. Liposome-Based Technology

A liposome is a tiny vesicle consisting of an aqueous core
entrapped within one or more natural phospholipids form-
ing closed bilayered structures (Figure 1) [5]. Liposomes
have been extensively used as potential delivery systems
for a variety of compounds primarily due to their high
degree of biocompatibility and the enormous diversity of
structures and compositions [14, 15]. The lipid components
of liposomes are predominantly phosphatidylcholine derived
from egg or soybean lecithins [15]. Liposomes are biphasic
a feature that renders them the ability to act as carriers
for both lipophilic and hydrophilic drugs. It has been
observed that drug molecules are located differently in the
liposomal environment and depending upon their solubil-
ity and partitioning characteristics, they exhibit different
entrapment and release properties [15, 16]. Lipophilic drugs
are generally entrapped almost completely in the lipid
bilayers of liposomes and since they are poorly water soluble,
problems like loss of an entrapped drug on storage are rarely
encountered. Hydrophilic drugs may either be entrapped
inside the aqueous cores of liposomes or be located in the
external water phase. Noteworthy is that the encapsulation
percentage of hydrophilic drugs by liposomes depends on
the bilayer composition and preparation procedure of the
liposomes [17, 18].

Since liposome discovery by Bangham and coworkers [5],
several different embodiments of liposome-based technology
have been developed to meet diverse pharmaceutical criteria
[7]. Liposome-based technology has progressed from the
first generation “conventional vesicles,” to stealth liposomes,

targeted liposomes, and more recently stimuli-sensitive lipo-
somes [3, 19]. Essentially, liposomes are classified according
to their size range, being 50–5000 nm in diameter. This
resulted into two categories of liposomes namely multilamel-
lar vesicles and unilamellar vesicles [19]. Unilamellar vesicles
consist of single bilayer with a size range of 50–250 nm while
multilamellar vesicles consist of two or more lipid bilayers
with a size range of 500–5000 nm [3, 20].

2.1. Conventional Liposomes. Conventional liposome-based
technology is the first generation of liposome to be used
in pharmaceutical applications [3, 21, 22]. Conventional
liposome formulations are mainly comprised of natural
phospholipids or lipids such as 1,2-distearoryl-sn-glycero-
3-phosphatidyl choline (DSPC), sphingomyelin, egg phos-
phatidylcholine, and monosialoganglioside. Since this for-
mulation is made up of phospholipids only, liposomal
formulations have encountered many challenges; one of the
major ones being the instability in plasma, which results
in short blood circulation half-life [7, 23–25] Liposomes
that are negatively or positively charged have been reported
to have shorter half-lives, are toxic, and rapidly removed
from the circulation [23, 26, 27]. Several other attempts
to overcome these challenges have been made, specifically
in the manipulation of the lipid membrane. One of the
attempts focused on the manipulation of cholesterol. Addi-
tion of cholesterol to conventional formulations reduces
rapid release of the encapsulated bioactive compound into
the plasma [28]. Furthermore, studies by Tran and cowork-
ers [29] demonstrated liposome stability after addition
of “helper” lipids such as cholesterol and 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE). Harashima and
coworkers [20] demonstrated that phagocytosis of liposomes
was due to the size of the liposome formulation. Larger size
or multilamellar liposomes with a size range of 500–5000 nm
were the first to be eliminated from the systemic circulation.
Nanosized liposomes or small unilamellar vesicles with a
size range of 20–50 nm were only developed later [7, 20,
30]. The following drugs: Ambisone, Myocet, Daunoxome,
and Daunorubicin have received clinical approval using
conventional liposome technologies [31–33]. Although small
unilamilar liposomes were reported to have potential for a
decreased microphage uptake, insufficient drug entrapment
is still a major disadvantage. On the basis of this study,
the success of cholesterol and others phospholipids did not
completely overcome the major challenges.

2.2. Stealth Liposomes. Stealth liposome technology is one
of the most often used liposome-based systems for delivery
of active molecules [3, 22]. This strategy was developed to
overcome most of the challenges encountered by conven-
tional liposome technology such as the inability to evade
interception by the immune system, toxicity due to charged
liposomes, low blood circulation half-life, and steric stability
[7, 22, 26]. Stealth liposome strategy was achieved simply by
modifying the surface of the liposome membrane, a process
that was achieved by engineering hydrophilic polymer
conjugates [34]. The employed hydrophilic polymers were
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Figure 1: Schematic representation of liposome-based systems. (a) Conventional liposomes. (b) Stealth liposome coated with a polymeric
conjugate such as PEG. (c) Stealth liposome coupled with a functionalized ligand. (d) Liposome with a single ligand and antibody.
(e) Duplicated ligand with repeated peptide sequence. (f) Liposome loaded with perfluorocarbon gas (adapted from Zucker et al. [16]).

either natural or synthetic polymers such polyethylene glycol
(PEG), chitosan, silk-fibroin, and polyvinyl alcohol (PVA)
[35–38]. Several properties that would add advantages to
polymeric conjugate were considered such as high biocom-
patibility, nontoxicity, low immunogenicity, and antigenicity
[3, 35]. Although the majority of hydrophilic polymers
meet the above criteria, PEG remains the most widely used
polymer conjugate. It is specifically employed to increase the
hydrophilicity of the liposome surface via a cross-linked lipid
[39, 40]. PEGylated liposomal doxorubicin (DOXIL/Caelyx)
is the exceptional example of stealth liposome technology to
be approved by both the USA Food and Drug Administration
(FDA) and Europe Federation [41]. Although prominent
results were achieved from this model such as reduction
of macrophage uptake, long circulation, and low toxicity,
passive targeting is still a major disadvantage since liposomes
can deliver active molecules not only to abnormal cells but
also to sensitive normal cells [7, 42]. Figure 2 depicts a
schematic for a PEGylated liposome.

2.3. Targeted Liposomes. Targeted liposome based system
was suggested after conventional stealth liposome failed
to evade uptake of active molecules by sensitive normal
cells or nonspecific targets in vivo [43, 44]. Unlike stealth

liposome, site-specific targeting liposome has been engi-
neered or functionalized with different types of targeting
moieties such antibodies, peptide, glycoprotein, oligopep-
tide, polysaccharide, growth factors, folic acid, carbohydrate,
and receptors [45–50]. In addition, targeted ligand can
further increase the rate of liposomal drug accumulation in
the ideal tissues/cells via overexpressed receptors, antigen,
and unregulated selectin [51–55]. Peptides, protein, and
antibodies have been most extensively studied as a ligand
for directing drug-loaded liposomes into sites of action, due
to their molecule structures, which are essentially composed
of known amino acid sequences. Furthermore, it has been
postulated that ligands can be conjugated onto pegylated
liposomes via different types of coupling methods, such
as covalent and noncovalent binding. Covalent coupling
occurs when novel ligands are indirectly engineered on
the surface of liposome through a hydrophobic anchor
via thioether, hydrazone bonds, avidin–biotin interaction,
cross-linking between carboxylic acids and/or amines [56].
Noncovalent coupling is observed when novel ligands are
directly added to the mixture of phospholipids during the
liposomal formulation [15]. Li et al. [48] attempted to
generate dual ligand liposome conjugates aimed at targeting
multiple receptor types on the cell surface receptors. Ex vivo
studies demonstrated the success of the dual ligand approach
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Figure 2: Schematic depicting of a stealth PEGylated liposome
(Adapted from Rai et al. [58]).

in improving the selectivity when compared to a single
ligand approach. In another study, Ying and coworkers [50]
formulated dual targeted liposomes with various targeted
moieties such as p-aminophenyl-α-D-manno-pyranoside
(MAN) and transferrin (TF). The study was conducted
both ex vivo (in C6 glioma cells) and in vivo (in C6
brain glioma-bearing rats). The following were compared:
free daunorubicin, daunorubicin liposomes, daunorubicin
liposomes modified with MAN, and daunorubicin liposomes
modified with TF as the controls, and daunorubicin lipo-
somes modified with MAN and TF. Daunorubicin liposomes
modified with dual ligands such as MAN and TF showed
a more significant increase in therapeutic efficacy, when
compared with the drug alone, drug-loaded liposome, or
single ligand modified surface of the liposome. However,
the efficacy of these approaches faces limitations because
protein circulation and gene expression cannot be sustained
for long periods of time [7]. Doxorubicin-loaded liposomes
were surface engineered with monoclonal antibody and are
now commercially available [57]. The overall advantage of
this model of liposome is an increase in active molecules or
drug reach targeted cells via endocytosis [7].

In another study, Nallamothu and coworkers [59]
demonstrated the usefulness of Combretastatin A4 as novel
antivascular agent. This compound portrays its anticancer
activity by inducing irreversible vascular shutdown in solid
tumors [60]. Despite its anticancer potential, the drug
has shown to have several undesirable side effects to the
underlying normal tissues [61]. These problems may be
alleviated by targeting the drug specifically to the solid tumor
vasculature. Studies have shown that certain cell adhesion
molecules such as αvβ3 integrin receptors are overexpressed
on actively proliferating endothelium of the tumor vascu-
lature [62, 63]. These surface markers discriminate tumor
endothelial cells from the normal endothelial cells and can
be used as a target for antivascular drug delivery [59].
Nallamothu and coworkers [59] could demonstrate that
peptides with Arginine-Glycine-Aspartine (A-G-A) amino

A-G- Apeptide
PEG

Liposome bilayer

Figure 3: A schematic representation of the targeted liposome
delivery system depicting the cyclic RGD peptides that targets the
αvβ3 integrin receptors on the vascular tumor cells (adapted from
Nallamothu et al. [59]).

acid sequence constrained in a cyclic polyethylene-glycol
(PEG)-based liposome framework can bind to the αvβ3

integrin receptors. Basing on this analogy, they could design
a targeted liposome delivery system for combretastatin A4
with cyclic (RDG) peptides as targeting ligands (Figure 3).
Targeting of combretastatin A4 to irradiated tumors using
this delivery system resulted into significant tumor growth
delay [59].

2.4. Other Types of Liposomes

2.4.1. Virosomes and Stimuli-Responsive Liposomes. Liposo-
mal technologies, such as conventional, stealth, and targeted
liposomes have already received clinical approval [64, 65].
New generation types of liposome have been developed to
increase bioactive molecule delivery to the cytoplasm by
escape endosome [1, 66, 67]. New approaches that employ
liposomes as pharmaceutical carriers are virosomes and
stimuli-type liposomes. The stimulating agents in this case
include pH, light, magnetism, temperature, and ultrasonic
waves. A virosome (Figure 4) is another type of liposome
formulation. It comprises noncovalent coupling of a lipo-
some and a fusogenic viral envelop [68]. A stimuli-sensitive
liposome is a type of liposome that generally depends on
different environmental factors in order to trigger drug, pro-
tein, and gene delivery. A study conducted by Schroeder et al.
[69], Liu and coworkers [67], and Lentacker and coworkers
[70] demonstrated that the exposure of the liposome loaded
with perfluorocarbons gas to ultrasound waves triggered
drug and gene delivery into the cytoplasm of the targeted
cells through cell membrane pores. Their data demonstrated
that the liposome-loaded magnetic agents triggered drug
delivery to the specific site in vivo, using an externally applied
magnetic field. The enhancement of endosomal release of
drug-loaded liposome into the cytoplasm was also reported
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Figure 4: A schematic representation of a virosome (source: Pevion
Biotech Ltd. [73]).

to be influenced by the utilization of pH-sensitive liposomes
or by attachment of pH-sensitive fusogenic peptide ligands
[1, 71, 72]. Most recently, a review article published by
Chen and coworkers [4] described the generation of stable
liposomes utilizing lyophilization techniques, which may be
a promising future model for liposome production.

2.4.2. Gene-Based Liposomes. The characterization of human
genome coupled with recombinant DNA technology has cre-
ated opportunities for gene therapy that never existed before
[74]. Candidate diseases for such technology include cancer
[75], arteriosclerosis [76], cystic fibrosis [77], haemophilia,
sickle cell anaemia, and other genetic diseases. Ideally, the
administration of the gene of interest should result in
the expression of the therapeutic protein. However, the
delivery of the large anionic bioactive DNA across cell has
been one of the most difficult endeavors. DNA is easily
degraded by circulating and intracellular deoxyribonucle-
ases. Notwithstanding, it must also be delivered intact across
the cell and nucleolar membranes to the nucleus [74].
Liposomes have thus proved to achieve efficient intracellular
delivery of DNA [78, 79]. Such liposomes are prepared
from phospholipids with an amine hydrophilic head group.
The amines may be either quaternary ammonium, tertiary,
secondary, or primary, and the liposomes prepared in this
way are commonly referred to as cationic liposomes, since
they possess a positive surface charge at physiological pH.
The use of cationic liposomes as gene delivery systems was
firstly enforced in the late 1980s when in vitro studies by
Felgner and coworkers [80] could demonstrate that the
complexation of genes with liposomes may promote gene
uptake by cells in vitro. Since then, cationic liposomes of
varying description have been used to promote the cellular
uptake of DNA with resultant therapeutic protein expression
by various organs in vivo. Figure 5 depicts a schematic
representation of a DNA-liposome complex.

Although the experimental data have demonstrated that
cationic liposomes can facilitate the transfer of DNA into
live mammalian cells, there are still major problems that
need to be overcome in order to effectively achieve the
goal. These include a reduction in the rapid clearance
of cationic liposomes and the production of efficiently
targeted liposomes. At the cellular level, the problems may be

Figure 5: A schematic representation of a DNA-liposome complex
(adapted from Uchegbu [74]).

overcome by improving receptor mediated uptake employing
appropriate ligands. The endowment of liposomes with
endosomal escape mechanisms, coupled with more efficient
translocation of DNA to the nucleus and the efficient
dissociation of the liposome complex just before the entry
of free DNA into the nucleus might provide an optimal
cornerstone solution to the problem. This proposition is
depicted in Figure 6.

3. Temporary Depot Polymeric-Based Systems
for Liposomal Coupling

Polymer-based systems, such as hydrogel or prefabricated
scaffolds have been used as depots for drugs, regenerative
cells, protein, growth factor, and pre-encapsulated drug-
loaded liposome for sustained release [8, 12, 81–85]. Various
polymers have been researched for this application based
on their fundamental properties such as biodegradability,
biocompatibility, nontoxicity, and the noninflammatory
tendency. Natural and synthetic biodegradable polymeric
systems such chitosan, collagen, gelatin, fibrin, alginate,
dextran, carbopol, and polyvinyl alcohol have been employed
as temporary depot-forming agents since they meet most of
the above requirements [11, 84, 86, 87].

3.1. Injectable Polymeric Scaffolds. The strategy for gener-
ating an ideal depot for an active compound or bioactive
molecule-loaded liposome with the benefit of in local drug
retention and sustained release over prolonged time has
recently received much attention in both pharmaceutical
and bioengineering research [85, 88]. The in-situ forming
injectable polymer was among the most successful models,
since it was able to encapsulate protein and/or bioactive
molecules or function as a pre-encapsulated drug-loaded
liposomal formulation that was in liquid form [89, 90].
This solution or suspension mixture could then be injected
into the target organ with a needle to form a semisolid
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scaffold and finally an implant. The success in shifting from
liquid formulation to semisolid and finally to an implant
was a result of various desirable polymeric properties and
stimulating agents such as water, light, temperature, and pH,
that facilitated such processes within the polymer such as
precipitation, cross-linking, and polymerization [88, 91–93].
Since the majority of hydrogels were composed of natural
or synthetic biodegradable polymers, bioactive molecules
were released via passive diffusion, matrix pore formation,
or polymeric degradation [94–97]. Furthermore, semisolid
implant formation was reported as being dependant on
the polymeric state such as phase inversion, low-glass
transition temperature, or on hydrogels that formed by the
aid of cross-linking reagents and chemo- or thermosensi-
tazation [98, 99]. In addition, the system could deliver drug
directly or indirectly to the targeted sites, through subcu-
taneous injection and/or intratumoral injection (Figure 7)
[93]. Overall, the semisolid temporary depots offer sev-
eral advantages such as enhanced local drug retention,
sustained release, and potential for long-term storage.
However, repeated injections and passive drug release are
still a factor that limits their use as ideal pharmaceutical
carriers.

3.2. Prefabricated Polymeric Scaffolds. Prefabricated poly-
meric scaffolds have gained a lot of attention as depots for
delivery of bioactive molecules, regenerative cells, growth
factors, and pre-encapsulated bioactive loaded liposome
[100, 101]. Unlike injectable in situ scaffolds in which a
semisolid scaffold is achieved after injection, prefabricated
polymer scaffold solid depot materials are formed outside
the body, then surgically implanted [102]. In additional,
pre-fabrication polymeric scaffold can be designed to meet
the required characteristics of an ideal scaffold. Desir-
able attributes of an ideal scaffold are: three-dimensional
structure, appropriate surface chemistry, fabrication from
materials which are biodegradable or bioresorbable, should
not induce any adverse response, scaled pore capacity, and
highly reproducible shapes and size [99, 101]. Different
fabrication techniques have been used to achieve the above
criteria, such as fiber bonding, emulsion freeze drying,
solvent casting, high-pressure processing, gas foaming, and
electrospinning [102–105]. Various polymers that have been
researched for this application are either biodegradable or
nondegradable, synthetic or natural, or a combination of
the two [9, 106]. The major challenge of prefabricated
polymeric scaffolds is that a nondegradable polymeric device
requires surgical removal at the end of treatment, which
is often known to be associated with pain [107]. However,
the benefit on sustained release for the pre-encapsulated
drug loaded scaffold over a long period of time has been
reported and declared successful [96]. Stenekes and cowork-
ers [8] demonstrated that liposome embedded inside a
biodegaradble depot polymeric scaffold was able to sustained
drug release over a prolonged period of time (Figure 8).
In addition, the released liposome was found intact after
many days storage within the inside depot polymeric
scaffold.

4. Natural Product-Based Liposomal Drug
Delivery Systems

4.1. Collagen-Based Liposomal Drug Delivery Systems. Col-
lagen is a major natural protein component in mammals
that is fabricated from glycine-proline-(hydroxy) proline
repeats to form a triple helix molecular structure [84]. So
far, nineteen types of collagen molecules have been isolated,
characterized, and reported in both medical and pharma-
ceutical applications [108–110]. Collagen has been widely
used in pharmaceutical applications due to the fulfillment of
many requirements of a drug delivery system such as good
biocompatibility, low antigenicity, and degradability upon
implantation [111]. Furthermore, collagen gels are one of the
first natural polymers to be used as a promising matrix for
drug delivery and tissue engineering [112]. Biodegradable
collagen-based systems have served as 3D scaffold for cell
culture, survival of transfected fibroblasts, and gene therapy
[81, 113]. In this case, collagen scaffolds were fabricated
through introducing various chemical cross-linking agents
(i.e., glutaraldehyde, formaldehyde, carbodiimide) or by
physical treatments (i.e., UV irradiation, freeze-drying, and
heating) [109, 114–117]. The combination of liposomes and
collagen-based technologies has been long achieved since
the early 80s [112]. In this case, drugs and other bioactive
agents were firstly encapsulated in the liposomes and then
embedded inside a depot composed of collagen-based sys-
tems, including scaffolds and gels. The combination of these
two technologies (i.e., liposomes and collagen-based system)
has improved storage stability, prolonged the drug release
rate, and increased the therapeutic efficacy [84, 118, 119].
In addition, a study that was conducted by Marston et al.
[120], demonstrated that temperature sensitive liposomes
and collagen may thermally trigger the release of calcium
and phosphate salts. Multiple collagen-based system for
pharmaceutical carriers or medicinal applications are cur-
rently available for clinical purposes [121]. Figure 9 depicts
a schematic representation of collagen-based liposome.

4.2. Gelatin-Based Liposomal Drug Delivery Systems. Gelatin
is a common natural polymer or protein which is normally
produced by denaturing collagen [122]. It has been used in
pharmaceutical and medical applications due to its outstand-
ing properties such as biodegradability, biocompatibility, and
low antigenicity [100]. In addition, gelatin can be easy to
manipulate due to its isoelectric point that allows it to change
from negative to positive charge in an appropriate physiolog-
ical environment or during the fabrication, a property that
has found it being very attractive to many pharmaceutical
researchers [123]. Gelatin is one of the natural polymers
used as support material for gene delivery, cell culture,
and more recently tissue engineering. Gelatin-based systems
have the ability to control release of bioactive agents such
as drugs, protein, and dual growth factors [95, 100, 124].
It has been reported that it is possible to incorporate
liposome-loaded bioactive compounds into PEG-gelatin gel
which function as porous scaffold gelatin-based temporary
depots with controlled drug release over prolonged periods
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Figure 6: A schematic depicting the optimization of liposomal gene delivery (source: Uchegbu [74]).

of time [125, 126]. However, some setbacks have been
identified, and they are said be associated with the use
of gelatin-based systems in pharmaceutical applications.
These setbacks include poor mechanical strength and inef-
fectiveness in the management of infected sites [108]. A
combination of a collagen-based system with liposomes has
been proposed to achieve the stability of the system and
controlled release profiles of the incorporated compounds.
The success of these formulations, (i.e., gelatin, hydrogel,
and scaffolds) was enhanced by cross-linking agents such as
glutaraldehyde, sugar, and enzyme transglutaminase. It was
also discovered that the cross-linking density of gelatin was
able to affect the rate of degradation and rate of bioactive
agents release from gelatin vehicles or from liposomes
embedded inside gelatin-based systems [127–130]. Another
study by Peptu and coworkers [83] reported a controlled
release of liposome-encapsulated calcein fluoroscence dye
or calcein labeled with rhodamine from temporary depot
of gelatin-based system which is made up of Gelatin-
carboxymethylcellulose films. In the same study, the release
rate of loaded liposome was found to depend mostly on
the quantity of liposomes entrapped inside the films, degree
of swelling of the film, film network density, and the film
geometry which was supported by glutaraldehyde cross-
linking agents. In a similar study, DiTzio and coworkers [125]
demonstrated the success of prevention of bacterial adhesion
to catheters by ciprofloxacin-loaded liposomes which were
entrapped inside a poly(ethylene glycol-)gelatin hydrogel.

Another study by Burke and coworkers [126] demonstrated
that there was a successive release of oxidizing reagent
(sodium periodate) from thermal liposome entrapped inside
a stimuli-responsive gelatinous derivative hydrogel. In gen-
eral, the combination of collagen with liposome has been
reported to improve liposome stability and the controlled
release of incorporated bioactive agents within liposome
formulations.

4.3. Chitosan-Based Liposomal Drug Delivery Systems. Chi-
tosan is a natural linear bio-polyaminosaccharide polymer
obtained by N-deacetylation of chitin, which is fabricated
from the exoskeleton of marine crustaceans such as shrimps,
crabs, prawns, and fungi [87, 131]. It has been broadly
investigated in pharmaceutical applications as a bioactive
molecule delivery method or as depot of pharmaceutical
carriers due to its desirable properties such as mucoadhe-
siveness, biodegradability, biocompatibility, and nontoxicity
[132–135]. The combination of chitosan with liposome
technologies is considered as being a promising approach
in the drug delivery arena. More recently, chitosan tech-
nology has been reported as being a depot for liposomal
drug delivery systems in the form of porous hydrogel or
scaffold. Chitosan-based hydrogels were generate with or
without a cross-linking agent such as glutaraldehyde or by
interacting with different types of divalent and polyvalent
anions [12, 136, 137]. Novel in situ gelling formulations
of hydrogels such as thermosensitive and mucobioadhesive
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Figure 7: Schematic depicting drug delivery from pre-encapsulated drug-loaded liposomes incorporated within an injectable hydrogel-based
system (adapted from Ta et al. [93]).

hydrogels have been recently been proposed as a depot
for liposomes for sustained drug release over a prolong
period of time [12, 138]. Chitosan scaffold matrix can be
fabricated with unique structure by simple approaches such
lyophilization technique, by use of crosslinked agents of
chitosan solution/hydrogels followed by incubation in the
liquid nitrogen, or by employing liquid carbon dioxide,
solid-liquid separation, and, most recently, supercritical
immersion precipitation techniques [11, 139–141]. Drugs
such as cytarabine that have been pre-encapsulated in
liposomes and then incorporated within chitosan hydrogels
have been proven to be suitable model for drug delivery with
sustained drug release in vivo at body temperature [12].

4.4. Fibrin-Based Liposomal Drug Delivery Systems. Fibrin
is a biodegradable polymer obtained by polymerization of
fibrinogen in the presence of thrombin enzyme [142]. The
concept of developing fibrin-based technology as a tempo-
rary depot in both pharmaceutical and bioengineering fields
has received considerable attention over the past decades
[82, 143]. The unique properties of the fibrin-based systems
such biodegradability and nontoxicity, have been reported
to influence the delivery efficiency of growth factors, genes,
proteins, various cells and drugs [144–150]. The fabrication
of semirigid fibrin scaffold upon injection has been achieved
under physiological conditions at the site of interest with
rapid polymerization [147]. Furthermore, fibrin scaffolds
have also been used as temporary depots for drug delivery
vehicles by incorporation of drug-loaded liposomes alone,
or by incorporation of liposomes into a chitosan matrix
(containing bioactive agent molecules such as protein, drugs
and genes) within the depot composed of the fibrin-based
systems. The combination of two widespread devices, fibrin
and liposome technologies, resulted in sustained bioactive
agent release over prolonged periods of time [11, 146, 150–
152].

4.5. Alginate-Based Liposomal Drug Delivery Systems. Algi-
nate also serves as an example of a naturally occurring

linear polysaccharide. It is extracted from seaweed, algae,
and bacteria [153–155].The fundamental chemical structure
of alginate is composed of (1–4)-b-D-mannuronic acid (M)
and (1–4)-a-L-guluronic acid (G) units in the form of
homopolymeric (MM- or GG-blocks) and heteropolymeric
sequences (MG or GM-blocks) [156]. Alginate and their
derivates are widely used by many pharmaceutical scientists
for drug delivery and tissue engineering applications due
to its many unique properties such as biocompatibility,
biodegradability, low toxicity, non-immunogenicity, water
solubility, relatively low cost, gelling ability, stabilizing prop-
erties, and high viscosity in aqueous solutions [157, 158].
Since alginate is anionic, fabrication of alginate hydrogels
has successively been achieved through a reaction with
cross-linking agents such as divalent or trivalent cations
mainly calcium ions, water-soluble carbodiimide, and/or
glutaraldehyde [159]. The cross-linking methodology was
conducted at room temperature and physiological pH [160].
The success in fabricating highly porous 3D alginate scaffolds
has been through lyophilization [161]. Thus far, alginate-
based systems have been successfully used as a matrix for
the encapsulation of stem cells and for controlled release of
proteins, genes, and drugs [162–166]. In addition, alginate-
based systems have been used as depots for bioactive agent-
loaded liposomes, for slow drug release [9, 167]. Highly
increased efficacy has been reported from these integrated
delivery systems when compared to polymeric-based systems
or liposome-based systems alone [168, 169]. Machluf and
coworkers [170] have reported radio labeled protein release
from liposomes encapsulated within microspheres of the
calcium-crosslinked alginate. Another study by Hara and
Miyake [171] demonstrated the release of Calcein (which
is a fluorescent dye) and Insulin from calcium alginate gel-
entrapped large multilamellar liposomal vesicles in vivo.

4.6. Dextran-Based Liposomal Drug Delivery Systems. Dex-
tran is a natural linear polymer of glucose linked by a 1–
6 linked-glucoyranoside, and some branching of 1,3 linked
side-chains [172]. Dextran is synthesized from sucrose by
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Figure 8: Schematic depicting drug delivery from pre-encapsulated drug-loaded liposomes incorporated within a prefabricated polymeric-
based depot system with eventual entry through a cell membrane (adapted from Stenekes et al. [8]).

certain lactic-acid bacteria, the best-known being Leuconos-
toc mesenteroides and Streptococcus mutans. There are two
commercial preparations available, namely dextran 40 kilo-
daltons (kDa) (Rheomacrodex) and dextran 70 Kilodaltons
(kDa) (Macrodex) [173, 174]. In pharmaceutics, dextran
has been used as model of drug delivery due to its unique
characteristics that differentiate it from other types of
polysaccharide. This include water solubility, biocompatibil-
ity, and biodegradability [175]. In recent studies, dextran
has been regarded as a potential polysaccharide polymer
that can sustain the delivery of both proteins, vaccines, and
drugs [176–179]. Interleukin-2, which is a highly effective
anticancer drug, is among the success obtained in delivering
a combination of drug-loaded liposome and injectable
dextran hydrogel [180]. Injectable and degradable dextran-
based systems for drug delivery were generated by a cross-
linking reaction with photo-polymerization or free radical
polymerization [181]. In another study by Yeo and Kohane
[182], it was demonstrated that it is possible to fabricate
dextran-based hydrogel using dextran derivatives such as
carboxymethyldextran derived by aldehyde-modification or
carboxymethylcellulose. In the same study, dextran-based
systems were reported to inhibit peritoneal adhesions due
to cytotoxicity. Cytotoxicity study was demonstrated in
mesothelial cells and macrophages, and it’s reported to
be associated with a crosslinked agent [182]. A study by
Stenekes and coworkers [8] demonstrated the successive
encapsulation of a drug-loaded liposome depot into a dex-
tran polymer-based material. The polymeric-based materials

were fabricated using a two phase system, the first phase was
water and poly(ethylene glycol) and the second one water
methacyrlated dextran. The slower degradation of dextran
polymeric material resulted in sustained liposome release
over a period of 100 days [8]. Liposomes released from depot
were reported to be intact, and there was no significant
change in liposomal size. In a gene therapy study by Liptay
and coworkers [183], it was reported that recombinant
DNA (which contains chloramphenicol acetyltransferase)
was successively encapsulated in cationic liposomes and then
integrated within dextran. This system was reported to be
a suitable delivery system since it could stop transfection
efficiency within the colon epithelium wall in vivo [183].

5. Liposomal Drug Delivery Systems Based on
Synthetic Polymers

5.1. Carbopol-Based Liposomal Drug Delivery Systems. Car-
bopol hydrogel formulation is a synthetic type of hydro-
gel, which is a polyacrylic acid derivative. Carbopol 980,
Carbopol 974NF resin, and Carbopol 940 have been widely
used as pharmaceutical carriers due to their outstanding
properties such as bioadhesivity, biocompatibility, and low
toxicity [184–186]. Carbopol can swell quickly in water
and adhere to the intestinal mucus because the functional
carboxylic acid groups (–COOH) can form hydrogen bridges
to interpenetrate the mucus layer [187, 188]. Furthermore,
carbopol can inhibit the activity of the dominant enzymes in
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the gastrointestinal tract due to the possession of carboxylic
groups in its structure [187]. In a study that was conducted
by Tang and coworkers [186], the formulation of Carbopol
containing superporous hydrogel composites showed that
swelling was due to ionic strength in salt, sensitive at different
pH values. In recent studies, Hosny [189, 190] reported
the possibility of incorporating drug-loaded liposome within
Carbopol hydrogel-based system which acted as a temporary
depot. They conducted the study in vitro with the aim
of improving low viscosity and poor sustainability release
over a prolonged period of time, which is associated with
liposome setbacks. The results suggested that the degree
of encapsulation and prolongation of drug release rate of
either drugs or loaded liposomes in temporary depots of
Carbopol depends to a great extent on the properties of the
vesicles, such as charge and rigidity. Various drugs such as
ciprofloxacin and galifloxacin have been reported to have
been employed in this system, by firstly being encapsulated
within liposomes and then integrated within the temporary
depot of the Carbopol-based system. These studies revealed
that loaded liposome integrated within Carbopol-based
system was a suitable model of drug delivery for both ocular
and vaginal disorders [189–192].

5.2. Polyvinyl Alcohol-Based Liposomal Drug Delivery Systems.
Polyvinyl alcohol (PVA) is a water soluble highly hydrophilic
synthetic polymer, with a molecular mass of 80 killodaltons
(KDa). PVA can be used in a widely range of applications
such industrial, commercial, medical, and food products
[193, 194]. In addition, PVA has gained a lot of attention in
pharmaceutical applications due to some attractive proper-
ties such as low toxicity, excellent film-forming, biodegrad-
ability, emulsifying capacity, biocompatibility, and adhesive
properties [195, 196]. PVA-based hydrogel or scaffolds have
been fabricated using chemical cross-linking agents such as
citric acid derivative, glutaraldehyde, and formaldehyde, or
by physical cross-linking processes such as ultraviolet photo-
cross-linking, freezing-thawing, and radiation [126, 197,
198]. Various studies have been performed on the effects of
PVA-based polymers on the release rate of pre-encapsulated
drug-loaded liposomes. In these combination systems, PVA
was postulated to enhance liposome viscosity, making them
more stable and less permeable, thus providing a sustained
release liposomal delivery system [185]. A recent study
conducted by Litvinchuk and coworkers [199] demonstrated
that the success of calcein-loaded liposome embedded inside
a temporary depot was influenced by photocross-linking.
In the same study, the fluorescence intensity was reported
to result in a sustained release effect as observed from
day 0 to 120, in both phosphate buffer saline and blood
plasma in vitro. Overall, the study demonstrated that PVA
as a temporary depot offers several advantages to liposome
delivery systems. These include liposome stability, viscosity,
and sustained drug release over prolonged periods of time.
Ciprofloxacin, a synthetic chemotherapeutic antibiotic was
among the drugs that were reported to have been successfully
integrated into liposome and PVA-based delivery systems
[185].

6. Techniques for Embedding Drug-Loaded
Liposomes within Depot Polymeric-Based
Systems

Different techniques of loading the drug within temporary
depot polymeric-based systems either by using natural or
synthetic polymers have been reported by many researchers
[8, 11, 12, 118, 185]. However, several disadvantages were
found to be associated with this approach such as loss
of the efficacy of the drugs during the fabrication process
due to the acidic, basic, and/or toxic effect of the solvents
employed, heat of sonication, or biochemical interactions
with polymeric-based materials such human fibrin gel [11,
200]. To avoid these setbacks, new techniques were suggested
by firstly pre-encapsulating the drugs within liposome
and then embedding the drug-loaded liposome into the
temporary depot polymeric-based system. This approach
attracted many researchers as it improved drug delivery
and at the same time preserved drug bioactivity [11, 36,
185, 189, 201]. The success of this technique was also
reported after pre-encapsulating drug-loaded liposomes into
fibrinogen solution, then injecting the mixture into porous
chitosan films [11, 201]. Another approach using synthetic
PVA was made in which thin films of liposomes were
hydrated above their glass transition temperature together
with PVA as the hydration solution in order to enhance
liposome entrapment into the temporary depot of PVA-
based system [185]. Thermosensitive hydrogel was also
investigated using a chitosan derivative, which is temperature
sensitive. In this case, drug-loaded liposome was mixed
with prechilled solutions of chitosan solution until an iso-
osmotic pressure was achieved within the chitosan solution
[12]. In another study that was conducted by Gobin and
coworkers [36], it was demonstrated that drug-loaded lipo-
somes were incorporated within a polymeric-based system
with agitation and subsequently lyophilized after being
frozen overnight at −80◦C. Tabandeh and Aboufazelia [118]
suggested a nitrogen refrigeration approach. In this case, pre-
encapsulated drug-loaded liposomes were mixed together
with collagen solution and then frozen in liquid nitrogen
for 24 hours. Since soluble collagen was used in this study,
adequate concentrations of collagen were suggested in order
to facilitate the drug release and avoid the chain mobility
associated with collagen.

A more recent study has demonstrated an enhanced pro-
cess of drug-encapsulated liposome into Carbopol hydrogel
by using deionized water as a vehicle (i.e., employing a
hydration approach) [189]. This involved the development
of an effective prolonged-release liposomal hydrogel for-
mulation containing ciprofloxacin for ocular therapy. Drug
delivery in ocular therapy has for long been a difficult task
to accomplish because of the poor drug bioavailability that
is mainly due to the precorneal loss factors. These factors
include tear dynamics, insufficient residence time in the
conjunctival sac, and nonproductive absorption [185, 202].
Thus far, fluoroquinolones have shown excellent activity
against most of the frequently occurring Gram-positive and
Gram-negative ocular pathogens [189]. Earlier generations
of fluoroquinolones (e.g., ofloxacin) were often encountered
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Figure 9: A schematic representation of a collagen-based liposome (source: Kang et al. [121]).

with a problem of developing resistance at a fast rate [203,
204]. Ciprofloxacin is active against a broad spectrum of
aerobic Gram-positive and Gram-negative bacteria. Resis-
tance to this drug develops slowly and has shown to cause
a minimal toxicity [189]. It is currently the drug of choice
as an anti-infective ocular agent [205, 206]. Efficacy of
the marketed ophthalmic fluoroquinolone products, mostly
aqueous solutions, is limited by poor ocular bioavailability,
compelling the frequent dosing regimen, and uncompro-
mised patient compliance [207, 208]. Thus, prolonged-
release ciprofloxacin liposomal hydrogel has proven to be a
suitable delivery system for ocular infections.

7. Modulating Drug Release from Liposomes
within Polymeric Depot Systems

Sustained release of therapeutically active compounds loaded
with liposome in a depot incorporated into polymeric-based
system offers the possibility of reducing the dosing frequency,
which may lead to the reduction of side effects and therefore
sustained drug action [12]. A study that was conducted
by Machluf and coworkers [170] demonstrated that radio-
labeled protein-loaded liposomes could be embedded within
two membrane layers of a polymeric-based system such as
calcium cross-linked alginate and alginate integrated with
poly(l-lysine) for sustained release of radio-labeled bovine
serum albumin both in vitro and in vivo. In another set
of studies, it was postulated that the success of liposome
release from polymeric-based systems could be due to mesh
size of the matrix, size of liposome, diffusion, chemical,
pH, and/or enzyme factor [8, 82, 112, 209]. In yet another
study by Dhoot and Wheatley [168], liposome release
from barium-alginate depots was reported to be influenced
by the cross-linking ions. Leakiness of liposomes during
the encapsulation process was due to high lipid content
(i.e., cholesterol) during liposome fabrication for which

a high liposomal escape was also observed. In comparing
the liposome and degradable system to the liposome and
nondegradable polymer-based systems, the results indicated
that the liposomal release for the first system was due
to degradation of the polymeric matrix, while for the
second system an insufficient release was observed during
the same period of study [210]. Nixon and Yeung [164]
conducted a study together with Stenekes and coworkers
[8] in which they could demonstrate that liposomes with
low and high membrane fluidity were successfully released
from a polymeric-based system in their intact form and
with preserved size for approximately 60 days. Although pre-
encapsulated drug-loaded liposome could show controlled
drug release from the depot, majority of these studies have
shown that the obtained drug release profiles depended to a
greater extent on the liposomal burst effect rather than the
diffusion process [11, 170, 201].

8. The Successes and Challenges Emerging
from Composite Liposome and
Polymeric-Based Technologies

The combination of liposome-based system and polymeric-
based system for sustained release of therapeutically active
compounds has been demonstrated to be successful in
pharmaceutical applications. Sustained release profiles of dif-
ferent bioactive molecules such as gene, drugs, protein, and
growth factor from liposome encapsulated in both natural
or synthetic biodegradable polymeric material have been
obtained [12, 169, 171]. The success of this drug delivery
combination depends mostly on encapsulation efficacy and
the type of drug release profile that is obtained. Efficiency
in encapsulating drug-loaded liposome was reported to be
dependent on several techniques, such as cross-linking agents
(glutaraldehyde, formaldehyde, carbodiimide) or physical
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treatments (i.e., UV irradiation, freeze-drying), during fab-
rication process [152, 160]. Sustained release kinetics of the
pre-encapsulated drug-loaded liposome depends most on
the degradation rate of the polymeric materials. This system
has added a remarkable advantage to both technologies
(i.e., liposome-based and polymeric-based), though more so
to the liposome technology since polymeric materials are
more stable than liposomes. The following properties were
achieved by embedding the liposomes into a polymeric-
based system: (i) sustained release over prolonged periods
of time, (ii) improved viscosity, (iii) stability of liposome,
and (iv) improved half-life for both the drugs and liposome.
In polymeric-based system incorporated with liposomes,
drug delivery efficacy and preservation of drug bioactivity
has been achieved. This is due to the fact that liposomes
have a higher degree of biocompatibility when compared
to polymeric materials [8, 36]. Although this composite
system demonstrated improved success, there are still some
major challenges that need to be overcome. Incorporation of
toxic organic solvent or high heat during fabrication process
can inhibit the activity of some bioactive molecules such as
protein [11, 200]. Furthermore, since drug-loaded liposome
release profiles seem to depend most on degradation of
polymeric materials, majority of drug-loaded liposome may
remain enmeshed within the depot or insufficient initial
release at commencement of treatment may be a problem. At
the same time, high overdose may occur during high degra-
dation period. In either case, degradable polymeric material
has demonstrated more efficacy than nondegradable poly-
meric material since with the latter depot, insufficient drug
release was reported [210].

9. Future Perspective

Significant development has been reported on combination
of the liposome-based technology with temporary depot
polymeric-based technology in sustaining drug release over
prolonged periods of time. However, combination of both
drug delivery technologies into a single model of drug
delivery has been reported to be associated with inad-
equate drug release. Since both materials can be easily
manipulated, design of a new ideal temporary depot of
the polymeric-based technologies to enhance therapeutic
efficacy or improve the drug release profile is of a great
interest. Integration of the more advanced types of liposome-
based technologies such as targeted- or stimuli-sensitive
liposomes in this system can enhance therapeutic efficacy.
In addition, targeted liposome formulations, with targeted
moieties such as antibodies, peptide, glycoprotein, polysac-
charide, growth factors, carbohydrate, and receptors may
increase liposomal drug accumulation in the tissues/cells via
overexpressed receptors, antigen, and unregulated selectins.
Sensitivity of liposomes to pH, light, magnetism, tem-
perature, and ultrasonic waves can enhance therapeutic
efficacy. Some polymeric systems have demonstrated some
disadvantages in this application such as nondegradability
that results in insufficient drug release. The use of a combi-
nation liposomal-based system with natural and/or synthetic

polymeric biodegradable and/or nondegradable polymers
may add strength to the depot while improving liposomal
release profile. Although organic solvent are normally added
during fabrication, nontoxicity should be rigorously assessed
in ex vivo studies. In summary, the combination system, as
a model of sustained release of drug-loaded liposome from
temporary polymeric depots, has been declared successful
but system improvements are demanded. Since this system is
implantable, it may be useful in future for the management
of chronic diseases such as Aid Dementia Complex, Tuber-
culosis, Cancer, or Neurodegenerative disorders, such as
Parkinson’s and Alzheimer’s disease, which normally require
regular doses over prolonged periods of time.
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