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Abstract

The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive
care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and
timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions
designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the
relationship between: epidemic trajectories at the scale of interest (e.g. city); population mobility; and higher resolution
spatial effects (e.g. transmission within small neighbourhoods). Here, we used a spatially-explicit stochastic meta-population
model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We
simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our
assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the
same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations,
such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence.
The effect of resolution was most important in populations which were of lower density and lower mobility. With the
expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to
use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial
resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous
populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are
feasible.
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Introduction

Novel respiratory pathogens continue to pose substantial public

health challenges, not least because of the risk that large epidemics

may overwhelm key health care resources such as vaccination

stockpiles and intensive care facilities. Recent epidemics of

concern include: SARS [1], influenza [2–4], H7N9 [5,6] and

MERS [7,8]. During an epidemic it is important to accurately

predict the impact of the epidemic over different spatial scales,

where scale refers to the size of the region being monitored; such

as a hospital, city, country or globally. Intervention policies should

be defined relative to this spatial scale, for example taking account

of how long it will take to vaccinate a whole city or to distribute a

treatment country-wide. Those making decisions about interven-

tion strategies need a clear understanding of the underlying

epidemic process, so as to anticipate the magnitude and timing of

peak incidence at their scale of interest and to effectively control

the epidemic.

Spatially explicit transmission models are used frequently to

increase understanding of the spread of epidemics caused by

pathogens which transmit between individuals close in space. For

example: influenza [9–11], measles [12–14], and smallpox [15,16]

have all been represented by spatially explicit epidemic models. All

of these examples can be thought of as metapopulation models in

which the population of interest is represented as a collection of

sub-populations located in space, for example households [17–19],

airports (GLEaM [20]) or districts/states [21]. The advantages of

these models are that they can capture complicated mobility and

mixing patterns and heterogeneous population density, without

the complexity of an individual-based model. Also, model output

can be easily reported for specific populations, such as counties or

cities.

It is known that heterogeneity both in population density and

typical mixing behaviour heavily influence disease spread. Both of

these are defined according to the resolution of the population

representation, where resolution defines the number and size of

the pixels making up the ‘‘image’’ of the population within the

model. A pixel is the smallest single component of an image. A

high resolution representation will divide the region into many

small pixels; a lower resolution uses fewer, larger pixels (Fig. S1).

The resolution chosen is usually decided by the data available: for

example, population and travel data may be defined at the ward or

county level only. The level of mixing between individuals in

distinct pixels is defined by mobility models, these are often fitted

to travel data from censuses. Also, sometimes, resolution is limited

by computational capacity.

The concepts in our paper require precise definitions of the

terms: scale, resolution and pixel. The literature using these three

words is somewhat ambiguous with the terms resolution and scale

sometimes used interchangeably. Therefore, for clarity, we have
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included explicit definitions at first use of the words (above) and in

Table 1.

Results

We implemented a generic metapopulation model with

arbitrary spatial resolution (see Methods) varying from approxi-

mately 1km2 (300 by 300, the smallest unit representation) upwards

(Fig. S1). We generated a theoretical population density in a region

with total population just over 4 million and of size approximately

49km2 (49649 pixels). The region had three ‘urban’ areas where

population density was generated using a 2-dimensional bivariate

Gaussian and a ‘rural’ area, generated from a uniform distribu-

tion, Fig. 1G. We used this formulation to simulate the spread of a

pathogen representative of influenza, with an SIR-like natural

history, assuming that the generation time was 2.6 days and the

basic reproductive number R0 was 1.8. The epidemic was seeded

with 10 individuals in a central region (Fig. 1G), simulations were

repeated 25 times at each resolution.

The within-pixel contact rate was fixed for all pixels. Mobility

between pixels was represented by a kernel with an offset power

function. A kernel defines the relative probability of travelling

between two pixels. The offset power function is an adaptation of

the gravity model. The gravity model states that an individual’s

probability of mixing in a pixel different to their home pixel is

inversely proportional to the distance apart of the pixels, to some

power. The offset power function adds in an offset distance

parameter, which means that pixels closer together than this

distance mix fully. See Methods for a full definition of the kernel

and the resulting mobility model.

Initially we considered three different kernels: we used an offset

of 2 km and three different powers giving low, medium and high

contact between pixels (the power, c, was 26, 24 and 22

respectively), Fig. S2. The highest mobility kernel is in line with

kernels fitted to commuter data in the UK and US [9]. However,

our review of data on travel patterns found that only 15% of an

average individual’s journeys are commuting, making up just 19%

of the total distance an average individual travels each year [22]

(Table S1). Commuting data also excludes key at-risk groups – the

under 17 s and over 70 s – who have lower mobility travel

patterns compared to the 18–69 population [22]. Therefore, we

explored more restrictive kernels than those estimated using

commuting data to reflect shorter distances travelled and lower

frequency travel in the most at-risk populations and the regular

non-commuting travel of the wider population.

We confirmed that the overall cumulative attack rate (CAR) for

our model was independent of the mobility kernel and the model

resolution (Fig. 1A–F). This was by design: the model was

constructed such that with the assumption of mass action mobility

(the rate of contact between two groups is proportional to the size

of each of the groups) the epidemic was identical at every

resolution. This means that the next generation matrix at any

resolution and for any mobility has the same spectral radius: R0

was the same at all resolutions and contact levels and the local and

global R0s were the same. A full proof that R0 was constant with

respect to resolution is given in the Text S1 in Supporting

Information S1, and is similar to that in Ref [23]. Because R0 was

constant, if the mobility was such that there was contact between

every pair of pixels, the final epidemic size was the same across all

resolutions and in every pixel. If mobility was restrictive enough

that some pixels were never infected the final CAR reflected this

restriction. The full proof that attack rates were constant with

respect to resolution is in the Text S2 in Supporting Information

S1, and is similar to those in Refs [24,25].

For the theoretical population density, the existence of a

fundamental spatial resolution was apparent: at resolutions lower

than this threshold, system-wide peak incidence was substantially

over-estimated, obtaining a high peak incidence and fast spread

similar to that obtained in a fully mixed model (the lowest

resolution). However, at the fundamental resolution and above,

consistent estimates of the peak attack rate were obtained (Fig. 1H).

This was increasingly evident as mobility became more and more

restricted: for the most localised mobility assumptions (low power),

peak incidence in the fully mixed case was nearly double that at

the highest resolution. At high resolutions, multiple small pixels

containing low numbers of individuals and with a high heteroge-

neity in population size slowed the epidemic spread; resulting in a

long epidemic duration and a low peak incidence compared to low

resolution model scenarios.

Increased mobility reduced the effect of resolution on the

epidemic trajectory. At medium mobility, peak incidence in-

creased with decreasing resolution but there was no distinct

Table 1. Explicit definitions of the terminology used in this work.

Word Definition

Scale The relative size or extent of a region.

Resolution The degree of detail visible in an image - in our work this defines the number and size of the pixels making up the representation of
the region.

Pixel The smallest single component of an image (or in our model, the smallest single component of the population representation).

doi:10.1371/journal.pcbi.1003561.t001

Author Summary

Fundamental spatial processes such as individuals’ inter-
actions and movement are not sufficiently well understood
and yet they define the transmission of infectious diseases
through populations. Spatial models of epidemics repre-
sent the region of interest (such as a city or country) as a
collection of spatial units. To anticipate the magnitude and
timing of peak incidence and to predict demand on health
care resources in the region a clear understanding is
needed of the relationship between the resolution of the
representation (number and size of the pixels), the
population interactions and the epidemic trajectories. We
used a spatially explicit meta-population model of disease
transmission to demonstrate that thresholds existed such
that models with too low a resolution overestimated peak
incidence, implying that ill-defined models may result in
incorrect predictions. However, the results suggest that if
population interactions are represented in sufficient detail,
accurate estimates of peak demands on key health care
resources are feasible.

The Spatial Resolution of Epidemic Peaks
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threshold. At the highest mobility, peak incidence was unaffected

by resolution: the high level of contact between pixels facilitated

the quick spread of the epidemic, indicated by a short epidemic

duration and a high peak incidence at every resolution (Fig. 1A–

C).

Resolution and mobility remained important when the model

was constructed with real population densities. We repeated the

analysis (using the same three kernels) for four regions selected

from LandScan data [26]: Guangzhou, Rio de Janeiro, Delhi and

New York (Fig. 2A). The smallest LandScan unit is approximately

Figure 1. The effect of resolution and mobility in a theoretical population. A–C: Weekly incidence with time, for different spatial resolutions
of the population. SLUA is the number of smallest LandScan units aggregated to make one pixel at that resolution. SLUA = 1 is the highest resolution
possible in the data. D–E: Cumulative Attack Rate (CAR) for different resolutions of the population. Note that CAR is the same for all mobility levels
and for all resolutions, but the epidemic trajectories differ. G: The population density of the theoretical population, the epidemic was seeded with 10
cases placed at random in the area indicated by the orange outline. H: Peak incidence for different levels of mobility (blue, very restrictive, green least
restrictive). The number of smallest LandScan units aggregated to make one pixel increases from left to right along the x-axis (and resolution
decreases). The spatial spread of the epidemic in these three scenarios is illustrated in a Movie S1.
doi:10.1371/journal.pcbi.1003561.g001

The Spatial Resolution of Epidemic Peaks
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1 km2 (300 by 300) in size. The effect of resolution was most

evident when mobility was more restricted, as with the theoretical

population. In Guangzhou, Rio and New York, changing the

spatial resolution had a significant effect on the peak incidence

when mobility was at a low to medium level, though the effect was

less clear in Delhi (Fig. 2B–E). The Delhi region had the largest

total population size and the highest mean population density of all

regions we considered (Table S2 and Fig. S3). Therefore, even at

low mobility the numbers mixing will be relatively high, meaning

that the disease spread will not be as restricted as it would be in a

less densely populated region.

We used Latin Hypercube Sampling (LHS) [27] to determine

whether the patterns we saw with the illustrative mobility kernels

could be generalised within a wider parameter space of mobility

functions. We varied the kernel parameters: the power, c, between

26 and 22 (as discussed earlier, this selection gave a wide range of

mobility levels) and the saturation distance between 1 and 10 km,

choosing from a log scale (so smaller distances are more likely). We

tested 50 parameter sets chosen using the LHS technique [27],

with 10 separate realisations of each set for each region (variation

in results from the stochastic model was low - see confidence

intervals for 25 repeats in Fig. 2 for example). Kernels for the 50

sets are plotted in Fig. S4. The LHS results confirmed that the

effect of resolution is most important in populations which are less

mobile, Fig. 3. As mobility decreased (a combination of the offset

and the power in the kernel) the difference in peak incidence

between the lowest and the highest resolution increased. This was

particularly true in Guangzhou, Rio and New York, but in Delhi

the effect was reduced (due to Delhi having a very large population

in comparison to the other regions).

Recently it has been suggested that the movement of individuals

depends not only on the source and destination cities, but also on

the population density of the surrounding area [28]. This model is

called the radiation model and has been proposed as a distinct

alternative to the gravity model. However, we calculated the actual

number of individuals moving between pixels (the flux) and found

the radiation model flux to be very close to the offset gravity model

of medium mobility, particularly at the highest resolution, Fig. 4.

Indeed the radiation model is always bounded by the three gravity

models we use and our LHS models explore a large space around

these. More generally, gravity-like models have been implemented

with a number of different normalisation assumptions, some of

which produce population flux patterns very similar to the

radiation model [15,17].

Discussion

When managing epidemics it is desirable to know the size and

duration of the epidemic and the magnitude and timing of the

peak incidence over the spatial scale of interest [4,29,30]. This

scale of interest may be a city, a region or a whole country.

Resources such as treatment, vaccinations and diagnostic tests will

take time to be deployed over this scale and it can take time to

develop and generate enough of these resources for the whole

affected population [31,32]. Accurate predictions about the

magnitude and timing of peak incidence would greatly enhance

the ability of public health officials to effectively limit the impact of

epidemics.

We have shown how the representation of population interac-

tions can impact model estimates of key epidemic outcomes. We

examined the effect of the resolution of the population density on

the model predictions of epidemic spread over the scale of interest.

We refer to resolution as defining the number and size of

the individual pixels dividing the region; higher resolution

representations use a higher number of smaller pixels. Our results

imply that for plausible population densities and mobility patterns,

fundamental resolutions exist for specific pathogens such that the

detail of the population and their interactions must be represented

faithfully if accurate epidemic trajectories are to be estimated.

The impact of model resolution was clear in models of less

mobile populations: our results indicate that at lower mobility,

low resolution representations overestimated the peak inci-

dence, obtaining a high peak incidence and fast spread similar

to that obtained in a fully mixed model. However, sufficiently

high resolution representations gave lower and later peak

incidences because of the delaying effect of multiple small

pixels. Indeed at low mobility, clear thresholds existed for the

resolution of the theoretical population density, such that

models with resolutions below the threshold over-estimated the

system-wide peak incidence. Similar thresholds existed for real

population densities: Guangzhou, Rio, New York and Delhi.

Increased mobility reduced the effect of resolution on the

epidemic.

The kernels which were most affected by resolution were those

which gave a lower mobility than that identified by commuting

data (Table S1). Generally children are considered to cause the

majority of transmission of pathogens like flu and measles, because

their level of age group assortative mixing is very high [33,34].

Children also travel less far than working adults [22]. Together,

these imply that a kernel for children is likely to be more restrictive

than those defined by commuting data alone. Therefore, our

results indicate that the correct specification of population

interactions and sufficient spatial resolution is particularly relevant

for epidemics such as measles and flu - those in which children

play a large role.

Although we have considered age effects implicitly by including

lower mobility levels than are reported for commuting data (Table

S1), the explicit representation of age within a similar modelling

framework may lead to additional insight. For example, transmis-

sion dynamics at different scales may be driven by different age

groups: the behaviour of more mobile adults may be dispropor-

tionately important in the seeding of nearby pixels. However, the

slower than expected within-country spatial spread during 2009

[35] suggests that for pandemic influenza, population sub-groups

with reduced mobility likely do define the fundamental resolution.

We have chosen to represent the real biological process by a

high resolution metapopulation model. Although we have not

been able to push the model to resolutions higher than 1 km by

1 km, we suggest it is reasonable to assume, for the mobility

kernels considered here, that the thresholds observed for peak

incidence would not change substantially were we to approach the

resolution of an individual-based model.

The model used here was intended specifically to test only the

changing resolution of the disease transmission process. By design

we did not want to assume that transmissibility was intrinsically

higher or lower in different parts of the population. In future work,

we hope to calibrate this model structure using actual disease

incidence data and (after a minor modification to the definition of

the force of infection) test for the possibility that population density

affects transmissibility.

Although it is somewhat reassuring that estimates of peak

incidence are biased upwards if resolution is too low, the

epidemic duration is underestimated. In order to avoid the

effects of incorrect model specification, where possible, spatial

resolution should be treated in a similar manner to temporal

resolution in fixed-time-step models: neither the doubling nor

halving of spatial resolution should have a substantive effect on

key model outputs.

The Spatial Resolution of Epidemic Peaks
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Methods

Model description
We defined a spatially explicit meta-population model as

follows (similar to Ref. [21]). A given region of known

population density was represented as D pixels, such that each

pixel (index i) is the same spatial size but the number of

individuals in the pixel (Ni) varied according to location. Mixing

between and within each pixel was determined by a mobility

model, represented by a matrix m such that an entry mij was

equal to the probability that for an individual from pixel i, given

that the individual made a contact, this contact was with an

individual from pixel j (mobility was defined using a kernel,

discussed later).

Figure 2. Results for actual populations from LandScan data [26]. SLU are the Smallest Landscan Units (300 by 300, or approximately 1km2). A:
Population density of the whole world, the red spots indicate the locations of the 4 population densities we considered. The regions were chosen as a
49649 unit square around their official lat-long centre. B–D: Main graphs indicate the peak incidence at each resolution, for Guangzhou (B), Rio (C),
Delhi (D) and New York (E). The insets are the population densities of these regions, the colour scale is the same as panel A. The epidemics were
seeded in a circle of radius 5 km around the official lat-long centre of the regions, the possible seeding area is marked by an orange outline on the
insets.
doi:10.1371/journal.pcbi.1003561.g002

The Spatial Resolution of Epidemic Peaks
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The rate at which susceptible individuals in pixel i became

infected depended on (1) their risk of infection from those in pixel

i, (2) the risk of infection from infected individuals in pixel j who

travelled to i, (3) the risk of infection that susceptible individuals

from i encountered when they travelled to j. Therefore, the force of

infection or the average rate that susceptible individuals in pixel i

Figure 3. Latin Hypercube Sampling (LHS) results for four regions: Guangzhou, Rio, Delhi and New York. The LHS parameter sets varied
c and the offset (sd ) in the power law kernel, as described in the main text. We illustrate which parameter sets significantly affected the peak
incidence at different resolutions by the colour of the point. The colour indicates the percentage change between the two points of lowest resolution
and the two points of highest resolution, the colour-bar scale runs from 0% to 40%. Some parameter sets gave higher peak incidence at high
resolution than low resolution (around 23% change), these were assumed to be caused by stochasticity as the number of runs was relatively small
(10 repeats); the change for these was fixed at 0%. See Fig. S5 for plots of the trends in peak incidence for each parameter set.
doi:10.1371/journal.pcbi.1003561.g003

The Spatial Resolution of Epidemic Peaks
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became infected per time-step was:

li~b
XD

j~1

mij

PD
l~1 mljIlPD

p~1 mpjNp

: ð1Þ

where D was the total number of pixels and for any pixel j, Nj was

the number of individuals, Ij was the number of infected

individuals and infectious contacts were made with other

individuals present in the pixel with rate b. Note that b is the

same across all pixels; in future it may be of interest to vary the

transmissibility across pixels (so b moves into the sum in Eqn. (1) as

bj ).

The system of difference equations for a pixel i in the stochastic

SIR model was (with the condition that all classes hold a whole

number of individuals):

S(i,tz1) ~S(i,t){N
inf
(i,S,t)

I(i,tz1) ~I(i,t)zN
inf
(i,S,t){Nrec

(i,I ,t)

R(i,tz1) ~R(i,t)zNrec
(i,I ,t),

ð2Þ

where Nevent
(i,v,t) was the number of individuals in pixel i, state v (S, I

or R) that experienced the event – infection or recovery – in time-

step t. We ignored death in this model as we considered fairly

short timescales and a non-fatal strain of influenza.

Each time-step t, the number of individuals experiencing each

event (Nevent
(i,v,t)) that occurred in pixel i and state v, with a population

N(i,v) was determined in the following way:

1. For each pixel i, state v, the probability that any event would

happen to an individual in that pixel and state was:

p
any
(i,v)~1{exp({(

X
e

He)dt),

where the He were the rates for the events that may occur in

that compartment, (e.g. the rate of recovery, recall that these

parameters were chosen to reflect the natural history of

influenza).

2. For each pixel i, state v, the total number of individuals who

experienced an event N
any
(i,v,t) was chosen from a Binomial

distribution,

B(N(i,v),p
any
(i,v)):

3. The numbers of individuals experiencing each event (Nevent
(i,v,t))

were drawn from a multinomial distribution with N
any
(i,v,t) trials

and the normalised selection probabilities q1,q2,:::,qj where

qe~
pe

(
P

k pk)

and

pe~1{exp({Hedt),

where pe was the probability of each event occurring.

Figure 4. The number of individuals moving between popula-
tions (the flux) as defined by the offset gravity model (low,
medium and high mobility and the LHS models) and for
comparison the radiation model. We illustrate the mobility models
at three resolutions: A: highest resolution, B: medium resolution and C:
low resolution. The highest mobility model has higher average flux
compared to the low and medium mobility models. At lower
resolutions and high mobility large numbers of individuals move, but
the distribution of the numbers moving is more uniform than at the
highest resolution, causing the lines for the three mobility scenarios to
swap order at different resolutions.
doi:10.1371/journal.pcbi.1003561.g004
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Mobility model
We used a mobility model to determine the relative frequency of

potentially infectious contact. This was represented as a matrix m
with entries mij , defined as the probability that for an individual

from pixel i, given that the individual made a contact, this contact

was with an individual from pixel j, so:

mij~Njk(rij)
1P

k Nkk(rik)

� �
, ð3Þ

where Nj was the total population in pixel j, k(rij) was the

interaction kernel defining the effect of the distance between pixels

i and j on the contact between them. The kernel defines the

relative probability of travelling between two pixels and not the

absolute flux, similar to [15,17]. The factor 1P
k

Nkk(rik )
normalised

m and ensured that the rows sum to 1. The matrix m was used in

the calculation of force of infection, Eqn. (1).

We used a variation of the offset power function for the kernel

(similar to [9,15]):

k(rij)~
1

1z sd=rij

� �c ð4Þ

where sd was the distance below which the kernel function

saturated, we used sd~2km. The power c determined the mixing

between pixels, this was varied to give a range of mobilities but was

always less than 0.

The next generation matrix and R0

The next generation matrix, G, for the model with D pixels and

force of infection li (Eqn. (1)), can be defined (similar to [21]):

Gij~NiTb
XD

k~1

mikmjkPD
p~1 mpkNp

ð5Þ

where T was the time spent infected (which depended on recovery

rate a such that T~1=a, same for all pixels), Ni was the number of

individuals in pixel i, infectious contacts were made with other

individuals present in the pixel with rate b and m was the mobility

matrix defined earlier. Then R0 was equal to the spectral radius of

this matrix r(G) [36,37]. For this model, r(G)~bT~R0, i.e. R0

was independent of resolution and mobility; see Text S1 in

Supporting Information S1 for full derivation.

Supporting Information

Figure S1 A simple example to illustrate how the
resolution of the population is changed by aggregating
multiple smaller units into larger units. The raster package

in R is used to manipulate the population data. A: The population

at its finest spatial resolution, 36 squares total. B: Four (262) of the

smallest units from the population in A are combined into one

pixel. C: Nine (363) of the smallest units (from A) are combined to

make one pixel. D: The whole region is considered as one pixel.

Note that the populations of the aggregated units are summed to

find the total number of individuals in the new pixels.

(EPS)

Figure S2 The kernel function, k(r) against the distanc-
es, r, for the three different mobilities that we consider
in the main results. The kernel is an offset power law function,

1

1z sd=rð Þc, where sd~2km and c is 26, 24 and 22.

(EPS)

Figure S3 Details of the regions used in the main
analysis. Histograms of the population densities of the four

regions: Guangzhou, Rio, Delhi and New York and unprojected

spatial maps of the populations. The central point is marked by a

red dot and the area where the epidemic was seeded is marked in

orange.

(EPS)

Figure S4 The kernels for the 50 parameter sets used in
the Latin Hypercube Analysis of the model. The kernel is

an offset power law function defined in the main text. The

parameter sets vary c between 26 and 22 and sd between 1 and

10 km (on a log scale).

(EPS)

Figure S5 The impact of resolution on peak incidence
for a range of parameter sets chosen by Latin Hyper-
cube Sampling. The results are for four regions: Guangzhou,

Rio, Delhi and New York. SLU are the Smallest Landscan Units

(300 by 300 or approximately 1km2). The LHS parameter sets

varied c and the offset (sd ) in the power law kernel, as described in

the main text. The colour of the line indicates the percentage

change between the two points of lowest resolution and the two

points of highest resolution, the colour-bar scale runs from 0% to

40%. Some parameter sets gave higher peak incidence at high

resolution than low resolution (around 23% change), these were

assumed to be caused by stochasticity as the number of runs was

relatively small and the change was fixed at 0%.

(EPS)

Movie S1 The spatial spread of the epidemic in a
theoretical population for the three mobility scenarios
considered in the main text. From top to bottom is most

restrictive (c~{6) to least restrictive (c~{2). On the left: the

spread of an epidemic seeded in the centre of the region, indicated

by the prevalence. On the right: peak incidence in the region.

These plots are for the highest resolution of the theoretical region

described in Fig. 1 of the main text.

(PDF)

Supporting Information S1 The spatial resolution of
epidemic peaks. Text S1: Simplification of the next generation

matrix. Text S2: Final epidemic size.

(PDF)

Table S1 A review of current data and studies on
mobility patterns in humans. There is a lack of empirical

data detailing why people travel, mode and distance travelled,

divided by age and gender.

(PDF)

Table S2 Details of the 4 regions used in the main
paper. All regions are 49629 cells in size (2401 cells total), area

varies according to latitude and longitude. Rio has a large number

of zero regions because it is on the coast. Delhi has the highest
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population density but also the highest variance in population

sizes. The map in Fig. 2 indicates the locations of these regions on

the world map. Fig. S3 contains histograms of the population

densities and spatial maps.

(PDF)
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