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Abstract
Pheochromocytomas and paragangliomas (PPGLs) are classified into 3 major categories with distinct driver genes: pseudohypoxia, kinase 
signaling, and Wnt-altered subtypes. PPGLs in the Wnt-altered subtype are sporadic and tend to be aggressive with metastasis, where somatic 
gene fusions affecting mastermind-like 3 (MAML3) and somatic mutations in cold shock domain containing E1 (CSDE1) cause overactivation 
of Wnt-β-catenin signaling. However, the relation between Wnt-β-catenin signaling and the biological behavior of PPGLs remains unexplored. 
In rat pheochromocytoma PC12 cells, Wnt3a treatment enhanced cell proliferation and suppressed mRNA expression of tyrosine hydroxylase 
(TH), the rate-limiting enzyme of catecholamine biosynthesis, and dopamine secretion. We identified the expression of sclerostin in PC12 cells, 
which is known as an osteocyte-derived negative regulator for Wnt signaling-driven bone formation. Inhibition of endogenous Wnt pathway by 
XAV939 or sclerostin resulted in attenuated cell proliferation and increased TH expression. Furthermore, Wnt3a pretreatment suppressed bone 
morphogenetic protein (BMP)-induced Smad1/5/9 phosphorylation whereas BMPs enhanced sclerostin expression in PC12 cells. In the Wnt-
altered subtype, the increased Wnt-β-catenin pathway may contribute the aggressive clinical behavior with reduced catecholamine production. 
Furthermore, upregulated expression of sclerostin by BMPs may explain the osteolytic metastatic lesions observed in metastatic PPGLs.
Key Words:  Wnt-β-catenin signaling, sclerostin, catecholamine, PPGL, PC12
Abbreviations:  BMP, bone morphogenetic protein; CSDE1, cold shock domain containing E1; DMEM, Dulbecco’s Modified Eagle Medium; DMSO, dimethyl sulf-
oxide; FCS, fetal calf serum; HS, horse serum; LRP5/6, low-density lipoprotein receptor-related proteins 5/6; MAML3, mastermind-like 3 gene; PCR, polymerase 
chain reaction; PPGL, pheochromocytoma/paraganglioma; SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; TCGA, The Cancer Genome 
Atlas; Th, tyrosine hydroxylase.

Pheochromocytomas and paragangliomas (PPGLs) are 
neuroendocrine tumors that arise from neural crest–derived 
cells of the adrenal medulla and extra-adrenal paraganglia, 
respectively. According to the most recent edition of the 
World Health Organization (WHO) classification of endo-
crine tumors published in 2017, all PPGLs have metastatic 
potential [1]. However, patients with metastatic PPGL have 
limited treatment options and poor prognosis. PPGLs are also 
considered to have the highest degree of heritability of any 
human tumor type. More than one-third of PPGLs are as-
sociated with inherited cancer susceptibility syndromes. The 
Cancer Genome Atlas (TCGA) proposed that PPGLs can be 
classified into 3 main molecular subgroups linked to distinct 
driver genes: pseudohypoxia (SDHA, SDHB, SDHC, SDHD, 
SDHAF2, FH, VHL, EPAS1, and EGLN1), kinase signaling 
(RET, NF1, TMEM127, MAX, HRAS, FGFR1, and MET) 
and Wnt-altered (CSDE1 or MAML3) [2]. The Wnt-altered 
subtype of PPGL is relatively newly recognized and includes 
somatic gene fusions affecting mastermind-like 3 (MAML3) 
and somatic mutations in cold shock domain containing E1 
(CSDE1) [2]. MAML3 fusion genes have been shown to lead 

to overactivation of Wnt/Hedgehog signaling. A  gain-of-
function mutation in CSDE1 has been reported to cause the 
overactivation of β-catenin, a target of Wnt signaling [2].

The Wnt-β-catenin signaling pathway plays important 
roles in cell proliferation and differentiation during embryo-
genesis and adult tissue homeostasis [3]. Hyperactivation of 
the Wnt signaling pathway has been demonstrated in diverse 
cancers, including colorectal, breast, lung, and hematopoietic 
malignancies [4]. Three different pathways are thought to be 
activated upon Wnt receptor activation: the canonical Wnt-
β-catenin signaling pathway, the noncanonical planar cell po-
larity pathway, and the Wnt/Ca2 + pathway. In the canonical 
Wnt-β-catenin signaling, binding of Wnt to its cell surface re-
ceptor, frizzled and low-density lipoprotein receptor-related 
protein 5/6 (LRP5/6), antagonizes the phosphorylation of 
β-catenin. Once β-catenin phosphorylation is reduced, it is 
no longer degraded, resulting in its accumulation in the cyto-
plasm. Stabilized β-catenin is translocated into the nucleus, 
where it binds to the transcription factors T-cell factor (Tcf) 
and lymphoid enhancer binding factor (Lef) and thereby 
stimulates the transcription of Wnt target genes including 
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Axin2 and Lef1 [5]. The canonical Wnt signaling pathway in-
volves Wnt1, Wnt2, Wnt3, Wnt3a, Wnt7a, Wnt8, Wnt8b, and 
Wnt10a. Of the canonical Wnts, Wnt3a plays crucial roles 
in both proliferation and differentiation in several types of 
cancer cells and stem cells [6]. All reported PPGLs with Wnt-
altered subtype were sporadic and MAML3 fusion genes were 
proposed to be associated with metastatic disease and poor 
aggressive-disease-free survival [2]. However, the molecular 
mechanisms modulated by overactivated Wnt-β-catenin 
signaling that may contribute to the aggressive disease of 
the Wnt-altered PPGL subtype are unknown. In the present 
study, we investigated the role of the Wnt-β-catenin signaling 
pathway in PPGL and its related intracellular signaling path-
ways using rat pheochromocytoma PC12 cells.

Materials and Methods
Cell Culture
The rat pheochromocytoma cell line PC12 was obtained 
from the RIKEN Cell Bank (Tsukuba, Ibaraki, Japan). PC12 
cells were maintained at 37  °C in a humidified atmosphere 
containing 5% CO2 in Dulbecco’s modified Eagle’s Medium 
(DMEM) supplemented with 10% fetal calf serum (FCS), 
10% horse serum (HS), penicillin, and streptomycin, which 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
The culture medium was changed twice per week, and the 
cultures were passaged at 80% confluence.

Catecholamine Assays
PC12 cells were precultured in 12-well plates with DMEM 
containing 10% FCS and 10% HS for 24 hours. The medium 
was then changed to DMEM containing 1% FCS and 1% HS, 
and the cells were treated with the indicated concentrations of 
recombinant mouse Wnt3a (R&D, Minneapolis, MN, USA, 
1324-WN), recombinant mouse sclerostin protein (R&D, 
1589-ST), recombinant human bone morphogenetic protein 
(BMP)-2 protein (R&D, 355-BM), recombinant human 
BMP-4 protein (R&D, 314-BP), recombinant human BMP-7 
protein (R&D, 354-BP) or XAV939 (Sigma-Aldrich, X3004), a 
tankyrase inhibitor. XAV939, which stabilizes Axin and antag-
onizes Wnt-β-catenin signaling [7], was dissolved in dimethyl 
sulfoxide (DMSO) and diluted in culture medium. The culture 
medium was collected after 24-hour culture, and the levels of 
catecholamines were determined using high-performance li-
quid chromatography (HPLC; BML, Inc., Saitama, Japan).

RNA Extraction, Quantitative Real-Time 
Polymerase Chain Reaction Analysis
PC12 cells were precultured in 12-well plates with DMEM 
containing 10% FCS and 10% HS for 24 hours. The medium 

was then replaced with DMEM containing 1% FCS and 
1% HS, and the cells were treated with Wnt3a, XAV939, 
sclerostin, BMP2, BMP4, BMP7, or a combination of the re-
agents at the indicated concentrations. After culturing, the 
medium was removed and total cellular RNA was extracted 
using TRIzol (Invitrogen, Carlsbad, CA, USA). The extracted 
RNA (1 μg) was subjected to reverse transcription (RT) using 
a First-Strand cDNA Synthesis System (Invitrogen Corp.) 
with random hexamers (2  ng/mL), reverse transcriptase 
(200 U) and deoxynucleotide triphosphate (dNTP; 0.5 mM) 
at 42  °C for 50 minutes and at 70  °C for 10 minutes. All 
primer sequences are listed in Table 1. Aliquots of the poly-
merase chain reaction (PCR) products were electrophoresed 
on 1.5% agarose gels and visualized using fluorescent nu-
cleic acid staining assays (GelRed, purchased from Biotium, 
Fremont, CA, USA). For quantification of each target mRNA 
level, real-time PCR was performed using the QuantStudio 
real-time PCR system (Applied Biosystems, Waltham, MA, 
USA). The relative expression of each mRNA was determined 
using the ΔCt method, where ΔCt is the value obtained by 
subtracting the Ct value of ribosomal protein L19 (RPL19) 
mRNA from that of the target mRNA. The amount of target 
mRNA relative to RPL19 mRNA was expressed as 2-(ΔCt), and 
the results were expressed as the ratio of target mRNA to 
RPL19 mRNA.

Western Blot Analysis
PC12 cells were pretreated with the indicated concentra-
tions and periods of Wnt3a, sclerostin, XAV939, BMP2,  
BMP4, and BMP7 in DMEM. After culture, cells were solubil-
ized and the cell lysates were then subjected to sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) fol-
lowed by immunoblotting with anti-non-phospho (active) 
β-catenin (Ser33/37/Thr41) rabbit monoclonal antibodies 
(Cell Signaling Technology, Beverly, MA, USA, D13A1, RRID: 
AB_11127203), anti-β-catenin rabbit monoclonal antibodies 
(Cell Signaling Technology, D10A8, RRID: AB_11127855), 
anti-phospho-Smad 1/5/9 antibody (Cell Signaling Technology, 
#13820, RRID: AB_2493181), anti-SOST antibody (R&D, 
AF1589 RRID: AB_2195345) and anti-ACTIN antibody 
(Sigma-Aldrich, A2066, RRID: AB_476693). The integrated 
signal density of each protein band was analyzed using the 
LAS-4000 mini-instrument (FUJIFILM, Tokyo, Japan).

Cell Proliferation Assay
For cell proliferation assays, the CellTiter 96 AQueous One 
Solution Cell Proliferation Assay System (Promega, Madison, 
WI, USA) was used according to the manufacturer’s in-
structions. PC12 cells were plated in each well of a 96-well 

Table 1.  Primer sequences used for PCR analysis

gene Forward primer (5’-3’) Reverse primer (5’-3’) 

Rpl19 CTGAAGGTCAAAGGGAATGTG GGACAGAGTCTTGATGATCTC

Th TCCCCTGGTTCCCAAGAAAAG GTGCATTGAAACACGCGGAAG

Wnt3a ACCGTCACAACAATGAGGC GATAGTCCGTGGCATTTGC

Sost GCCTCCTCAGGAACTAGAGAAC TACTCGGACACGTCTTTGGTG

Lrp5 GCTGCTCCCATATCTGCATC AGCCTTCCTCATCACTCTGG

Lrp6 GGATGAGCTGTCCTGTGGAG TTCGCGTCACCATTGCATC

Axin2 GGCCTATCCAGCAAAACTC CCTACGTGATAAGGATTAACCG

Lef1 CCTGAAATGCCCACCTTCTACC CCACCCGTGATGGGATAAACAG

https://antibodyregistry.org/search?q=AB_11127203
https://antibodyregistry.org/search?q=AB_11127855
https://antibodyregistry.org/search?q=AB_2493181
https://antibodyregistry.org/search?q=AB_2195345
https://antibodyregistry.org/search?q=AB_476693
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plate and the indicated concentrations of Wnt3a, sclerostin, 
XAV939, BMP2, BMP4, and BMP7 was added. After 24-hour 
incubation in a humidified 5% CO2 atmosphere, PC12 cells 
were incubated with 20  μL of CellTiter 96 AQueous One 
Solution reagent per well. The absorbance at 490  nm was 
measured using a 96-well plate reader (Bio-Rad, Hercules, 
CA, USA, Model 680 XR).

Statistical Analysis
Data are presented as the means ± SE of data from at 
least 3 separate experiments, each performed in triplicate. 
Differences between groups were analyzed for statistical sig-
nificance using ANOVA with post hoc unpaired t test, when 
appropriate, to determine differences. Two-tailed P values less 
than 0.05 were regarded as statistically significant.

Results
Effect of Wnt-β-Catenin Signaling on Cell 
Proliferation and Catecholamine Synthesis
To demonstrate the existence of the Wnt-β-catenin signaling 
system in PC12 cells, the mRNA expression of key molecules 

involved in the canonical Wnt signaling was examined by re-
verse transcriptase PCR analysis (Fig. 1A). Wnt3a, LRP5/6, 
Axin2, and Lef1 were expressed, that agrees with previous 
reports [8]. The expression of tyrosine hydroxylase (Th), 
the rate-limiting step in catecholamine biosynthesis, was 
also confirmed. Notably, the mRNA (Fig. 1A) and protein 
(Fig. 1B) expression of sclerostin, a negative regulator in of 
the canonical Wnt pathway, was also detected by PCR and 
Western blotting, respectively in PC12 cells. Sclerostin is 
expressed mainly in osteocytes and suppresses osteoblast 
differentiation by binding to LRP5/6 and inhibiting the ca-
nonical Wnt signaling pathway [9]. To examine whether this 
Wnt-β-catenin system operates functionally, the effect of ex-
ogenous Wnt3a on β-catenin expression was evaluated with 
Western blots. As shown in Fig. 1C, Wnt3a increased total β-
catenin, as previously reported [10], and nonphosphorylated 
β-catenin, the stabilized and active form of β-catenin (Fig. 
1C). This Wnt3a-induced nonphosphorylated and total β-
catenin expression was attenuated by pretreatment with 
sclerostin (Fig. 1C). Messenger RNA expression of Axin2 and 
Lef1, well-known canonical Wnt target genes, was also con-
firmed to be upregulated by treatment with Wnt3a (Fig. 1D). 
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Figure 1.  Expression of the molecules related to Wnt-β-catenin signaling in PC12 cells. (A) Total cellular RNAs were extracted from PC12 cells. The 
expression of Th, Wnt3a, Sost, Lrp5, and Lrp6 were detected by RT-PCR analysis. MM indicates molecular weight marker. (B) Protein expression of 
sclerostin in PC12 cells with or without treatment of BMPs and Wnt3a. PC12 cells were treated with indicated concentration of BMP2, BMP4, BMP7, 
and Wnt3a for 24 hours. The cell lysates were subjected to SDS-PAGE followed by immunoblotting with anti-SOST and anti-ACTIN antibodies. Data are 
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Wnt3a for 8 hours with or without pretreatment with sclerostin for 24 hours. The cell lysates were subjected to SDS-PAGE followed by immunoblotting 
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These results demonstrate the existence of a functional Wnt-
β-catenin signaling system including sclerostin in PC12 cells.

To investigate the influence of enhanced Wnt-β-catenin 
signaling on tumor growth in PPGL, we evaluated the prolif-
eration of PC12 cells treated with various concentrations of 
Wnt3a by measuring viable cell viability using CellTiter 96. 
Previous studies have reported that Wnt3a has protective ef-
fects against apoptosis induced by neurocytotoxic substances, 
including ferrous sulfate and β-amyloid peptide, in PC12 cells 
[10, 11]. In the present study, exogenous Wnt3a treatment 
significantly enhanced cell proliferation (Fig. 2). Inhibition 
of the endogenous canonical Wnt pathway by XAV939 de-
creased viable cell number. A high concentration of sclerostin 
at 1000 ng/mL also reduced the cell number (Fig. 2).

To examine the influence of enhanced Wnt-β-catenin 
signaling on catecholamine synthesis and secretion of PPGL 
cells, we assessed Wnt3a-induced changes in Th mRNA ex-
pression (Fig. 3A) and dopamine secretion (Fig. 3B) in PC12 
cells. The relative expression of Th standardized by Rpl19 was 
examined using real-time PCR analysis. Interestingly, the ex-
pression levels of Th and dopamine in the conditioned medium 
were reduced by exogenous Wnt3a treatment. Th expression 
was increased by adding XAV939 or sclerostin and the secreted 
dopamine level was also increased by XAV939. Sclerostin did 
not significantly affect dopamine levels, although there was a 
trend toward a gradual increase in dopamine secretion. These 
results indicate that the activation of Wnt-β-catenin signaling 
suppresses catecholamine synthesis in PC12 cells.

Interaction of Wnt β-Catenin Signaling and BMP 
Signaling
To explore more detailed mechanisms by which the activation 
of Wnt-β-catenin signaling enhanced cell proliferation and re-
duced catecholamine synthesis in PPGL cells, we examined 
the interaction of Wnt and BMP signaling in PC12 cells. BMPs 
have been reported to regulate cell growth, apoptosis, migra-
tion, and invasion in many cancers, including breast cancer, 
hepatocellular carcinoma, gastric cancer, lung cancer, and pros-
tate cancer [12, 13]. However, the function of BMPs on PPGL 
growth has been scarcely explored, and thus we examined 
the effects of BMPs on the proliferation of PPGL cells using 
PC12 cells. Intracellular BMP systems including BMP ligands 
such as BMP2, BMP4, BMP7, their type I and II receptors, 
and Smads, have been reported to be expressed in PC12 cells 

[14]. In the present study, we added BMP2, BMP4, or BMP7 
to the cell culture medium of PC12 cells, and changes in vi-
able cell number were evaluated using CellTiter 96. As shown 
in Fig. 4A, BMPs enhanced cell proliferation. Subsequently, 
we assessed the interaction of the BMP and Wnt signaling 
on cell proliferation of PC12 cells. Cells were cultured with 
BMP2, BMP4, and BMP7 in combination with Wnt3a, and 
proliferation assays were performed. Wnt3a failed to enhance 
the BMPs-induced increase in the viable cell number (Fig. 
4B), although Wnt3a alone was shown to stimulate prolifer-
ation. As Wnt-β-catenin activation exerted no additive effect 
on BMP-induced cell proliferation, we examined the effect of 
Wnt3a on BMP-induced receptor Smads phosphorylation, 
which is activated by BMP receptor kinase and mediates the 
signals of BMPs (Fig. 5). Immunoblotting analysis showed 
that pretreatment with Wnt3a reduced BMP2, BMP4, and 
BMP7-induced Smad1/5/9 phosphorylation. Subsequently, 
we assessed the effect of BMPs on the expression of key mol-
ecules in the Wnt pathway. As shown in Fig. 6, BMP2 and 
BMP4 reduced endogenous Wnt3a mRNA expression, and 
BMP2 diminished Lrp5/6 expression while BMPs alone did 
not affect the Wnt-β-catenin target genes, such as Axin2 and 
Lef1. Thus, BMPs alone are not likely to directly suppress the 
steady-state Wnt-β-catenin pathway. However, BMP2, BMP4, 
and BMP7 markedly upregulated SOST mRNA expression. 
Furthermore, BMPs increased sclerostin protein expression. 
Wnt3a also increased it, although this was not significant 
(Fig. 1B). These data indicate the possibility that BMPs could 
suppress activated Wnt-β-catenin signaling through sclerostin 
upregulated by BMPs. Taken together, these results suggest 
that BMP and Wnt signaling suppress each other’s pathways 
rather than act cooperatively, although both stimulate the 
proliferation of PC12 cells.

Discussion
The Wnt-altered subtype of PPGL was proposed by Fishbein 
et al in 2017, more recently than identification of the other 2 
subtypes, pseudohypoxic and kinase signaling [2]. This sub-
type of PPGLs is sporadic and tends to be clinically aggres-
sive and metastatic. Wnt-related gene alterations, including 
MAML3 fusions and CSDE1 mutations, lead to overactivation 
of β-catenin. In this study, we examined the molecular mech-
anisms modulated by overactivated Wnt-β-catenin signaling, 
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which may contribute to aggressive disease. We found that ac-
tivation of Wnt-β-catenin enhanced cell proliferation whereas 
it slightly reduced catecholamine synthesis in PC12 cells, 
sclerostin was expressed in PC12, and the expression levels 
were upregulated by BMPs. Sclerostin, a negative regulator of 
Wnt signaling, plays an important role in malignant diseases 
with bone involvement [15-18].

Activation of the Wnt-β-catenin pathway promoted cell 
proliferation and blockade of the endogenous Wnt-β-catenin 
pathway by sclerostin as well as XAV939 reduced cell prolif-
eration. However, tyrosine hydroxylase mRNA expression and 
dopamine secretion were decreased by enhanced Wnt-β-catenin 
signaling. To the best of our knowledge, the catecholamine syn-
thesis potential of Wnt-altered PPGL has not been evaluated 
till date. In contrast, Rao et al investigated the relationship be-
tween genotype-specific differences in catecholamine content in 
PPGL tumor tissues, comparing pseudohypoxic subtype with 
mutations of SDHA, SDHB, SDHC, SDHD, and SDHAF2 
(SDHx) to kinase signaling subtype with mutations of RET 
[19]. In their study, the total catecholamine content per tumor 
tissue weight was higher in PPGLs with RET mutations than 
in tumors with SDHx mutations. This difference was specu-
lated to be partially due to increased tyrosine hydroxylase ac-
tivity in tumors carrying gain-of-function mutations in RET 
[19]. On the contrary, tyrosine hydroxylase expression levels in 
the activated Wnt-β-catenin condition, as a model of the Wnt-
altered subtype, were decreased in the present study. The effects 
of Wnt-β-catenin signaling on cell proliferation and catechol-
amine synthesis were similar to those of BMP-Smad signaling. 
BMPs, another type of growth factor that plays pro- or anti-
oncogenic roles, suppress catecholamine synthesis [14]. In the 
present study, they promoted proliferation of PC12 cells as 
shown in Fig. 4. Our observation agreed with a previous study 
in which transfection of a BMP7 plasmid into PC12 cells pro-
moted cell proliferation, as assessed by tetrazolium salt assay 
[20]. However, Wnt signaling inhibited BMP-induced Smad 
phosphorylation and BMPs enhanced sclerostin expression. 
Therefore, these 2 signaling pathways did not exert any addi-
tive or synergistic effects.

In this study, we showed that sclerostin was expressed at the 
mRNA and protein levels and that the expression levels were 
increased by treatment with exogenous BMPs in PC12 cells. 
To the best of our knowledge, this is the first study to focus the 
sclerostin expression in PPGL tumors or cell lines. However, 
according to the expression profile data of 178 PPGL tu-
mors from 173 patients in the TCGA transcriptional study 
[2] obtained from the publicly available cBioPortal platform 
(https://www.cbioportal.org/), 72 PPGL tumors, including 5 
tumors with MAML3 fusion genes and a tumor with a CSDE1 
somatic mutation, presented various levels of SOST mRNA 
expression. Sclerostin is prominently produced by osteocytes 
and functions as a key regulator of normal bone remodeling, 
which inhibits bone formation by inhibiting Wnt signaling 
[21]. Furthermore, sclerostin is expressed in certain patho-
logical conditions, including malignant diseases with bone in-
volvement [15-18]. Sclerostin mRNA and protein expression 
has been reported in multiple myeloma cell lines (H929, RPMI-
8226, U266, and Karpas909) and myeloma cells derived from 
patients with multiple myeloma [16]. The expression levels 
are higher in myeloma cells isolated from multiple myeloma 
patients with osteolytic disease than in those without bone 
disease [15]. The study with co-culture of human myeloma 
cell lines and bone marrow stromal cells differentiated into 
osteoblasts by Colucci et al shows that sclerostin produced by 
myeloma cells can suppress bone formation in the osteolytic 
disease of multiple myeloma [16]. Similarly, sclerostin, which 
is produced by cancer cells, is involved in breast cancer bone 
metastasis, which is mostly osteolytic and is observed in al-
most 70% of breast cancer patients [17, 18]. In a study by Zhu 
et al, sclerostin was overexpressed in tumor tissue from breast 
cancer patients with bone metastasis and in breast cancer cell 
lines. In addition, sclerostin-neutralizing antibody suppressed 
the migration and invasion of breast cancer cell lines and pre-
vented osteolytic lesions resulting from tumor metastasis in a 
xenograft model [18]. Bone has been reported to be the most 
common site of distant metastasis of PPGL, accounting for 
approximately 70% [22, 23]. Our results and previous reports 
regarding the effect of sclerostin on bone lesions in multiple 
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myeloma and breast cancer suggest that sclerostin derived 
from PPGL cells may be involved in bone metastasis by sup-
pressing osteoblast differentiation and that BMPs produced by 
osteoblasts may induce PPGLs sclerostin production.

However, this study contains some limitations. All of the 
presented data were obtained from the experiments using a 
single rodent cell line, PC12. Stimulation by the treatment 
with Wnt3a was used to evaluate the effects of activated Wnt-
β-catenin signaling on cell proliferation and catecholamine 
synthesis in the PPGL cells instead of the gene transfection 
and mutagenesis of the MAML3 fusions and the CSDE1 mu-
tations reported in the study by Fishbein et al [2]. In addition, 

PC12 cells carry a MAX gene mutation [24] belonging to 
kinase signaling subtype. This could influence the results of 
this study, although there is no evidence that suggests any 
intracellular signaling link between kinase signaling subtype 
and Wnt-altered subtype. Furthermore, although sclerostin is 
expressed in PPGL cells of some clinical cases, the difference 
in sclerostin expression levels between primary tumors and 
bone metastatic lesions remains to be evaluated to clarify the 
effect of sclerostin in the bone metastasis of PPGL. Co-culture 
studies of PPGL cells and osteoblasts are also needed to 
examine the presence of the interaction between these cells, 
which could be mediated by BMPs and sclerostin.
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In conclusion, we have shown that Wnt-β-catenin systems 
including sclerostin in PC12 cells can modulate cell prolifer-
ation and catecholamine synthesis. Further studies are needed 
to clarify the detailed mechanisms by which genetic changes 
in the Wnt-altered PPGL subtype cause a clinically aggressive 
phenotype.
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