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ABSTRACT
Background: Elderly asthma (EA) is increasing, but the pathogenesis is unclear. This study 
aimed to identify EA-related biological pathways by analyzing genome-wide gene expression 
profiles in sputum cells.
Methods: A total of 3,156 gene probes with significantly differential expressions between EA 
and healthy elderly controls were used for a hierarchical clustering of genes to identify gene 
clusters. Gene set enrichment analysis provided biological information, with replication from 
Gene Expression Omnibus expression profiles.
Results: Fifty-five EA patients and 10 elderly control subjects were enrolled. Two distinct 
gene clusters were found. Cluster 1 (n = 35) showed a lower eosinophil proportion in sputum 
and less severe airway obstruction compared to cluster 2 (n = 20). The replication data set 
also identified 2 gene clusters (clusters 1' and 2'). Among 5 gene sets significantly enriched 
in cluster 1 and 3 gene sets significantly enriched in cluster 2, we confirmed that 2 were 
significantly enriched in the replication data set (OXIDATIVE_PHOSPHORYLATION gene set 
in cluster 1 and EPITHELIAL MESENCHYMAL TRANSITION gene set in cluster 2').
Conclusions: The findings of 2 distinct gene clusters in EA and different biological pathways 
in each gene cluster suggest 2 different pathogenesis mechanisms underlying EA.
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INTRODUCTION

Global society is aging.1 Accordingly, elderly asthma (EA) involving asthma in people aged 65 
years and over is expected to increase. The estimated prevalence of EA in developed countries 
is 6%-10%.2 Previous reports suggest that EA is phenotypically different from non-elderly 
asthma (NEA).3-5 However, the pathogenesis underlying EA has not been clearly elucidated.

Induced sputum is a reliable non-invasive assessment of bronchial inflammation in asthma.6 The 
evaluation of gene expression profiles of sputum cells has been successfully applied to understand 
asthma pathogenesis.7,8 The present study searched biological pathways related to EA using 
genome-wide gene expression profiles of sputum cells from EA. We selected genes showing 
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significantly differential expressions between EA and healthy elderly controls and identified 2 
distinct clusters by hierarchical clustering of these genes. We performed gene set enrichment 
analysis (GSEA) to gain further biological insights of each cluster. Finally, we confirmed that our 
findings were replicated in a dependent gene expression profile of sputum cells obtained from 
Gene Expression Omnibus (GEO), a publicly available database of gene expression profiles. To the 
best of our knowledge, this is the first study to identify peculiar biological pathways contributing 
to the EA pathogenesis based on sputum gene expression profiles.

MATERIALS AND METHODS

Discovery data set
Participants aged 65 years or older were recruited from the Seoul National University Hospital 
(Seoul, Korea). Asthma was diagnosed according to the Global Initiative for Asthma guideline 
on the basis of current (past 12 months) episodic respiratory symptoms and demonstrated 
evidence of airway hyperresponsiveness to methacholine or positive bronchodilator (BD) 
response.9 Healthy elderly controls without asthma (n = 10) were recruited by advertisement. 
None of them had respiratory symptoms, sputum eosinophilia, abnormality on chest 
radiography and obstructive pulmonary function test results. Three of them were smokers 
(1 current smoker and 2 ex-smokers). Exclusion criteria included recent (past month) 
respiratory tract infection, change in maintenance therapy and asthma exacerbation. However, 
to reflect real situations, a smoking status was not considered an exclusion criteria. Sputum 
induction and processing were performed as previously described.10

Gene expression arrays
RNA was extracted from induced sputum samples by using the RNeasy Mini Kit (Qiagen, 
Hilden, Germany). Gene expression levels were measured using the GeneChip Human 
Gene 2.0 ST (Affymetrix, Santa Clara, CA, USA). We removed probes with bad chromosome 
annotation and probes in X or Y chromosome. We then did variance stabilizing transformation 
and quantile normalization, respectively, to reduce the effects of technical noises and to make 
the distribution of expression level for each array closer to a normal distribution.

Statistical analysis
A total of 3,156 gene probes showing significantly different expressions between EA and 
healthy elderly controls (P < 0.05) were used to further analysis. To search for meaningful 
information patterns and dependencies in gene expression data, we performed hierarchical 
clustering using the pvclust package in R version 3.4.3 (www.r-project.org; R Foundation for 
Statistical Computing, Vienna, Austria). This package provides an approximately unbiased 
P value generated by multi-scale bootstrap resampling. The P value indicates how strong 
the cluster is supported by the data.11 An approximately unbiased P value greater than 95% 
was used to define a cluster. We next performed GSEA using the GSEA software (version 
3.0) provided by the Broad Institute (Boston, MA, USA).12 We used the hallmark gene sets 
(H collection) from the Molecular Signatures Database (MSigDB, version 6.0) and defined a 
significantly enriched gene set when a false discovery rate threshold was less than 0.05.

Ethics approval
This study was approved by the Seoul National University Hospital Review Board (1608-101-
786), and informed consent was obtained from all study participants.
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Replication data set
A dependent gene expression profile of sputum cells (GSE41863) obtained from GEO (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863) was used to replicate our results. 
To identify markers associated with various asthma subtypes, sputum samples were collected 
from asthmatics and healthy controls and were subjected to expression profiling using 
Affymetrix HG-U133Plus2.0. From this profile, we selected 20 subjects aged 65 years or older 
(15 asthmatics and 5 healthy controls) and identified 3,264 gene probes showing significantly 
(P < 0.05) different expressions. Hierarchical clustering and GSEA were performed using 
these gene probes.

RESULTS

Fifty-five patients with EA were enrolled. Based on the differential gene expression patterns of 
sputum cells, 2 distinct clusters were identified (Fig. 1A and Supplementary Fig. S1). Cluster 
1 consisted of 35 patients with EA. Cluster 1 featured a significantly lower proportion of 
eosinophils in the sputum and less severe airway obstruction as measured by the post-BD ratio 
of the forced expiratory volume in 1 second and forced vital capacity (FEV1/FVC) compared to 
cluster 2. Detailed characteristics of the 2 clusters are provided in Table 1.

GSEA results (Table 2A and Fig. 2) revealed the significant enrichment of 5 gene sets in 
cluster 1 (OXIDATIVE_PHOSPHORYLATION [OXPHOS], UNFOLDED_PROTEIN_RESPONSE 
[UPR], MYC_TARGETS_V1, DNA_REPAIR, and ADIPOGENESIS) and 3 gene sets in cluster 
2 (EPITHELIAL_MESENCHYMAL_TRANSITION [EMT], MYOGENESIS, and KRAS_
SIGNALING_DN). In the replication analysis, hierarchical clustering of gene expression 
patterns also revealed 2 clusters (cluster 1' with 8 EA patients and cluster 2' with 7 EA patients, 
Fig. 1B). Clinical characteristics of each cluster are shown in Supplementary Table S1. GSEA 
identified 8 gene sets (OXPHOS, ESTROGEN_RESPONSE_EARLY, E2F_TARGETS, MYC_
TARGETS_V1, FATTY_ACID_METABOLISM, MYC_TARGETS_V2, ESTROGEN_RESPONSE_
LATE, and DNA_REPAIR) were significantly enriched in cluster 1' and 3 gene sets (TNFA_
SIGNALING_VIA_NFKB, INFLAMMATORY_RESPONSE, and EMT) in cluster 2' (Table 2B and 
Supplementary Fig. S2). The OXPHOS gene set was significantly enriched in clusters 1 and 
1' and the EMT gene set in both clusters 2 and 2'. To assess the potential functional relevance 
of the replicated gene sets, the leading edge genes of gene sets enriched in both discovery and 
replication datasets (Supplementary Table S2) were summarized into a single metagene metric 
using a principal component (PC) analysis. Then, the correlations between PC1, and serum uric 
acid levels and post-BD FEV1/FVC values were measured in each cluster. Circulating uric acid is a 
major antioxidant that might help protect against oxidative stress.13 The post-BD FEV1/FVC value 
is an indirect indicator of airway remodeling.14 Levels of serum uric acid were lower in cluster 
1 with a borderline significance (P = 0.083) compared to cluster 2, whereas post-BD FEV1/FVC 
values were significantly higher in cluster 1 (P = 0.008) (Supplementary Fig. S3). PC1 of leading 
edge genes in the OXPHOS gene set showed a negative correlation with serum uric acid levels 
(P = 0.075) only in cluster 1 (Fig. 3). Meanwhile, PC1 of leading edge genes in the EMT gene set 
showed a significantly negative correlation with post-BD FEV1/FVC values (P = 0.005) only in 
cluster 2 (Fig. 3). For individual gene, we found 4 genes (MRPS11, HSPA9, NDUFB4, and ACAT1) in 
the leading edge genes of the OXPHOS gene set and 2 genes (SNTB1 and FUCA1) in leading edge 
genes of the EMT gene set belonged to genes which showed more than 1.5 log 2-fold expression 
difference between clusters 1 and 2 with P values less than 0.01 (Fig. 4).
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DISCUSSION

Using gene expression profiles on sputum cells, we could identify 2 molecular clusters. 
Cluster 1 showed a significantly lower proportion of eosinophils in sputum and less severe 
airway obstruction compared to cluster 2. GSEA revealed that different biologic pathways 
were enriched in each cluster, implying that peculiar and discriminative pathogenesis 
mechanisms might exist. In replication analysis, we also identified 2 distinct molecular 
clusters. In addition, similar to the discovery dataset, the OXPHOS gene set was significantly 
enriched in one cluster and the EMT gene set was significantly enriched in the other cluster.

Approximately 70% of EA enrolled in the present study displayed symptom onset after 65 
years old and the mean symptom duration was 5 years. These findings suggest that EA is 
not merely a prolongation of NEA but rather that aging itself may pose susceptibility to 
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the development of asthma, as discussed elsewhere.15 In addition to anatomical changes, 
repetitive and long-standing exposures to environmental noxious stimuli cause the 
pro-inflammatory state in elderly subjects which results in aging-associated diseases in 
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Table 1. Baseline characteristics (discovery dataset)
Characteristics Cluster 1 (n = 35) Cluster 2 (n = 20) P value
Male, No. (%) 16 (45.7) 9 (45) 0.959
Age (yr) 72.6 (5.4) 75.1 (5.4) 0.103
BMI (kg/m2) 24.9 (3.7) 26.4 (4.1) 0.205
Smoking status 0.841

Current smoker, No. (%) 4 (11.4) 2 (10)
Ex-smoker, No. (%) 12 (34.3) 8 (40)
Never-smoker, No. (%) 19 (54.3) 10 (50)

Age of symptom onset (yr) 67.6 (6.8) 69.1 (6.9) 0.430
Age of symptom onset < 65 yr, No. (%) 11 (31.4) 6 (30) 0.912
Symptom duration (yr) 4.9 (6.0) 5.9 (4.7) 0.524
Chronic rhinosinusitis, No. (%) 18 (51.7) 8 (40) 0.514
Atopy, No. (%) 4 (44.4) 2 (22.2%) 0.620
Sputum eosinophil (%) 2.8 (4.3) 5.9 (8.2) 0.033
Sputum neutrophil (%) 35.9 (14.3) 37.9 (14.8) 0.580
Serum uric acid (mg/L) 5.2 (1.2) 6.1 (2.3) 0.083
Peripheral eosinophil count 209.6 (192.3) 197.2 (193.7) 0.819
Serum total IgE 91.0 (143.1) 130.0 (226.7) 0.616
Post-BD FVC (L) 2.75 (0.80) 2.74 (0.93) 0.974
Post-BD FVC (% pred.) 96.4 (16.0) 104.8 (15.8) 0.068
Post-BD FEV1 (L) 1.80 (0.44) 1.51 (0.37) 0.011
Post-BD FEV1 (% pred.) 91.0 (18.7) 82.0 (15.9) 0.065
Post-BD FEV1/FVC (%) 66.3 (11.8) 56.3 (13.0) 0.007
Data were presented as mean ± standard deviation except those indicated otherwise.
BD, bronchodilator; BMI, body mass index; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.

Table 2. Gene sets enriched significantly in each cluster
Gene set name No. of overlapped genes Normalized enrichment score FDR P value
Discovery dataset

Cluster 1
OXPHOS 28 2.99 <0.001
UPR 16 2.55 <0.001
MYC_TARGETS_V1 22 1.83 0.027
DNA_REPAIR 15 1.81 0.025
ADIPOGENESIS 31 1.80 0.021

Cluster 2
EMT 31 −3.29 <0.001
MYOGENESIS 27 −2.67 <0.001
KRAS_SIGNALING_DN 29 −1.81 0.24

Replication dataset
Cluster 1'

OXPHOS 85 1.96 0.005
ESTROGEN_RESPONSE_EARLY 24 1.89 0.005
E2F_TARGETS 37 1.75 0.019
MYC_TARGETS_V1 67 1.65 0.048
FATTY_ACID_METABOLISM 38 1.64 0.041
MYC_TARGETS_V2 28 1.64 0.034
ESTROGEN_RESPONSE_LATE 26 1.64 0.031
DNA_REPAIR 39 1.61 0.038

Cluster 2'
TNFA_SIGNALING_VIA_NFKB 27 −2.59 <0.001
INFLAMMATORY_RESPONSE 36 −2.05 0.002
EMT 28 −1.74 0.019

Data are shown as number (%).
FDR, false discovery rate; OXPHOS, OXIDATIVE_PHOSPHORYLATION; UPR, UNFOLDED_PROTEIN_RESPONSE; EMT, EPITHELIAL_MESENCHYMAL_TRANSITION.



combination with oxidative stress.16,17 The OXPHOS system embedded in mitochondria is 
the final biochemical pathway to produce adenosine triphosphate. A defect in the coupling 
between oxidation and phosphorylation causes various pathologic conditions including 
airway disorders.18-20 At least 70 of the OXPHOS subunits are encoded by the nuclear genes 
whose expressions were measured in the present study and some defects of these genes 
were related with many diseases.21 The OXPHOS system is an important source of reactive 
oxygen species (ROS) within cells. ROS production contributes to mitochondrial damage 
in a range of pathologies and is also important in redox from the organelle to the rest of the 
cell.22,23 Oxidative stress has also been linked to endoplasmic reticulum (ER) stress and to 
the activation of the UPR, leading to the activation of different inflammatory responses and 
dysregulation of the innate immune functions in the airways.24,25 These prior observations 
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match well with our findings that both the OXPHOS and UPR gene sets were significantly 
enriched in cluster 1. Given that previous suggestions that the OXPHOS and UPR systems 
have specific roles in the pathogenesis of asthma,25,26 age-related changes in the OXPHOS and 
UPR systems may influence the development of asthma in the elderly. A decrease in serum 
uric acid levels in cluster 1 was also an interesting finding. As anti-oxidants may scavenge 
ROS, an imbalance between ROS and anti-oxidant capacity must be one of the important 
factors determining the effect of oxidative stress. Currently, it is not clear that patients with 
EA in cluster 1 have an intrinsic defect in anti-oxidant capacity. However, combined with 
changes in the OXPHOS and UPR systems, reduced anti-oxidant capacity may contribute to 
the pathogenesis of asthma in the elderly.
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Cluster 2 as characterized by the enrichment of EMT gene sets. EMT describes a situation 
that epithelial and mesenchymal cells can, under certain conditions, switch their phenotypes27 
and emerging evidence suggests that EMT is an important mechanism contributing to airway 
remodeling in asthma,28 which can explain lower post-BD FEV1 and post-BD FEV1/FVC ratios in 
cluster 2 compared to those in cluster 1. Senescent cells secrete a variety of proteins collectively 
known as the senescence-associated secretory phenotype (SASP), which can induce cellular 
plasticity and tissue change in a paracrine manner.29 Recently, it has been reported that SASP 
might play a causal role in the pathogenesis of chronic obstructive pulmonary disease.30,31 The 
role of SASP in the pathogenesis of asthma in the elderly has been totally unknown. However, 
cellular senescence is believed to contribute to cancer progression via EMT.32,33 Cellular senescence 
observed in the airway may induce EMT and increase the severity of asthma in the elderly.

Interestingly, we did not find any specific pathway directly related with eosinophil biology, 
although a significantly higher sputum eosinophil proportion was observed in cluster 2. However, 
given that a previous report showed that eosinophil promoted EMT of bronchial epithelial cells,34 
airway eosinophilia might be complicated in the pathogenesis underlying cluster 2.

We aimed to identify biological pathways explaining a whole feature of EA, and thus we did 
not consider asthma-COPD overlap (ACO) as a subtype of EA in this study. If we define ACO 
as 1) post-BD FEV1/FVC < 0.7 and 2) classic symptoms of chronic bronchitis or suggesting 
signs of emphysema with chest radiography or pulmonary function test,35 the proportion of 
ACO is higher in cluster 2 (28.6% vs 55.5%). Although the difference showed a borderline 
significance (P = 0.083), the present study raised new insight in understanding ACO in the 
elderly. As is known, ACO is a common clinical problem in the elderly.36 Therefore, large scale 
studies to exam possible associations between biological pathways enriched in cluster 2 and 
ACO are necessary.
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There are a few limitations to generalize our findings. One is the small number of 
participants. However, our results were replicated in an independent data set. This was a 
cross-sectional study, and thus we cannot know whether that the pathways identified were 
the primary cause or the secondary effect of asthma. Secondly, we used the uric acid level 
as an indirect biomarker to reflect oxidative stress status as it was easily available from 
routine laboratory examinations. Additional biomarkers need to be measure to confirm our 
observations. Finally, studies to elucidate mechanisms need to be followed.

Among leading genes identified in this study, NUDFB4 and FUCA1 are of special interest. 
NUDFB4 is a subunit of NADH dehydrogenase and its expression increases in smoking 
associated severe asthmatics.37,38 Similar to the present study, it has been reported that a 
considerable portion of elderly asthmatics were former or current smokers.4,5 FUCA1 codes 
α-L-fucosidase that can block wound repair of primary airway epithelium.39 As well known, a 
delay in airway epithelial damage is associated with airway remodeling.40

In this study, we identified 2 distinct molecular clusters using gene expression profiles in 
sputum cells from patients with EA. The OXOPHOS and UPR gene sets were significantly 
enriched in one cluster with lower serum levels of uric acid. The EMT gene sets were 
significantly enriched in one cluster with airway remodeling defined by lower post-BD 
FEV/FVC ratios. This is the first study to show biologic pathways possibly related to EA 
pathogenesis. We postulate that oxidative stress and cellular senescence-associated with 
aging may be important in the development or progress of EA.
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Supplementary Fig. S2
Gene sets enriched in each cluster identified in the replication dataset with FDR P values less 
than 0.001. Only 2 gene sets were presented which were also significantly enriched in the 
discovery dataset.
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Supplementary Fig. S3
Differences of serum uric acid levels and post-BD FEV1/FVC values between cluster 1 and 
cluster 2 in the discovery dataset.
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