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Simple Summary: Using the covariate-adjusted tensor classification in the high-dimension (CATCH)
model, we integrated adjusted radiomics-based CT images into RNA immune genomic expression
data to achieve the accurate classification of recurrent CRC. The correlation between radiomic features
and immune gene expression identifies potential therapeutic targets in CRC. We provide individual-
ized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC.

Abstract: To evaluate whether adjusted computed tomography (CT) scan image-based radiomics
combined with immune genomic expression can achieve accurate stratification of cancer recurrence
and identify potential therapeutic targets in stage III colorectal cancer (CRC), this cohort study
enrolled 71 patients with postoperative stage III CRC. Based on preoperative CT scans, radiomic
features were extracted and selected to build pixel image data using covariate-adjusted tensor
classification in the high-dimension (CATCH) model. The differentially expressed RNA genes, as
radiomic covariates, were identified by cancer recurrence. Predictive models were built using the
pixel image and immune genomic expression factors, and the area under the curve (AUC) and F1
score were used to evaluate their performance. Significantly adjusted radiomic features were selected
to predict recurrence. The association between the significantly adjusted radiomic features and
immune gene expression was also investigated. Overall, 1037 radiomic features were converted
into 33 × 32-pixel image data. Thirty differentially expressed genes were identified. We performed
100 iterations of 3-fold cross-validation to evaluate the performance of the CATCH model, which
showed a high sensitivity of 0.66 and an F1 score of 0.69. The area under the curve (AUC) was
0.56. Overall, ten adjusted radiomic features were significantly associated with cancer recurrence
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in the CATCH model. All of these methods are texture-associated radiomics. Compared with non-
adjusted radiomics, 7 out of 10 adjusted radiomic features influenced recurrence-free survival. The
adjusted radiomic features were positively associated with PECAM1, PRDM1, AIF1, IL10, ISG20,
and TLR8 expression. We provide individualized cancer therapeutic strategies based on adjusted
radiomic features in recurrent stage III CRC. Adjusted CT scan image-based radiomics with immune
genomic expression covariates using the CATCH model can efficiently predict cancer recurrence.
The correlation between adjusted radiomic features and immune genomic expression can provide
biological relevance and individualized therapeutic targets.

Keywords: covariate adjustment; adjusted radiomics; immune genomic expressions; cancer recur-
rence; therapeutic targets

1. Introduction

Colorectal cancer (CRC) is a common malignancy that results in significant morbidity
and mortality. Abdominal computed tomography (CT) scans of the primary tumor are
valuable in planning surgery for patients with stage II–III CRC because they can demon-
strate the regional extension of the tumor, adenopathy, and distant metastases. However,
the role of non-invasive CT scan imaging with respect to the tumor microenvironment
(TME) remains unclear. CT scan-based radiomics can be used to extract high-dimensional
imaging radiomic features. Radiomics has shown great potential as an excellent method for
predicting recurrence in various types of cancer [1]. Some studies have applied CT-based
radiomic features for the clinical evaluation, such as staging, recurrence, or lymph node
metastasis prediction of patients with CRC [2–5]. A previous study calculated the clinical
factors and radiomic scores to predict the recurrence risk in patients with stage II CRC [1].

In contrast to traditional imaging features, radiomics has been proposed to reveal the
characteristics of the TME and genetic features. The TME is heterogeneous and consists
of tumor, stromal, and immune cells. Tumor cell types and their environments affect
cancer growth and metastasis. Almost every immune cell-containing cancer can be imaged
using computed tomography (CT). Tumor image-derived texture features are associated
with the cancer immune cell infiltration status [6]. Several potential molecular and TME-
based immune predictors of recurrence risk and immunotherapy response have been
recently investigated [7]. RNA sequencing methods can process a mixture of immune cells,
averaging out the underlying differences in immune cell type-specific transcriptomes. RNA
gene expressions of multiple tumor tissue immune cells that affect radiomic parameters are
also present in imaging and radiomic features.

However, few studies have considered the covariates of texture radiomic features and
integrated TME-based immune RNA expression into radiomic signatures to predict colon
cancer prognosis. Another major challenge in studies of cancer recurrence prediction by
radiomic features is that they are often composed of a relatively small number of patient
samples and a large number of radiomic features. These types of data present a problem of
high dimensionality. A good strategy is to reduce the number of dimensions using feature
selection. This study aimed to evaluate the usefulness of adjusted CT scan image-based
radiomics combined with immune genomic expression for the accurate stratification of
cancer recurrence and identification of potential therapeutic targets in stage II–III CRC.
We hypothesized that RNA gene expression affects radiomic features through the tumor
microenvironment. Towards this goal, we used the covariate-adjusted tensor classification
in the high-dimensional (CATCH) algorithm.

The main aim of the CATCH algorithm is to construct an interpretable discriminant
analysis model for achieving variable selection and prediction consistency, even when the
number of interesting variables is much larger than the sample size. Taking advantage
of the CATCH algorithm, RNA expression was merged as a covariate into the radiomics-
based model, offering a more comprehensive prediction of tumor recurrence. Based on
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the successful application of radiomics analyses in precision oncology, we constructed a
relationship between RNA expression and radiomics to provide an accessible method for
identifying potential therapeutic targets.

2. Materials and Methods
2.1. Patient Selection

This cohort study initially enrolled 99 patients with stage II–III CRC who underwent
surgery, followed by adjuvant chemotherapy with leucovorin (folinic acid), fluorouracil,
and oxaliplatin (FOLFOX), at the National Cheng Kung University Hospital (NCKUH)
between January 2015 and January 2017. Eligible cancer patients were aged >= 20 years, as
well as having an Eastern Cooperative Oncology Group performance status (ECOG PS) of
0–1, and adequate organ function. Follow-up continued through to January 2019. Primary
tumor tissues were collected from all subjects for RNA immune response genes and CT
scans for research purposes. To study the impact of immune response-associated gene
expression and radiomics on recurrence, tumor samples from 99 high-risk patients were
collected. After quality control, samples from 71 patients were retained for further analysis.
Among the 71 patients, 21 patients (29.5%) had tumor recurrence. The tumor recurrence
was defined as any tumor-related lesion, including local/regional or distant metastasis,
first detected after the curative operation.

This study was approved by the Institutional Review Board of NCKUH (A-ER-103-395,
A-ER-104-153, and B-ER-109-154) and was conducted according to the tenets of the Helsinki
Declaration. All participants provided written informed consent.

2.2. Image Acquisition and Imaging Texture Analysis

Seventy-one consecutive CRC patients underwent pre-treatment abdominal/pelvic
CT scans with and without intravenous (IV) contrast enhancement with an injected volume
of 80 mL (iohexol, 350 mgI/ML or iopamide, 370 mgI/mL) scanned at the portal-to-
delayed phase. All patients were studied, including 28 patients using 16-row CT scans
(Sensation 16, Siemens Medical Solution, and BrightSpeed Series CT systems, General
Electric (GE) Healthcare, Milwaukee, WI, USA), 15 patients using 64-row CT scans (Optima
CT660 and LightSpeed, GE, and Sensation 64 and SOMATOM Definition AS, Siemens), and
28 patients using 128-row C T scans (SOMATOM Definition FLASH, Siemens Healthineers,
Forchheim, Germany). For tumor segmentation, all portal venous phase CT images in
the Digital Imaging and Communications in Medicine (DICOM) format were retrieved
from the picture archiving and communication system (PACS) at NCKUH. The volume of
interest (VOI) of the target tumors in serial slices was manually labeled by two senior board-
certified radiologists using a self-developed image-labeling tool running on “INFINITE”
PACS 3.0. The DICOM images were saved as the Neuroimaging Informatics Technology
Initiative file type, and the mask using polygonal annotation was saved as the file format
of nearly raw raster data. PyRadiomics uses SimpleITK for image loading and handling.
Features were calculated by several built-in filters. These included wavelet and Laplacian
of Gaussian (LoG) with sigma filters. In total, 1037 radiomic features were selected, and
are shown in Table S1. To test the reproducibility of the image features, we randomly
selected 30 patients with tumor labeling performed by two radiologists who were both
blinded to the clinicopathological and outcome details. We assessed the radiologist’s
reproducibility of double segmentation in CT scans. The median value of intra-class-
correlation coefficients (ICCs) is 0.93. For the accuracy of the tumor labeling, we selected
the radiomic features based on the two radiologists’ consensus. Quantitative imaging
features were subsequently extracted from previously identified VOIs. The definitions
of the radiomic features were derived from the PyRadiomics library (version 3.0). The
PyRadiomics community maintains copyright for the definitions mentioned (http://github.
com/radiomics/pyradiomics, accessed on 22 December 2021).

http://github.com/radiomics/pyradiomics
http://github.com/radiomics/pyradiomics
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2.3. Radiomics Workflow and Feature Extraction

Radiomics is a feature extracted from diagnostic medical images using advanced
feature-analysis algorithms. After tumor segmentation, we measured 1037 radiomic fea-
tures, as summarized in Table S2. The following radiomic features were included for
feature computation: (1) first-order statistics (19.1%), (2) gray level co-occurrence matrix
(25.5%), (3) gray level dependence matrix (14.9%), (4) gray level run length matrix (17.0%),
(5) gray level size zone matrix (17.0%), (6) neighboring gray tone difference matrix (5.3%),
and (7) shape (1.4%). The spectrum and distribution of radiomic features are listed in
Table S2. Based on the study by Khalifa et al. (2020) [8], 1037 radiomic feature data were
converted into 33×32-pixel image data, representing a transformed image, using a feature
extraction algorithm.

2.4. Tumor Microenvironment-Based RNA Immune Response Gene Sequencing

Cancer tissues with immune response gene expression profile data were obtained from
71 CRC patients. RNA was extracted from formalin-fixed paraffin-embedded tissue using
the RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher Scientific). The 398 RNA
immune response genes were constructed into libraries using the Ion AmpliSeq Kit for
Chef DL8 with the Ion Chef System. Raw gene expression data were preprocessed using
Torrent Suite, followed by further normalization.

2.5. Statistical Analysis for Clinical Data

The chi-square test and Fisher’s exact test were used to assess the differences between
the tumor recurrence and non-tumor recurrence groups. The tumor recurrence was defined
as any tumor-related lesion, including local/regional or distant metastasis, first detected
after the curative operation. Kaplan–Meier curves were used to evaluate recurrence-free
survival (RFS), which was defined as the time between surgery and cancer recurrence. A
p-value < 0.05 was considered statistically significant.

2.6. CATCH Model

To integrate radiomic feature information and immune response-associated gene
expression profile data, the CATCH model proposed by Pan et al. [9] was used to predict
the recurrence in CRC patients. The CATCH model is based on Bayes’ rule and is defined
as follows:

Ŷ = arg max
k=1,2

Pr
{

ak + γT
k U +

〈
Bk, X− α(M+1)×U

〉}
where Ŷ is the predictor for categorical variable Y with two levels (1 for recurrent patients
and 2 for non-recurrent patients), X represents the 33 × 32-pixel image data, and U rep-
resents the immune response-associated gene expression profile data. The parameters
{γk, α, Bk} in Equation [9] are useful for clinical judgment. The coefficient γk represents the
direct effect of the immune response-associated gene expression profile (U) on recurrence
(Y). The coefficient α represents the relationship between the radiomic features (X) and the
immune response-associated gene expression profile. The coefficient Bk represents the effect
of X after adjusting for the covariate U, and Xadj = X− α(M+1)×U represents the adjusted
radiomic features. The diagram of the relationships between the coefficients {γk, α, Bk},
which are critical and can guide the clinician to interpret the results obtained from the
CATCH model, is shown in Figure 1. We described the method for using the coefficient Bk
and adjusted radiomic features Xadj to build an individualized cancer therapeutic strategy.
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Figure 1. CATCH model for predicting risk of recurrence. The CATCH model can be used to reduce
the influence of RNA gene expression covariates in radiomics data. γ represents the discriminative
coefficients for the impact of immune gene expression on recurrence. α represents the radiomics
parameters indicative of the indirect effect of immune gene expression on cancer recurrence. B
represents the direct effect of radiomic features on recurrence in the tensor discriminant analysis.

3. Results
3.1. Patient Characteristics

To predict cancer recurrence based on radiomic features, we adjusted the covariates
of the TME-based RNA gene expression. First, differentially expressed genes (DEGs) that
affected cancer recurrence (γk) were identified [10]. Second, we demonstrated that the per-
formance of the CATCH model based on radiomic features and RNA expression (Bk) affects
clinical outcomes. Third, a correlation between radiomic features and RNA gene expression
(α) was established to identify a potential therapeutic target (Figure 1). The results show
that this model can successfully predict cancer recurrence. The baseline characteristics of
the patients are presented in Table S3. In total, 49.3% were men, and the median patient age
was 58 years. The distribution of gender was almost the same between patients with and
without cancer recurrence (Table S3). Overall, 71.8% of CRC patients were aged <65 years.
The primary tumors were most commonly located in the left colon (78.9%). Most patients
had a high tumor invasive stage (T3–T4) (87.3%) and low tumor nodal stage (N0–N1)
(70.4%). There was no significant difference in clinical characteristics between patients
with and without cancer recurrence (Table S3). In the genetic features of colorectal cancers,
there was no significant difference in mismatch repair (MMR), KRAS, and BRAF status
between recurrence and no-recurrence groups. No prognostic risk factors were identified
in clinicopathological and genetic features. In our dataset, the percentage of local/regional
and distal recurrence was 23.8% and 76.2%, respectively. Among the 21 patients with tumor
recurrence, one (4.8%) patient had local recurrence, and four (19.0%) patients had regional
recurrences. Sixteen (76.2%) patients had distant metastases. Seven (33.3%) patients had
lung-only metastasis. Three (14.3%) patients had liver-only metastasis (Table S4).

3.2. Identification of Genes Influencing Recurrence and Performance of the CATCH Model

To determine the correlation between RNA immune gene expression and clinical
outcome, 30 significant DEGs were selected from 398 RNA genes. A differential gene
expression analysis was performed using the DESeq2 R package [11] to observe the dif-
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ference in the immune expression in colorectal cancer patients with and without tumor
recurrence. As a result, 30 differentially expressed genes (DEGs) were identified (Figure S1).
The expression differences of these RNAs in different samples are displayed in a heatmap
in Figure S1. The 30 DEGs were incorporated as covariates into the CATCH model. Data
were divided into the training set (67%) and the test set (33%), with the training set main-
taining an original disease recurrence rate of 0.29. Performance measures were calculated
using a testing set with 100 iterations. The performance of the proposed method was then
compared with that of random forest (RF) and linear discriminant analysis (LDA), the most
common algorithms in machine learning for classification. Table 1 shows the performance
of the RF, LDA, and CATCH models (Table 1). The average AUCs for the CATCH, RF,
and LDA models were 0.56, 0.46, and 0.46, respectively. The CATCH model had a high
sensitivity of 0.66 and an F1 of 0.69 in the testing set. These results indicate that the CATCH
model can integrate transformed radiomics-based CT images into RNA immune genomic
expression data to achieve an accurate classification of recurrent CRC.

Table 1. Performance of machine learning models.

Methods Accuracy Sensitivity Specificity F1 score AUC

Random
forest 0.68 0.16 0.83 0.24 0.46

LDA 0.64 0.32 0.78 0.35 0.55
CATCH 0.60 0.66 0.48 0.69 0.56

Abbreviations: LDA, linear discriminant analysis; CATCH, covariate-adjusted, proposed tensor classification in
high dimensions; AUC, area under the curve.

3.3. Adjusted Radiomic Features Obtained from CATCH Model for Cancer Recurrence

The ten most significant adjusted radiomic features were selected based on the variable
selection algorithm in the CATCH model to investigate the usefulness for predicting cancer
recurrence (Table S5 and Figure 2). The adjusted radiomic features could clearly distinguish
recurrent CRC from nonrecurrent CRC. The range of the coefficient Bk was from 6.57 to
−5.71 (Table 2). If the coefficient value was positive, greater significance of the variable was
associated with the probability of CRC recurrence. If the absolute value of the coefficient
was higher, its influence on recurrence was more remarkable. There were distinct ra-
diomic profiles of the recurrent cancer patterns. Recurrence was positively correlated with
wavelet.LHH_glcm_Idmn and wavelet.LHH_glcm_Idn. LHH_glcm_Idmn, which mea-
sures Idm (inverse difference moment or Homogeneity 2), measures the local homogeneity
of an image. Idmn, local homogeneity, is associated with cancer recurrence. LHH_glcm_Idn,
which measures the inverse normalized difference (Idn), is another measure of the local
homogeneity of an image. Idn normalizes the difference between neighboring intensity
values by dividing by the total number of discrete intensity values. Idn, local homogeneity,
is associated with cancer recurrence.

Table 2. Coefficients of adjusted radiomic features.

Features Coefficient

wavelet LHH_glcm_Idmn 6.57
wavelet LHH_glcm_Idn 4.45
wavelet LLH_glcm_Idn 0.69
wavelet LHL_glcm_InverseVariance (IV) 0.07
wavelet HHH_gldm_DependenceVariance (DV) 0.06
wavelet LHH_glszm_GrayLevelNonUniformityNormalized (GLNN) −0.11
wavelet LHH_gldm_LowGrayLevelEmphasis (LGLE) −0.20
wavelet LHH_glrlm_LowGrayLevelRunEmphasis (LGLRE) −0.73
wavelet LHH_ngtdm_Contrast −5.22
wavelet LHH_glszm_LowGrayLevelZoneEmphasis (LGLZE) −5.71
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Figure 2. Adjusted radiomic features in the CATCH model. The 10 most significant adjusted
radiomic features distinguish the recurrent CRC from the non-recurrent CRC. Positive coefficient
values indicate higher significant association between radiomic features and recurrence. A more
significant absolute value of the coefficient indicates more profound influence on recurrence.

Meanwhile, recurrence was negatively correlated with wavelet LHH_glszm_
LowGrayLevelZoneEmphasis (LGLZE), wavelet LHH_ngtdm_Contrast. LHH_glszm_LGLZE
measures the distribution of lower gray-level size zones, with a higher value indicating a
greater proportion of lower gray-level values and size zones in the image. LGLZE, such
as tumor necrosis or mucinous lesions in CT scan images, is associated with cancer non-
recurrence. LHH_ngtdm_Contrast measures the spatial intensity change but depends on
the dynamic range of gray. In this study, the contrast was high when both the dynamic
range and spatial change rate were high. Contrast imaging is associated with cancer non-
recurrence (Table S6). These findings may provide significant adjusted radiomic features
for predicting recurrence in stage III CRC.

3.4. Adjusted Radiomic Features Impact Clinical Outcome

After comparison of the clinical outcomes of adjusted and non-adjusted radiomic
features, only two non-adjusted radiomic features, namely LHL_glcm_InverseVariance
(IV) and HHH_gldm_DependenceVariance (DV), were correlated with cancer recurrence
(Figure S2). After adjusting radiomic features using the CATCH model, we obtained
10 significantly adjusted radiomic features correlated with cancer recurrence. Boxplot and
Kaplan–Meier survival curves comparing the risk of cancer recurrence and recurrence-
free survival (RFS) among patients with adjusted radiomic features or without radiomic
features are shown in Figure S2. Figure 3A (non-adjusted, p-value = 0.123) and 3B (ad-
justed, p-value < 0.001) show the boxplot of wavelet LHH_glcm_Idmn. Figure 3C (non-
adjusted, p-value = 0.299) and Figure 3D (adjusted, p-value = 0.001) show the boxplot of
wavelet.LHH_glszm_LGLZE.
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Figure 3. Boxplot and Kaplan–Meier survival curves comparing the risk of cancer recurrence and
recurrence-free survival (RFS) among patients with adjusted radiomic features or without radiomic
features. (A) Boxplot of cancer recurrence in patients without adjusted LHH_glcm_Idmn radiomic
features. (B) Boxplot of cancer recurrence in patients with adjusted LHH_glcm_Idmn radiomic
features. (C) Boxplot of cancer recurrence in patients without adjusted LHH_glszm_LGLZE radiomic
features. (D) Boxplot of cancer recurrence in patients with adjusted LHH_glszm_LGLZE radiomic
features. (E) Kaplan–Meier survival curves of recurrence-free survival by wavelet LHH_glcm_Idmn
without adjusted radiomic features. (F) Kaplan–Meier survival curves of recurrence-free survival
by wavelet LHH_glcm_Idmn with adjusted radiomic features. (G) Kaplan–Meier survival curves of
recurrence-free survival by LHH_glszm_LGLZE without adjusted radiomic features. (H) Kaplan–Meier
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survival curves of recurrence-free survival by LHH_glszm_LGLZE with adjusted radiomic features.
The blue curve represents overall population. The green curve represents the patients with radiomic
data above the median. The red curve represents the patients with radiomic data below the median.

In addition to recurrence prediction, the survival impact of the adjusted radiomic
features was compared with that of non-adjusted radiomic features. After adjusting
for radiomic features using the CATCH model, seven significantly adjusted radiomic
features (Figure S2) that correlated with cancer RFS were obtained. The non-adjusted
LHH_glcm_Idmn (p-value = 0.201) (Figure 3E) was not a significant prognostic factor for
RFS. In contrast, the adjusted LHH_glcm_Idmn was a significant prognostic factor for
RFS (Figure 3F, p-value < 0.001). The non-adjusted LHH_glszm_LGLZE (p-value = 0.381)
(Figure 3G) was not a significant prognostic factor for RFS, while the adjusted LHH_glcm_Idmn
was a significant prognostic factor (Figure 3H, p-value < 0.001). These two adjusted ra-
diomic features were associated with cancer recurrence and RFS. These results demonstrate
the advantages of the CATCH model.

3.5. Correlation between Adjusted Radiomic Features and Immune Gene Expression

The correlation between adjusted radiomic features of CT image data and tumor
microenvironment-based immune gene expression in cancer tissues was investigated
to identify potential therapeutic targets in high-risk CRC stage III patients. As shown
in Figure 4 and Table S7, the spectrum of RNA expression was identified in the 10 sig-
nificantly adjusted radiomic features. The adjusted radiomic features were positively
associated with the expression of PECAM1, PRDM1, AIF1, IL10, ISG20, and TLR8. For re-
currence, the highest positive correlation was found between the adjusted radiomic features
LHH_glcm_Idmn, LHH_glcm_Idn, and LLH_glcm_Idn and expressions of immune genes
PECAM1, PRDM1, and AIF1. For non-recurrence, the highest positive correlation was found
between the adjusted radiomic feature of LHH_glszm_LGLZE and LHH_ngtdm_Contrast
and the expression of the immune genes IL10, ISG20, and TLR8. PECAM1 and PRDM1
immune gene expression was negatively related to the non-cancer recurrence-adjusted ra-
diomic features of LHH_glszm_LGLZE and LHH_ngtdm_Contrast. These results indicate
that potential therapeutic targets, such as PECAM1, PRDM1, and AIF1, can be identified by
adjusting the radiomic features that impact cancer.
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3.6. PECAM1 as a Therapeutic Target Identified by Adjusted Radiomic Features in Recurrent
Colorectal Cancer

Figure 5 shows three patients with individualized therapeutic targets based on ad-
justed radiomic features. The integration of specific immune gene expression and radiomic
features provides valuable information for clinical decision-making and guidance for indi-
vidualized therapeutic target options. Based on the association of immune gene expression
and adjusted CT image-derived radiomic features, which further correlate with recurrence
in stage III CRC patients, some examples of the applications of our model are provided.
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Figure 5. Treatment strategies by adjusted radiomic features in recurrent colorectal cancer. Three stage III
CRC patients with individualized treatment targets identified by adjusted radiomic features. PECAM1
is indicated as the potential therapeutic target.

The first patient (Figure 5A) was a 61-year-old woman with pathological stage III left-
sided colon cancer at the initial diagnosis. The patient underwent standard surgical resec-
tion followed by adjuvant chemotherapy with modified FOLFOX (mFOLFOX7) for 12 cycles
(Figure 5A,B). Multiple peritoneal metastases were detected on CT at 24 months postopera-
tively (Figure 5C). The feature profile showed higher LHH_glcm_Idmn, LHH_glcm_Idn,
LHL_glcm_IV, and HHH_gldm_DV values, indicating a higher risk of recurrence (Figure 5D).
These adjusted features correlated with PECAM1 and SNAI2 RNA expression (Figure 5M).
Therefore, it may be a therapeutic target.

The second patient (Figure 5E) was a 60-year-old woman with pathological stage III
sigmoid colon cancer at the time of the initial diagnosis. The patient underwent standard
surgical resection followed by adjuvant chemotherapy with mFOLFOX7 for 12 cycles
(Figure 5F). Recurrence of lymph nodes was detected by CT at 12 months postoperatively
(Figure 5G). The feature profile showed higher LHH_glcm_Idmn, LHH_glcm_Idn, and
LHL_glcm_IV values, indicating a higher risk of recurrence (Figure 5H). These adjusted
features correlated with PECAM1 RNA expression.

The third patient (Figure 5I) was a 76-year-old woman with pathological stage III right-
sided colon cancer at the time of initial diagnosis. The patient underwent standard surgical
resection followed by adjuvant chemotherapy with mFOLFOX7 for 12 cycles (Figure 5I,J). A
single lung metastasis was detected on CT at 12 months postoperatively (Figure 5K). They
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were not correlated with the adjusted radiomic features profile, indicating a borderline risk
of recurrence (Figure 5L).

4. Discussion

CRC is an etiologically heterogeneous disease that involves several distinct biological
pathways and CT scan presentations. This study used diagnostic CT images and gene
expression as covariates in the CATCH model to predict recurrence in CRC patients. The
results show that the model predicts recurrence by adjusting radiomic features and iden-
tifies potential therapeutic targets in CRC. Our results highlight the following important
points. First, the CATCH model efficiently integrates high-dimensional radiomic features
and covariates of immune gene expression to predict cancer recurrence in small datasets.
Second, 10 textural associated adjusted radiomic features are selected for cancer recurrence,
with 7 of these adjusted radiomic features being associated with RFS. Finally, we established
a correlation between radiomic features and immune gene expression, providing biological
relevance and individualized therapeutic targets for patients with recurrence.

CT-based radiomic signatures are potential biomarkers for predicting CRC recur-
rence [1]. Prognosis prediction based on informative DEGs also has higher predictive
accuracy for CRC prognosis. However, few studies have attempted to analyze immune
gene expression as a covariate for high-dimensional image information. Further, the sample
is often limited to surveys collecting both CT scan image data and gene expression levels
due to the high intrinsic cost of data collection involving human participants. In such
conditions, the machine learning algorithms could have poor accuracy because the learning
algorithm does not have enough data to learn from.

The CATCH model solves high-dimensional data and feature integration strategies
from disparate sources and unbalanced datasets. Furthermore, it incorporates a feature-
selection algorithm into the classification model. Thus, the CATCH model can achieve
acceptable accuracy with limited data and covariate adjustments. We used this advantage
in the current study. To establish a model to manage high-dimensional image data, the
1037 radiomic feature data were converted into 33×32-pixel image data, representing a
transformed image, using a feature extraction algorithm. Then, we integrated 30 DEGs
and 33×32-pixel image data to accurately predict cancer recurrence. In the traditional
LDA and RF methods, a high number of features, 1037 high-dimensional features plus
30 DEGs, and unbalanced datasets were a problem for selecting the essential features.
These machine-learning models struggled to integrate data from disparate sources and
unbalanced datasets. LDA and RF models also had poorer sensitivity. Because the sample
size is small, these machine-learning models were utilized without tuning processes to
prevent overfitting. Although the performance of these machine-learning methods could
be improved, it cannot offer interpretable discriminant analysis results. The study goal
was to utilize the CATCH model to predict the risk of cancer recurrence and provide
therapeutic strategies in our colorectal cancer patients. Using radiomic biomarkers and
RNA expression data, we have provided a useful clinical model that will help physicians
to make better-informed decisions regarding the short-interval CT scan follow-ups and
potential drug targets. Collectively, these results indicate that the CATCH model can
efficiently integrate high-dimensional radiomic features and covariates to predict cancer
recurrence in small datasets.

Immune gene expression involves both clinical outcomes and radiomic expression.
Previous studies have explored radiomic signatures and specific gene expression. CT
scan-based radiomic features have been found to be significantly associated with KRAS
or BRAF mutations [12,13]. A study in France demonstrated an association between gene
expression and radiomics; for example, ABCC2 expression was correlated with LGLZE
and SZLGE [14]. In addition, radiomic features and gene expression of ABCC2 have been
identified as prognostic factors for survival [14]. Our model adopted gene expression
as an additional covariate to improve the predictive accuracy for clinical outcomes. The
performance of the CATCH model showed that radiomic features adjusted by immune
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gene expression are good prognostic factors for cancer recurrence. No prognostic risk
factors were identified in clinicopathological and genetic features (Table S3). Therefore, we
did not apply the clinicopathological and genetic features for risk modeling. Of all 71 CRC
patients, there was no significant difference in genetic profiling including MMR, KRAS,
and BRAF status between patients with and without cancer recurrence. The median age of
these patients was 58 years. We did not identify clinically important factors such as age or
pathological stage affecting cancer recurrence by statistical analysis (Tables S3 and S4).

Tumor heterogeneity, which is closely reflected in imaging data, is an important
indicator of tumor growth and metastasis. In this study, 2/10 non-adjusted radiomic
features were associated with cancer recurrence. After adjusting the covariant from the
TME-associated immune gene expression, 10 adjusted radiomic features associated were
identified to be associated with recurrence. There were no radiomic features associated
with first-order statistics, with most features related to textural features. In the radiomic
prognostic vector of ovarian cancer, the authors discovered and validated prognostic
imaging value. They associated these findings with stromal biological factors [15]. Similarly,
our results also indicate that stromal heterogeneity of images plays a prognostic role in
cancer recurrence. Seven adjusted radiomic features were related not only to recurrence
risk, but also survival. Textural wavelet decomposition was found to affect the prognosis
of stage III CRC.

By integrating clinical and radiomic features, a clinical radiomics-based model ac-
curately predicted recurrence in patients with stage II CRC [5,14], supporting the idea
that clinical and radiomic signatures can serve as markers for survival stratification. Our
study balanced the clinical features of patients with recurrent and nonrecurrent stage III
cancer. These clinicopathological risk factors, including tumor invasion stage and lymph
node stage, lack accuracy to identify patients at high risk of recurrence. Multivariate
survival analysis showed that the clinical factors were not significantly associated with
survival. Several previous studies have attempted to develop prognostic tools based on
the radiomics-only model. However, these prognostic models are challenging to apply
in routine clinical practice because of the lack of association between image features and
molecular biology. Our model provides further guidance for individualized treatment
according to the associated immune gene expression for patients at high risk of recurrence.
PECAM1, platelet endothelial cell adhesion molecule 1 (CD31), is involved in tumor angio-
genesis and endothelial cell migration [16]. The protein encoded by the PECAM1 gene is an
endothelial cell marker used to evaluate tumor microvessels and vascular density. Previous
studies have demonstrated that a high tumor microvessel count and density predict CRC
recurrence and overall survival [17–19]. CRC patients with high CD31 expression have
poor prognosis [19]. Given that PECAM1 contributes to colorectal peritoneal metastasis, it
may be a potential therapeutic target for CRC [20,21].

There are some limitations in our study. In a clinical setting, we often only have a
small dataset to work with. For example, RNA sequencing is still expensive and time-
consuming for the sequencing process. It is not easy for cancer patients to have both CT
scan and RNA sequencing datasets. Secondly, the result of AUC is rather low in our study.
Our prediction model was designed to assist healthcare professionals and patients with
decisions about the short interval CT scan surveillance in clinical practice. The clinical risk
of misclassification is increased with the radiation exposure of CT scans in cancer patients.
Following the National Comprehensive Cancer Network (NCCN) guidelines [22], the stage
III CRC patients received standard 6–12 months CT scan follow-ups. We could improve
the cancer outcome by the early diagnosis of resectable CRC with lung or liver metastasis
based on short-interval CT scan follow-ups (e.g., < 6 months CT scan interval for early
detection of cancer metastasis). Third, many algorithms, such as the Synthetic Minority
Oversampling Technique (SMOTE) [23], could also improve the prediction accuracy of
imbalanced data and small datasets. The combat harmonization method has been adapted
to neuroimaging studies with data heterogeneity [24]. However, only the CATCH model
could produce interpretable discriminate results that can be used to identify potential
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therapeutic targets. It is worth noting that the CATCH model is developed under the
assumption of homogeneity in data. In the future, it will be interesting to develop a
modified CATCH model for heterogeneity data.

5. Conclusions

Our CATCH model efficiently adjusted high-dimensional radiomic features with
covariates of immune gene expression to predict cancer recurrence. The correlation between
radiomic features and immune gene expression may be biologically relevant. The adjusted
radiomic features associated with recurrence in our model provide a basis for individualized
treatment in stage III CRC.
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CATCH covariate-adjusted tensor classification in the high-dimension
CRC colorectal cancer
CT computed tomography
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DEGs differentially expressed genes
DICOM Digital Imaging and Communications in Medicine
DV dependence variance
FOLFOX leucovorin (folinic acid), fluorouracil, and oxaliplatin
IV inverse variance
LDA linear discriminant analysis
LGLZE low gray level zone emphasis
mFOLFOX7 modified FOLFOX
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MMR mismatch repair
NCCN National Comprehensive Cancer Network
NCKUH National Cheng Kung University Hospital
PACS picture archiving and communication system
RF random forest
RFS recurrence-free survival
TME tumor microenvironment
VOI volume of interest
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