
REVIEW Open Access

TAM receptors, Phosphatidylserine,
inflammation, and Cancer
Tal Burstyn-Cohen* and Avi Maimon

Abstract

The numerous and diverse biological roles of Phosphatidylserine (PtdSer) are featured in this special issue. This
review will focus on PtdSer as a cofactor required for stimulating TYRO3, AXL and MERTK – comprising the TAM
family of receptor tyrosine kinases by their ligands Protein S (PROS1) and growth-arrest-specific 6 (GAS6) in
inflammation and cancer. As PtdSer binding to TAMs is a requirement for their activation, the biological repertoire
of PtdSer is now recognized to be broadened to include functions performed by TAMs. These include key
homeostatic roles necessary for preserving a healthy steady state in different tissues, controlling inflammation and
further additional roles in diseased states and cancer. The impact of PtdSer on inflammation and cancer through
TAM signaling is a highly dynamic field of research. This review will focus on PtdSer as a necessary component of
the TAM receptor-ligand complex, and for maximal TAM signaling. In particular, interactions between tumor cells
and their immediate environment - the tumor microenvironment (TME) are highlighted, as both cancer cells and
TME express TAMs and secrete their ligands, providing a nexus for a multifold of cross-signaling pathways which
affects both immune cells and inflammation as well as tumor cell biology and growth. Here, we will highlight the
current and emerging knowledge on the implications of PtdSer on TAM signaling, inflammation and cancer.
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The elements of TAM signaling and
phosphatidylserine (PdtSer)
The core components of the TAM receptor-ligand
complex comprise of the three receptors TYRO3, AXL,
and MERTK, and two cognate ligands Protein S
(PROS1) and Growth-arrest-specific 6 (GAS6). TAMs
are ubiquitously expressed by many cell types, and are
often co-expressed by various cells – a fact which ini-
tially impinged on revealing their roles due to functional
redundancy. PROS1 and GAS6 are secreted ligands,
which share high structural homology [1–3]. The struc-
ture of the three TAM receptors, PROS1 and GAS6,
their specific ligand-receptor interactions and binding
associations have been extensively described in recent
reviews [1–3] and therefore only briefly described below.
Their roles in homeostatic regulation are derived from
studies where tissue steady state relies both on continu-
ous cell renewal [4, 5] as well as on the rapid clearance

of dying and dead cells [6–8] or membranous elements
of viable cells [9–13].
PtdSer being a main “eat me” signal marking apoptotic

cells (ACs) for clearance on one hand, and TAMs being
necessary for AC uptake by phagocytes on the other
hand raised the notion that these may be linked. The
first physical link between a TAM signaling component
and PtdSer was revealed in a 2003 report by Anderson
et al. identifying PROS1 as a serum protein which binds
to PtdSer. The same work also uncovered the physio-
logical importance of PROS1-PtdSer interaction as re-
sponsible for stimulating the phagocytosis of ACs by
macrophages [14]. This ability of plasma-borne PROS1
to stimulate efferocytosis (the clearance of apoptotic
cells) by macrophages was neither diminished following
heat-inactivation of the serum, nor blocked by the
intergrin-neutralizing tetrapeptide RGES, indicating
PROS1 function was both complement- and integrin-
independent, thus may function via another receptor.
Moreover, this study also determined that PROS1 binds
to PtdSer in a calcium-dependent manner [14].
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At that time PROS1 had already been identified as a
TAM agonist [15], however its role as an in-vivo genuine
TAM agonist was under hot debate [16–20]. Additional
reports supporting PROS1 as a TAM ligand appeared
several years later in studies investigating the phagocytosis
of photoreceptor outer segments by cells of the Retinal
Pigment Epithelium (RPE) [13, 21]. The generation of a
genetic model allowing the investigation of PROS1 func-
tion in different cell types verified its role as a valid TAM
agonist [12, 22–25]. Following the identification of GAS6
as a ligand for the TAMs [15, 19] the physiological rele-
vance of GAS6-mediated TAM activation was reported in
clearing ACs and in uptake of photoreceptor outer seg-
ments [13, 17, 26, 27], which is also PtdSer-dependent.
Both GAS6 and PROS1 exhibit specificity to PtdSer over

the other major membrane phospholipids phosphatidylcho-
line, phosphatidylethanolamine and phosphatidylinositol
[14, 28, 29]. Linking the diverse biological functions of TAM
receptors to PtdSer through the physical binding of GAS6
and PROS1 constitutes the basis for interactions with
membrane-bound TAMs and enables the expansion of the
biological repertoire of PtdSer at the same time. The de-
pendence of GAS6 function on PtdSer was reported by
Rajotte et al. in 2008, where the interaction between the glu-
tamic acid rich domain (GLA) of GAS6 and PtdSer was
shown to be necessary for the survival and intracellular
AKT signaling in Human Vascular Endothelial Cells
(HUVECs) [30]. More recently, several studies reinforced
the emerging concept that while ligand binding to TAM re-
ceptors is mostly PtdSer independent, activation of TAMs
by these ligands indeed depends on PtdSer. This was dem-
onstrated in a mouse embryonic fibroblast system [25] and
in a chimeric reporter cell lines in which the human TAM
extracellular and transmembrane domains were fused to the
intracellular domain of IFNγR1, where STAT1 phosphoryl-
ation was used as a surrogate for TAM activation [31]. Ex-
posure of PtdSer on the surface of T cells is also necessary
for the inhibitory effect of T cell-derived PROS1 on den-
dritic cells (DCs). Carrera-Silva et al. demonstrated that the
immunomodulatory effects of PROS1 on DCs were hin-
dered by a physical barrier separating PtdSer from the
TAM-receptor expressing DCs, or following Annexin V
treatment to mask PtdSer exposure [23]. The presence of
PtdSer on ACs also enhances ligand-dependent TAM acti-
vation in bone-marrow derived macrophages (BMDMs)
[32]. The physiological relevance of PtdSer binding to GLA
domains was further extended by Geng et al. demonstrating
that in addition to PtdSer exposure in ACs, its exposure by
calcium-depleted stressed cells and by tumor-derived exoso-
mal vesicles also function in TAM receptor activation [31].
The reliance of TAM signaling potential on PtdSer lies

within the GLA domains of the ligands PROS1 and
GAS6, located at their amino terminus. The vitamin K-
dependent gamma carboxylation of the GLA domain

dictates the bioactivity of the ligands, as measured by
the ability to stimulate TAM receptor phosphorylation
[25, 29, 31]. Indeed, Warfarin - an inhibitor of VKORC1,
an essential enzyme for the biosynthesis of Vitamin K - may
be used to inhibit PROS1 and GAS6 bioactivity [31, 33, 34].
By generating point mutations of key Glutamic acid (Glu)
residues of the GLA domain of GAS6, Geng et al. demon-
strated these residues directly interact with PtdSer [31]. In
order to exert their full bioactivity, the GLA domains of
TAM ligands must be complexed with PtdSer through Glu
in the presence of calcium ions [25, 29, 31] (Fig. 1). This
dependence of PtdSer binding for bioactivity seems to be a
broader feature of GLA-containing proteins which interact
with cell membranes [35]. In contrast to AXL, activation of
both MERTK and TYRO3 by their ligands was enhanced by
PtdSer in a concentration-dependent manner, suggesting
that local PtdSer concentrations may fine-tune TAM
signaling and function [29]. Indeed, membrane PtdSer
bound to GAS6 was shown to promote focal (punctate)
AXL localization, driving stronger receptor phosphoryl-
ation [36]. In conclusion, PtdSer binding to Glu within
the GLA domain of PROS1 and GAS6 is indispensable
for robust TAM activation, and occurs in the presence
of calcium ions. This interaction can occur on any PtdSer-
expressing moiety, including apoptotic cells, membrane-
derived microparticles (e.g. exosomes), tumor vasculature
or viral particles [31, 37–40]. Given the numerous TAM-
independent functions of PtdSer [41], and in this special
issue, as well as the diverse signaling pathways and cellular
functions negotiated by TAMs [1–3, 42], the partnership
between PtdSer and TAMs provides a nexus for orches-
trating a myriad of membrane-cell biological functions.
The influence of the TAM-PtdSer association on inflam-
mation and cancer will be discussed below.

TAM-PtdSer association in cancer cells
The proto-oncogenic potential of AXL and MERTK
was identified immediately upon their cloning from
tumor cell lines. Both AXL and MERTK were initially
cloned from transformed cells [43–45]. TYRO3 was
cloned as a developmental RTK with high expression
in the brain and reproductive organs [46–48], and its
downstream association with the Src family kinases
was subsequently identified [49]. The overexpression
of all three receptors in non-malignant cells leads to
transformation, inducing tumorigenic features such as
increased proliferation and anchorage-independent
growth in soft agar [43, 44, 50]. Today, aberrant expres-
sion of all three TAM receptors has been documented in a
vast number of cancers (reviewed in [42]), stimulating
MEK/ERK, PI3K/AKT, JAK/STAT, p38, NFκB and FAK/
RAC downstream pathways that provide tumor cells with
enhanced proliferative, survival, migratory, invasive and
chemo-resistant properties [42, 51, 52]. It is not surprising
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therefore that overexpression of TAMs is often associated
with tumor cell aggressiveness and poor prognosis [51, 53,
54], thus making them attractive targets for therapeutic in-
activation, with clinical trials already underway.
To support activation of TAM-dependent oncogenic

pathways by PROS1 and GAS6 ligands, PtdSer may be
provided by several sources: intra-tumoral apoptotic cells,
tumor-associated endothelial cells which were found to be
enriched for externalized PtdSer [40], tumor-derived exo-
somes which are densely coated with exposed PtdSer, or
PtdSer exposed by viable tumor cells. Although tumor
cells turn on survival pathways to repress apoptosis (in-
cluding via TAM signaling), ACs are abundant within
tumors. Dysregulated protein function, hypoxic foci or
chemotherapeutic insult all induce apoptosis, leading to
copious local levels of PtdSer within tumors and vascula-
ture. Interestingly, undifferentiated tumor cell lines expose
more PtdSer on their outer leaflet compared to their
differentiated counterparts [55], suggesting apoptosis as a
driver of tumorigenesis through PtdSer signaling. To-
gether, these sources should provide sufficient PtdSer to
support TAM oncogenic signaling. It is tempting to
speculate that PtdSer exposed by ACs within the tumor
may provide cancer cells with the aforementioned TAM-
related aggressive characteristics, and at the same time,

PtdSer-TAM activation supports the survival of TAM-
expressing cancer cells, resulting in clonal selection of
those cells with increased aggressiveness. It is therefore
likely that PtdSer-linked TAM signaling within tumors
provides a mechanism for coupling apoptosis with cell
proliferation and enhanced aggressiveness in cancer.
To understand whether TAMs are activated within

tumor cells in a ligand-dependent manner, several stud-
ies investigated the co-expression of TAM ligands within
tumor cells. GAS6 [53, 56–58] and PROS1 [59–61] were
both found to be expressed by tumor cells, and led to
autocrine activation of the receptors, promoting onco-
genic characteristics. Investigating the role of PROS1 in
oral squamous cell carcinoma revealed a rather unique
mechanism for stimulating oncogenic phenotypes
through TAM receptors. In this model, the expression
levels of AXL were found to be regulated by PROS1,
leading to enhanced cell proliferation and migration.
These phenotypes were intercepted in the presence of
an AXL-specific inhibitor, indicating the direct involve-
ment of AXL [61]. Thus, Abboud-Jarrous et al. revealed
a non-canonical mechanism by which AXL expression
and activation is regulated by PROS1 – a TAM ligand
which has not been shown to activate AXL through the
canonical ligand-receptor interactions [25, 29]. The

Fig. 1 TAM - PtdSer association and the uptake of apoptotic cells. Apoptotic cells (ACs) externalize phosphatidylserine (PtdSer) which is bound by
the TAM ligands GAS6 and PROS1. This binding occurs at the GLA domain, present at the amino terminus of the ligands, and is enhanced by the
presence of calcium ions, depicted by green ovals. The carboxyl terminal of PROS1 and GAS6 binds to the extracellular domains of the TAM
receptors, present on professional phagocytes such as retinal pigment epithelium, Sertoli cells, osteoclasts, macrophages and DCs. TAM receptor
activation is optimal in the presence of both ligands and PtdSer. By binding PtdSer on one side and to TAM receptors on the phagocytic cell,
PROS1 and GAS6 function as bridging molecules physically linking the phagocyte to the engulfed PtdSer-decorated moiety. In case of
macrophage and dendritic cell phagocytes, AC uptake and TAM activation also results in shutting inflammatory signaling and cytokine secretion.
Abbreviations: Ca – Calcium ion; PtdSer – phosphatidylserine; TAM – TYRO3, AXL, MERTK, PROS1 – protein S; GAS6 – growth arrest specific 6
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mechanism by which AXL expression is regulated by
PROS1 is still unknown.
Another source of ligand in a tumor setting are the

host’s immune cells. Tumor-infiltrating leukocytes were
shown to provide the soluble ligand GAS6, which fueled
tumor growth and metastatic outcome in several tumor
models [62]. A recent study by Zweemer et al. demon-
strated the specific contribution of PtdSer (from ACs) to
GAS6-mediated AXL activation in triple negative breast
cancer and non small cell lung cancer cells, inducing
tumor cell migration [63]. Thus, presence of TAM li-
gands, PtdSer and TAM receptors in tumors allows for
pro-tumorigenic PtdSer-TAM signaling, and suggests
that targeting either TAM receptors, ligands or PtdSer
would similarly lead to reduction in tumor size and im-
prove metastatic load. However, several studies indicate
that in reality, TAM receptor-ligand mediated signaling

is more complex, especially with respect to the tumor-
microenvironment (TME) and inflammation, as dis-
cussed below.

TAM-PtdSer association in the tumor microenvironment:
immune modulation and cancer
The interaction between tumor cells and host cells com-
prising their immediate environment greatly affects
tumor growth and metastasis [64, 65]. Of particular rele-
vance are immune cells, which are known to interact
with and influence tumor progression. Both tumor and
immune cells express TAM receptors and secrete their
ligands. The scenario where these populations are in
great proximity, in a PtdSer rich environment, provides
a platform for TAM activation through cross signaling
between tumor cells and the host immune cells (Fig. 2).
Loges et al. reported that tumor cells educate infiltrating

a
b

c

Fig. 2 TAM - PtdSer interactions in the tumor microenvironment. Autocrine and paracrine cross-signaling through PtdSer-TAM in a tumor setting.
(a) Both cancer cells and the different TME cellular compartments express TAM receptors and secrete PROS1 and GAS6. The abundance of PtdSer
enables potent autocrine (1) and / or paracrine (2) activation of TAM receptors expressed by tumor cells, resulting in augmented aggressiveness,
also by inducing expression of the immune evasion/checkpoint molecules PD-L1 on cancer cells (3, [66]). Tumor-derived TAM ligands suppresses
macrophage and T cell infiltration (4, [69, 70]. Similarly, the antitumor cytotoxicity of NK cells is suppressed by TAM receptor expression (5, [33].
(b) PtdSer-TAM signaling plays a role in immune cells, where they dampen inflammation, as described for the interactions between T and
dendritic cells (6, [23]). Within T cells, opposing roles for TAM signaling report MERTK-dependent signaling to suppresses T cell activation and
promote immune evasion through induction of PD-1 expression (7, [71]), but also to provide co-stimulatory functions (8, [72]). (c) In the case of
macrophages, reports indicate that PstSer-TAM signaling is chiefly anti-inflammatory due to autocrine signaling within M1 and M2-like
macrophages (9, [73]), and shifts M1-like pro-inflammatory macrophages towards the anti-inflammatory M2-like state (10, [74]), but also promotes
anti-immunity through PD-L1 and PD-L2 expression (11, [71]). Altogether, although PtdSer-TAM signaling may result in opposing outcomes, the
net effect of all interactions contributes to the generation of tumors with superior tumorigenic characteristics, within a more permissive
environment. See text for details. Abbreviations: CAFs – cancer associated fibroblasts; BV – blood vessel; Tc – T cells; NK – natural killer, MDSCs –
myeloid derived suppressor cells; DCs – dendritic cells; MФ – macrophage; TME – tumor microenvironment
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macrophages to upregulate GAS6 expression, which is then
secreted and functions as a mitogen for their own growth.
Immune cell-derived GAS6 stimulated growth and metasta-
sis of colon, pancreatic, breast and lymphoma cancer models
[62]. Interestingly, the growth of melanoma and mammary
tumors was significantly inhibited in MERTK−/− host mice,
owing to elevated pro-inflammatory (M1-like) cytokine
levels in MERTK-deficient CD11b+ cells, compared to mice
fully expressing MERTK in the host [69]. Increased
leukocyte proliferation and higher infiltration of CD8+ T
lymphocytes was also observed in the tumors present in
MERTK-deficient mice [69]. Thus, MERTK function within
the immune compartment of the TME suppresses host anti-
tumor immunity, generating a tumor-supportive milieu [69]
(Figs. 2 and 3). Since tumor cells secrete the ligands PROS1
and GAS6, it is hypothesized that they too contribute to this
immune suppressive phenotype. Secretion of PROS1 by
melanoma cells was shown to skew host macrophages to-
wards the anti-inflammatory M2-like phenotype, in a
MERTK and TYRO3-dependent manner, allowing a tumor-
permissive environment [70].
Contrary to the above mentioned tumor-suppressive

phenotype following MERTK inhibition in CD11b + cells,
the inhibition of MERTK and AXL was reported to pro-
mote colorectal cancer (CRC) progression [76]. Bosurgi
et al. revealed a robust proinflammatory milieu in the lam-
ina propria of AXL−/−MERTK−/− mice, which in the case
of CRC aggravated tumor growth (Fig. 3). These opposing
outcomes following TAM inactivation point to the

complexity of TAM signaling and suggests different out-
comes in different cancer models. Such disparities may
stem from the different impact immune cells have on dis-
tinct tumor models, or the diverse functions fulfilled by
different ligand-receptor interactions, as a function of dif-
ferential expression of the TAM repertoire in a particular
case. Partnering with other signaling molecules may also
underlie such observed functional heterogeneity, as was
shown for the AXL - EGFR (Epidermal Growth Factor re-
ceptor), which leads to drug resistance in esophageal and
Head and Neck cancers [77]. Another factor to consider is
that the levels of PtdSer may vary among different tumor
environments, which may affect additional, yet unknown
factors. This possibility is highlighted by a DSS model of
intestinal inflammation, where increased numbers of
apoptotic neutrophils were present in the lamina propria
of AXL−/−MERTK−/− mice, inferring both elevated levels
of PtdSer as well as the excessive presence of apoptotic
neutrophils both contribute to an increased inflammatory
TME in this model of colorectal cancer [76]. The role of
PROS1 in immune cells and its impact on tumor progres-
sion and metastasis is still unknown, and is currently a
subject of active research in our lab.
Another immune-modulatory function driven by TAMs

is the upregulation of the immune checkpoint molecule
programmed death ligand 1 (PD-L1), promoting the eva-
sion from immune response. Lee-Sherick et al. demon-
strated that mice treated with a small molecule MERTK
inhibitor not only had decreased numbers of B-ALL

a

b

Fig. 3 Inhibition of PtdSer-TAM signaling in tumor-immune interactions leads to elevated inflammation but may differentially affect tumor
growth. Bone-marrow derived macrophages (BMDMs) differentially influence tumor progression in different cancer models. (a) Inhibition of
MERTK in CD11b + BMDMs resulted in elevated inflammation, which conveyed anti-tumor immunity resulting in inhibited growth of breast,
melanoma and MC38 colon cancer tumors [69]. (b) By contrast to (a), in a DSS-induced model of colon cancer, the dual inhibition of AXL and
MERTK in BMDMs had no effect on tumor progression [76]. Instead, AXL and MERK inhibition in F4/80+; CD11b + lamina propria macrophages
conveyed pro-tumor immunity, which promoted cancer progression. These data demonstrate that while inhibition of TAM signaling in
macrophages led to inflammation in both cases, opposing effects were imparted on tumor growth, highlighting the complex liaisons between
immune and tumor cells through inflammation. Such complexity is likely to be mediated by additional factors, some of which function by
immune-modulation, others are yet to be revealed (depicted in the oval). See discussion in the main text

Burstyn-Cohen and Maimon Cell Communication and Signaling          (2019) 17:156 Page 5 of 9



leukemia cells in their spleen and bone marrow, but also
showed prolonged survival compared to their vehicle-
treated control counterparts [71]. Since the leukemia cells
used in this study did not express MERTK, Lee-Sherick
et al. went on to uncover the MERTK-dependent tumor-
suppressive mechanism. Investigating PD-L1 and PD-L2
levels expressed by myeloid cells revealed that MERTK
drives PD-L1 and PD-L2 expression on CD11b+ mono-
cytes/macrophages and PD-1 expression on T cells in
leukemia-bearing mice, contributing to an immunosup-
pressed milieu, supporting tumor growth [71]. PD-L1 ex-
pression driven by TAM receptors was also observed in
lung adenocarcinoma and in radiation resistant head and
neck carcinoma [66, 67]. Kasikara et al. demonstrated that
ectopic TAM expression leads to upregulation of PD-L1 in
HEK293 cells. Moreover, basal PD-L1 expression in Hela
and MDA-MB-231 breast cancer cells increased following
PtdSer-mediated efferocytosis coupled with TAM receptor
activation. The TAM-dependent PD-L1 expression was
driven by AKT [78]. Furthermore, the study by Kasikara
et al. identifies a differential reliance on PtdSer among
TAM receptors. TYRO3 and MERTK are considered
“PtdSer sensors” as their activation is greatly potentiated in
the presence of PtdSer. This is different from AXL, which
transduces a strong signal in cancer cells even in the
absence of PtdSer [78]. A recent study by Peeters et al.
demonstrated that activated human CD8 T cells upregulate
PROS1 and MERTK, which function as costimulatory
molecules to induce both T cell proliferation and activate
cytotoxicity. This in turn supported the expansion of tumor
- infiltrating lymphocytes and killing of autologous melan-
oma cells [72]. Peeters et al. further showed that consump-
tion of soluble PROS1 is high in tumor cells which highly
express the TAM receptors, and results in loss of T-cell
activation. These results point to a possible competition
over PROS1 between tumor and immune cells. However, it
remains to be seen whether such competition may alter an-
titumor immunity. Natural Killer (NK) cells constitute yet
another arm of anti-tumor immune defense. In their study,
Paolino et al. demonstrated that TAM signaling constitutes
an inhibitory pathway for NK cell activation, via Cbl-b [33].
Both Cbl-b ablation and TAM inhibition boosted NK cyto-
toxicity, leading to decreased melanoma and breast cancer
tumors [33]. In conclusion, TAMs and their ligands are
expressed both by tumors and by cells of the TME, allow-
ing for bilateral signaling which modulates the immune re-
sponse, and affects cancer progression. The immune-
modulatory role of TAMs stems from their basic anti-
inflammatory function in immune cells, which is discussed
below.

TAM-PtdSer association in inflammation
Reviewing the homeostatic roles of PtdSer and TAMs in
immune cells at steady state is necessary to fully

appreciate their function (as we understand it as of
today) in inflammation, apoptotic cell uptake and cancer.
Within immune cells, TAMs mediate two important
tasks: efferocytosis and constraining the immune re-
sponse. As potent inhibitors of inflammation, TAMs
support the switch towards resolving inflammation and
enabling tissue repair. Inactivation of TAM signaling
components leads to chronic inflammation and auto-
immunity, and has been reviewed extensively [1, 2, 79].
As suppressors of inflammation, activation of TAMs by
PtdSer-bound ligands blocks cellular inflammatory sig-
naling through the upregulation of suppressor of cyto-
kine signaling (SOCS) proteins SOCS1 and SOCS3,
inactivation of NFκB, and STAT1-dependent shut down
of pro-inflammatory cytokine secretion [2, 32, 73, 74,
80]. In the case of phagocytic immune cells, binding of
PROS1 and GAS6 to their cognate receptors in the pres-
ence of PtdSer induces cytoskeletal changes resulting in
the uptake of the PtdSer-coated membrane [25, 29, 32,
52, 74, 78, 81–85]. Failure to clear ACs from tissues
often results in toxicity and tissue damage, and boosting
AC removal reduces inflammation and ameliorates dis-
ease severity [86, 87]. TAM-mediated functions allows
macrophages and DCs to maintain steady state by clear-
ing dying and apoptotic cells from tissues [88, 89]. As
opposed to engulfment of pathogen-infected cells, there
is no interest in mounting an inflammatory immune re-
sponse upon uptake of non-infected dying or ACs. Thus,
the coupling of efferocytosis to anti-inflammatory signal-
ing in immune cells is achieved by the dual role of
TAMs.

Phagocytosis of ACs is anti-inflammatory
The link between phagocytosis of ACs and inhibition of
inflammation was discovered in the late 1990’s [90–92].
It should be mentioned that additional PtdSer receptors
also mediate phagocytosis and are often co-expressed by
different phagocytes, however their particular activation
and relative roles is still mostly not understood [88, 93].
Such variability and redundancy highlights phagocytosis
as a key biologic function, and is thought to secure
distinct modes of phagocytosis under a variety of stimu-
lants and physiologic conditions, providing both resili-
ence and flexibility. Within the TAM family, differential
use of TAMs was demonstrated by phagocytes of different
types and origin [94], and with respect to the inflamma-
tory stimulus [32]. Successful uptake of a membranous
moiety (being it a cell, a viral particle, an extracellular
vesicle or a membranous protrusion) by a phagocytic
immune cell occurs through the PtdSer exposed on the
membrane to be engulfed and a TAM-receptor on the
effector immune cell (Fig. 1). The physical link between
these membrane bound molecules present on both the

Burstyn-Cohen and Maimon Cell Communication and Signaling          (2019) 17:156 Page 6 of 9



engulfing and engulfed sides is provided by the TAM
ligands, which serve as bridging molecules: the amino
terminus of PROS1 and GAS6 binds to PtdSer and their
carboxy end binds to the extracellular domain of TAM re-
ceptors, creating the following sequence: externalized
PtdSer-TAM ligand-TAM receptor-phagocytic im-
mune cell (Fig. 1).
This bridging by TAM ligands instigates a counter-

inflammatory response within phagocytes in immune
cells, as was demonstrated for macrophages and DCs
[23, 32, 74, 75, 80]. Within macrophages, TAMs promote
the shift from the “classical” M1-like pro-inflammatory
phenotype, characterized by the secretion of tumor necrosis
factor α (TNFα), interleukin (IL) 6, IL-1β, IL-12 and nitric
oxide (NO) to the “alternative”, M2-like anti-inflammatory
phenotype. The M2-like macrophages are characterized by
secretion of the tissue repair promoting cytokines IL-10,
IL-13 and transforming growth factor β (TGFβ). By virtue
of their anti-inflammatory nature, M2-like macrophages
allow a tumor-supportive environment, endorsing tumor
progression (Fig. 2).

Conclusions
Taken together, applying the multiple aspects of TAM-
PtdSer biology discussed above into a tumor setting with
ample ACs and additional sources of PtdSer, provides a fer-
tile ground for simultaneous cross signaling between cancer
and TME cells, both of which express TAMs and secrete
PROS1 and GAS6, generating a tumor-supportive environ-
ment (Fig. 2). TAMs expressed by tumor-infiltrating mac-
rophages and DCs may be activated either in autocrine or
paracrine manners to shut down secretion of inflammatory
cytokines and promote a cancer-friendly environment.
Tumor-secreted PROS1 modulates host macrophages by
shifting them towards the M2-like tissue repair phenotype,
facilitating cancer progression. Tumor-infiltrating macro-
phages secrete GAS6 which supports tumor progression.
Secreted TAM agonists bind to TAM receptors overex-
pressed by cancer cells, to promote oncogenic characteris-
tics and tumor cell aggressiveness (proliferation, migration,
cell survival, drug resistance) as well as upregulate PD-L1
expression that promotes immune-evasion. Another level
of complexity is supported by the fact that not all tumors
respond to inflammation in a similar manner or intensity.
Thus, elucidating the complex interactions of PtdSer-
TAMs, and their influence on inflammation in a cancer
setting would allow to better understand their effect on
cancer, and would support the development of advanced
anticancer therapies.
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