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Abstract Synaptojanin and endophilin represent a classic pair of endocytic proteins that exhibit

coordinated action during rapid synaptic vesicle endocytosis. Current models suggest that

synaptojanin activity is tightly associated with endophilin through high-affinity binding between the

synaptojanin proline-rich domain (PRD) and the endophilin SH3 domain. Surprisingly, we find that

truncated synaptojanin lacking the PRD domain sustains normal synaptic transmission, indicating that

synaptojanin’s core function in vivo resides in the remaining two domains that contain

phosphoinositide-phosphatase activities: an N-terminal Sac1 phosphatase domain and

a 5-phosphatase domain. We further show that the Sac1 domain plays an unexpected role in

targeting synaptojanin to synapses. The requirement for Sac1 is bypassed by tethering the

synaptojanin 5-phophatase to the endophilin membrane-bending Bin–Amphiphysin–Rvs (BAR)

domain. Together, our results uncover an unexpected role for the Sac1 domain in vivo in supporting

coincident action between synaptojanin and endophilin at synapses.

DOI: 10.7554/eLife.05660.001

Introduction
Synaptic vesicle (SV) endocytosis occurs through rapid and coordinated actions of endocytic proteins

(De Camilli and Takei, 1996; Dittman and Ryan, 2009; Saheki and De Camilli, 2012). A classic

example is the functional pair of synaptojanin and endophilin (Gad et al., 2000; Schuske et al., 2003;

Song and Zinsmaier, 2003; Verstreken et al., 2003; Dickman et al., 2005; Milosevic et al., 2011;

Sullivan, 2011). Synaptojanin is a neuronal phosphoinositide phosphatase that hydrolyzes

phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to facilitate SV recycling at presynaptic terminals

(McPherson et al., 1996; Cremona et al., 1999; Harris et al., 2000; Verstreken et al., 2003).

Deletion of synaptojanin leads to severe synaptic defects, including depletion of SVs, accumulation of

endocytic intermediates, and subsequent failure in synaptic transmission (Cremona et al., 1999;

Harris et al., 2000; Verstreken et al., 2003; Van Epps et al., 2004; Dickman et al., 2005).

Overexpression of synaptojanin causes PI(4,5)P2 deficiency and learning deficits in Down syndrome

model mice (Voronov et al., 2008). While the importance of synaptojanin is well documented, the

precise mechanisms for its role in SV recycling remain elusive.

Genetic studies have shown that the function of synaptojanin is tightly linked to the endocytic

protein endophilin (Verstreken et al., 2002; Schuske et al., 2003; Dickman et al., 2005). Mutant

animals lacking either synaptojanin or endophilin share identical defects at synapses. These defects

are not exacerbated in double mutants, supporting that synaptojanin and endophilin function in the

same pathway. Current models suggest that synaptojanin is transiently recruited to endocytic sites via

direct binding between the endophilin SH3 domain and the synaptojanin proline-rich domain (PRD)

(Schuske et al., 2003; Verstreken et al., 2003;Milosevic et al., 2011). In vitro binding assays provide
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evidence for a biochemical interaction between PRD and SH3 (Ringstad et al., 1997; de Heuvel

et al., 1997), and blocking PRD-SH3 interactions by peptides induces abnormal accumulation of

endocytic intermediates at synapses (Gad et al., 2000). However, we recently found that truncated

endophilin lacking the SH3 domain has synaptic activity in vivo (Bai et al., 2010), suggesting that

synaptojanin and endophilin interact through PRD-SH3 independent mechanisms. Alternatively,

synaptojanin may be recruited through redundant SH3 harboring proteins, such as amphiphysin

(Micheva et al., 1997) and intersectin (Evergren et al., 2007; Pechstein et al., 2010).

Synaptojanin harbors two phosphatase domains in addition to the PRD domain (McPherson et al.,

1996). The N-terminal Sac1 domain removes the phosphate group on the 3- and 4-position from the

inositol (Guo et al., 1999; Krebs et al., 2013), and the adjacent 5-phosphatase targets the phosphate

on the 5-position (Cremona et al., 1999; Chang-Ileto et al., 2011). This configuration of tandem

phosphatases is unique to synaptojanin, as other phosphoinositide phosphatases (e.g., OCRL and

SHIP1/2) have single catalytic domains that are linked to protein- or membrane-binding domains such

as PH, SH2, and C2 domains (Pirruccello and De Camilli, 2012). Interactions through the non-catalytic

domains often enhance phosphatase specificity in membrane recognition through coincident

detection of multiple targets (Carlton and Cullen, 2005). While it is thought that synaptojanin’s

tandem phosphatase domains act together to degrade multiple types of phosphoinositides at

synapses (Guo et al., 1999), the precise role of synaptojanin’s tandem phosphatase domains is

unclear.

Here, we show that the functional core of synaptojanin resides in its tandem phosphatase domains

rather than the PRD domain. Our results reveal an unexpected mechanism whereby the Sac1 domain

displays a non-catalytic function to support coordinated action between synaptojanin and endophilin

at synapses.

Results

The synaptojanin PRD is not required for synaptic transmission in vivo
We investigated the requirement of synaptojanin PRD using both behavioral and electrophysiological

phenotypes as in vivo assays. In Caenorhabditis elegans, the unc-26 gene encodes a highly conserved

synaptojanin homologue with identical domain structure to the mammalian synaptojanin (Harris et al.,

2000) (Figure 1A). Mutant worms lacking unc-26 synaptojanin have significantly decreased

locomotion rates and largely diminished excitatory postsynaptic currents (EPSCs) at neuromuscular

junctions (Harris et al., 2000) (Figure 1B–F and Table 1). Because the density of active zone markers

(e.g., RIM/UNC-10) remains unchanged in unc-26 mutants (Ch’ng et al., 2008), reduced EPSC

eLife digest Nerve cells called neurons can rapidly carry information around the body. Each

neuron forms connections called synapses with several other cells to build networks for information

exchange. At most synapses, electrical activity in one neuron results in the release of chemicals called

neurotransmitters from storage compartments called synaptic vesicles. The neurotransmitters leave

the cell and cross the gap between the two neurons to activate the next cell.

After the neurotransmitters have been released, the synaptic vesicles need to be regenerated via

a recycling process called endocytosis. This recycling process is very important for synapses to work

properly, but it is not clear exactly how it occurs. Two of the proteins involved are called synaptojanin

and endophilin. Synaptojanin is made up of three structural units (or ‘domains’), including the proline-

rich domain and the Sac1 domain. It has been proposed that interactions between endophilin and the

proline-rich domain of synaptojanin are essential for vesicle recycling.

Here, Dong et al. studied nematode worms that carry mutant forms of synaptojanin. The

experiments show that the Sac1 domain, but not the proline-rich domain, is required for the synapses

to work properly. However, the Sac1 domain is not required if synaptojanin is artificially linked to

endophilin.

Dong et al.’s findings suggest that synaptojanin uses its Sac1 domains to work with endophilin. A

future challenge will be to understand the details of how this cooperative action occurs.

DOI: 10.7554/eLife.05660.002
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frequency and amplitude cannot be explained by fewer synapses. Instead, these defects are

consistent with previous reports showing reduced SV pools and a corresponding decrease in synaptic

transmission due to the cumulative effects of impaired endocytosis over time (Cremona et al., 1999;

Harris et al., 2000; Verstreken et al., 2003; Dickman et al., 2005).

To determine whether the PRD of synaptojanin is required for endocytosis, we expressed

a truncated version of C. elegans synaptojanin UNC-26 (residues 1–986; ΔPRD) that lacks PRD in

Figure 1. Synaptojanin UNC-26 lacking the PRD domain fully supports locomotion, endogenous activity, and

evoked synaptic currents. (A) Domain structure of synaptojanin UNC-26. Synaptojanin contains three functional

modules: a Sac1 phosphatase domain, a 5-phosphatase domain (5Pase), and a proline-rich domain (PRD).

Single-copy transgenes encoding GFP-tagged UNC-26 full-length (FL; residues 1–1113) and ΔPRD (residues 1–986)

were introduced into synaptojanin unc-26(s1710) mutant worms. The pan-neuronal promoter Prab-3 was used to

drive transgene expression. (B) C. elegans locomotion is restored by neuronal expression of full-length synaptojanin

(UNC-26FL) or synaptojanin lacking the PRD domain (UNC-26ΔPRD). Representative trajectories (20 animals) of 30 s

locomotion are shown for each genotype. The starting points for each trajectory are aligned for clarity.

(C–F) Electrophysiological recordings show that GFP-tagged synaptojanin UNC-26ΔPRD is fully functional at

synapses. Representative traces and summary data for endogenous EPSC rates (C–D) and for evoked EPSC

amplitude (E–F) are shown for the indicated genotypes. The number of worms analyzed for each genotype is

indicated in the bar graphs. ***, p < 0.0001 when compared to wild-type (wt) controls. ###, p < 0.0001 when

compared to unc-26 mutants. Error bars represent standard error of the mean (SEM).

DOI: 10.7554/eLife.05660.003

The following figure supplement is available for figure 1:

Figure supplement 1. Mouse synaptojanin ΔPRD is functional in C. elegans neurons.

DOI: 10.7554/eLife.05660.004
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Table 1. Summary of data from electrophysiological recordings and locomotion analyses

Evoked EPSC Amp.

(nA)

Endogenous EPSC

Locomotion speed

(μm/s)

Frequency

(Hz)

Amp.

(pA)

Wild type (N2) 3.2 ± 0.2 (n = 23) 49.8 ± 2.5 (n = 30) 22.4 ± 1.0 140 ± 8 (n = 65)

unc-26 (s1710) – 0.9 ± 0.1 (n = 15)† 12.0 ± 1.5 (n = 16)† 20.7 ± 0.6 28 ± 3 (n = 65)†

Si[Prab-3::unc-26::gfp] 3.1 ± 0.2 (n = 16)# 50.8 ± 5.4 (n = 16)# 23.2 ± 1.4 139 ± 8 (n = 60)#

Si[Prab-3::unc-26ΔPRD::gfp] 3.4 ± 0.3 (n = 16)# 47.4 ± 5.0 (n = 17)# 24.8 ± 1.3 141 ± 10 (n = 60)#

Ex[Psnb-1::mSYJ1ΔPRD] 3.1 ± 0.3 (n = 7)# 49.6 ± 6.1 (n = 11)# 21.5 ± 0.6 143 ± 10 (n = 37)#

Ex[Prab-3::gfp::unc-26(C378S,D380N)] 3.5 ± 0.2 (n = 10)# 53.1 ± 6.6 (n = 10) 23.8 ± 1.3 135 ± 9 (n = 60)#

Ex[Prab-3::gfp::unc-26ΔPRD(C378S,
D380N)]

3.2 ± 0.3 (n = 10)# 50.7 ± 5.7 (n = 10) 24.2 ± 0.9 130 ± 9 (n = 60)#

Ex[Prab-3::gfp::unc-26(D716A)] 0.8 ± 0.1 (n = 14) 10.0 ± 1.8 (N = 15) 20.9 ± 0.8 28 ± 3 (n = 60)

Ex[Prab-3::gfp::unc-26ΔSac1] 1.2 ± 0.2 (n = 10) 7.2 ± 1.9 (N = 10) 21.3 ± 1.2 31 ± 3 (n = 60)

Ex[Prab-3::unc-26Sac1 + Prab-3::
unc-26ΔSac1]

1.0 ± 0.2 (n = 10) 16.1 ± 1.8 (n = 10) 20.4 ± 0.5 32 ± 3 (n = 60)

Ex[Prab-3::unc-26Sac1::IntN + Prab-
3::IntC::unc-26ΔSac1]

3.2 ± 0.4 (n = 10)# 53.1 ± 7.1 (n = 10)# 24.8 ± 1.2 100 ± 7 (n = 60)#

Ex[Prab-3::unc26ΔSac1::rab-3] 1.0 ± 0.2 (n = 10) 13.2 ± 2.3 (n = 10) 20.4 ± 0.9

Ex[Prab-3::unc-26ΔSac1::snb-1] 1.4 ± 0.2 (n = 11) 17.9 ± 2.6 (n = 11) 21.1 ± 0.8

Ex[Prab-3::bem1PX::unc-26ΔSac1] 0.8 ± 0.1 (n = 7) 6.3 ± 0.6 (n = 7) 18.8 ± 1.2

Ex[Prab-3::plc∂PH::unc-26ΔSac1] 1.0 ± 0.2 (n = 7) 8.5 ± 1.8 (n = 7) 18.7 ± 1.1

Ex[Prab-3::btkPH::unc-26ΔSac1] 1.2 ± 0.2 (n = 11) 11.4 ± 1.2 (n = 11) 18.4 ± 0.8

Ex[Prab-3::apa-2::unc-26ΔSac1] 1.1 ± 0.1 (n = 11) 12.8 ± 1.8 (n = 11) 19.4 ± 0.8

Ex[Prab-3::apb-1::unc-26ΔSac1] 0.9 ± 0.1 (n = 11) 13.2 ± 2.5 (n = 11) 18.2 ± 1.5

Ex[Prab-3::apm-2::unc-26ΔSac1] 1.1 ± 0.1 (n = 10) 15.3 ± 2.7 (n = 10) 21.0 ± 0.9

Ex[Prab-3::aps-2::unc-26ΔSac1] 1.3 ± 0.2 (n = 9) 12.7 ± 1.4 (n = 9) 20.1 ± 0.9

Ex[Prab-3::unc-57::unc-26ΔSac1] 2.5 ± 0.3 (n = 11)# 28.0 ± 4.1 (n = 11)§ 23.0 ± 1.4

Ex[Prab-3::dyn-1::unc-26ΔSac1] 1.3 ± 0.3 (n = 10) 14.4 ± 2.9 (n = 10) 19.4 ± 0.9

Ex[Prab-3::itsn-1::unc-26ΔSac1] 0.9 ± 0.1 (n = 9) 13.9 ± 1.4 (n = 9) 21.5 ± 1.4

Ex[Prab-3::unc-57::unc-
26ΔSac1ΔPRD]

3.0 ± 0.3 (n = 11)# 36.7 ± 5.4 (n = 11)§ 21.7 ± 1.3

Ex[Prab-3::unc-57::unc-26ΔSac1
(D716A)]

0.8 ± 0.2 (n = 9) 13.0 ± 2.3 (n = 9) 21.0 ± 0.7

Ex[Prab-3::unc-57BAR::unc-
26ΔSac1]

2.9 ± 0.2 (n = 12)# 23.9 ± 2.5 (n = 12)# 21.3 ± 0.8

Ex[Prab-3::rEndoBAR::unc-26ΔSac1] 3.1 ± 0.4 (n = 13)# 28.5 ± 4.6 (n = 13)# 24.1 ± 1.4

Ex[Prab-3::mAmphBAR::unc-
26ΔSac1]

1.4 ± 0.2 (n = 10) 19.2 ± 2.3 (n = 10) 20.8 ± 0.8

Ex[Prab-3::mNadrin2BAR::unc-
26ΔSac1]

1.7 ± 0.2 (n = 11)‡ 16.1 ± 3.1 (n = 11) 23.8 ± 1.9

Ex[Prab-3::rEndoBARΔN::unc-
26ΔSac1]

1.3 ± 0.2 (n = 12) 9.1 ± 0.9 (n = 12) 18.9 ± 0.4

Ex[Prab-3::rEndoBAR(K76E,K78E)::
unc-26ΔSac1]

1.5 ± 0.2 (n = 10) 13.5 ± 1.3 (n = 10) 19.3 ± 0.7

N2 Prab-3::unc-26ΔPRD(D716A)
overexpression

1.5 ± 0.3 (n = 9)* 24.6 ± 3.8 (n = 10)* 25.7 ± 0.9

Prab-3::unc-26ΔPRD overexpression 2.9 ± 0.3 (n = 9) 53.5 ± 4.6 (n = 9) 25.4 ± 1.3

Prab-3::unc-26ΔSac1ΔPRD(D716A)
overexpression

3.5 ± 0.3 (n = 10) 49.0 ± 7.5 (n = 10) 25.9 ± 1.9

Table 1. Continued on next page
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unc-26 null mutant worms. In transgenic animals, a single copy of the transgene (unc-26ΔPRD::gfp)
driven by a pan-neuronal promoter (Prab-3) was inserted into chromosome X to avoid confounding

issues of overexpression (Frøkjaer-Jensen et al., 2012). We reasoned that if the PRD domain is

essential, the truncated UNC-26ΔPRD should not rescue mutant defects. Surprisingly, similar to full-

length UNC-26, UNC-26ΔPRD fully restored locomotion, endogenous EPSCs, and evoked responses

in unc-26 mutant worms (Figure 1 and Table 1). To test the functional conservation between

vertebrate and nematode synaptojanin, we expressed a truncated version of mouse synaptojanin 1

(mSyj1ΔPRD, residues 1–1045) in unc-26 mutants. We found that truncated mSyj1ΔPRD also restored

locomotion and synaptic transmission to wild type (wt) levels (Figure 1—figure supplement 1 and

Table 1), indicating that synaptojanin from both invertebrate and vertebrate animals remains largely

active in the absence of PRD.

To assay for membrane recycling, we employed FM4-64, a fluorescent lipophilic dye that is

internalized by endocytosis (Betz et al., 1996; Kay et al., 1999). In wt animals, dye was readily

internalized in response to KCl stimulation, evident by the high level of FM4-64 fluorescence

(3527 ± 412 arbitrary units [a.u.]; n = 12) in the neuron ganglion after washing (Figure 2A–B).

Approximately 43% of internalized FM4-64 (1411 ± 150 a.u.; n = 12) was released after KCl

stimulation, indicating that FM4-64 was internalized into recycling vesicles. By contrast, the dye

uptake in unc-26 mutant worms was significantly lower: reduced by ∼40% compared to controls

(2123 ± 172 a.u.; n = 11), consistent with defects in membrane recycling. About 32% of

internalized dye (686 ± 117 a.u.; n = 11) by the unc-26 mutants was released upon KCl challenge

(Figure 2A–B). Expression of the single-copy Prab-3::unc-26ΔPRD::gfp transgene fully restored

FM4-64 uptake (3885 ± 505 a.u.; n = 10) and the KCl-dependent dye release (1569 ± 243 a.u.;

n = 10) (Figure 2A–B), indicating that the recovery of vesicle recycling processes does not require

UNC-26PRD.

We next asked if synapses rescued by truncated UNC-26ΔPRD sustain synaptic transmission upon

repetitive stimuli. Cholinergic neurons of transgenic animals carrying Punc-17::ChR2(H134R)::YFP

were activated by 2-Hz photostimulation, and evoked EPSCs were recorded at neuromuscular

junctions (Liewald et al., 2008; Liu et al., 2009). For all successive stimuli, the amplitudes of EPSCs in

unc-26 mutant worms were significantly reduced compared to those in control worms (Figure 2C–D).

These results are consistent with previous findings showing that unc-26 mutant synapses exhibit more

depression in synaptic transmission after repeated stimulation, due to impaired endocytosis.

Expression of the single-copy Prab-3::unc-26ΔPRD::gfp transgene recovered EPSC amplitudes of

successive stimuli, supporting the notion that truncated UNC-26 functions sufficiently to supply SVs

during sustained activity. Together, these results argue against an essential role of the synaptojanin

PRD domain at synapses.

Table 1. Continued

Evoked EPSC Amp.

(nA)

Endogenous EPSC

Locomotion speed

(μm/s)

Frequency

(Hz)

Amp.

(pA)

unc-57(e406); unc-26
(s1710)

– 0.8 ± 0.2 (n = 9)† 8.6 ± 0.8 (n = 10)† 21.9 ± 1.1 27 ± 3 (n = 60)†

Si[Psnb-1::unc-57ΔSH3::mCherry];
Si[Prab-3::unc-26ΔPRD::gfp]

3.2 ± 0.2 (n = 9)¶ 50.3 ± 4.1 (n = 9)¶ 23.1 ± 1.0 142 ± 9 (n = 62)¶

Si[Psnb-1::rEndoBAR::unc-
26ΔSac1ΔPRD]

3.0 ± 0.3 (n = 10)¶ 50.9 ± 4.1 (n = 10)¶ 26.5 ± 1.1 109 ± 4 (n = 68)¶

*p < 0.001 when compared with N2.

†p < 0.0001 when compared with N2.

‡p < 0.05 when compared with unc-26 mutant.

§p < 0.001 when compared with unc-26 mutant.

#p < 0.0001 when compared with unc-26 mutant.

¶p < 0.0001 when compared with unc-57; unc-26 double mutants.

Si: single-copy transgene (MosSci insertion).

Ex: extrachromosomal array.

‘Amp.’ indicates amplitude.

DOI: 10.7554/eLife.05660.005

Dong et al. eLife 2015;4:e05660. DOI: 10.7554/eLife.05660 5 of 22

Research article Cell biology | Neuroscience

http://dx.doi.org/10.7554/eLife.05660.005
http://dx.doi.org/10.7554/eLife.05660


To further test the functional importance of the endophilin SH3, synaptojanin PRD interactions, we

studied double-mutant worms that lack both endophilin unc-57 and synaptojanin unc-26. Consistent

with previous findings, synaptic defects in the unc-57; unc-26 double-mutant worms were similar to

unc-57 and unc-26 single mutants (Schuske et al., 2003) (Figure 3 and Table 1), confirming that these

genes function in the same genetic pathway. While the SH3-PRD scaffolding model predicts that SH3

and PRD are essential, we found that co-expression of single copies of mutant UNC-57 lacking SH3

(UNC-57ΔSH3::mCherry) and mutant UNC-26 lacking PRD (UNC-26ΔPRD::GFP) restores synaptic

activities in unc-57; unc-26 double mutants (Figure 3C–F and Table 1). Indeed, electron microscopy

analyses show that the number of SVs was nearly normal in these animals (Figure 4A). Using

quantitative Western blots, we found that mutant UNC-26ΔPRD and mutant UNC-57ΔSH3 were

expressed at ∼32% and ∼75% of endogenous levels of UNC-26 and UNC-57, respectively, suggesting

that the rescue activity of these transgenes was not due to compensatory artifacts of overexpression

(Figure 3—figure supplement 1).

Finally, we utilized synaptopHluorin (SpH) to measure changes in surface synaptobrevin (Dittman

and Kaplan, 2006; Bai et al., 2010). In SVs, SpH fluorescence is quenched by the acidic pH of the

Figure 2. Synaptojanin UNC-26ΔPRD recovers the recycling vesicle pool and sustains synaptic transmission upon

repetitive stimuli. (A) A schematic diagram is shown to illustrate the FM4-64 loading and unloading procedure.

Experimental details are discussed in the ‘Materials and methods’ section. (B) FM4-64 loading and unloading at the

head ganglion were compared for wt (n = 12), unc-26 mutant (n = 11), and rescued worms with a single-copy

transgene encoding GFP::UNC-26ΔPRD (n = 10). The expression of GFP::UNC-26ΔPRD significantly rescued both

dye uptake and unloading (p < 0.01 and p < 0.01, respectively; compared to unc-26 mutants). (C) Acetylcholine

currents were evoked by 2-Hz light pulses in worms carrying Punc-17::ChR2::mCherry. Representative traces of light-

evoked EPSCs during repeated stimulation are shown for the indicated genotypes. (D) Mean values of currents

normalized relative to the first EPSC were significantly reduced in unc-26 mutant. The expression of GFP::UNC-

26ΔPRD in unc-26 mutants restores the amplitude of subsequent currents, suggesting that the UNC-26ΔPRD is

functional to support synaptic transmission upon repeated stimuli. The number of worms analyzed for each

genotype is indicated in the graph. *, p < 0.05 and **, p < 0.01 when compared to wt controls. #, p < 0.05 and
## p < 0.01 when compared to unc-26 mutants. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.006
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vesicle lumen. Following SV exocytosis, SpH fluorescence on the plasma membrane is dequenched

(Dittman and Ryan, 2009). The unc-57; unc-26 double mutants had a 63% increase in SpH axon

fluorescence compared to control animals, consistent with a defect in recycling SV proteins from

plasma membranes. Co-expression of UNC-57ΔSH3 and UNC-26ΔPRD fully rescued the SpH defects

(Figure 4B–D), demonstrating that UNC-26ΔPRD and UNC-57ΔSH3 are functional to support SV

endocytosis. Overall, these data demonstrate that endophilin and synaptojanin can support synaptic

Figure 3. The SH3-PRD interaction is dispensable for synaptic activity. (A) A schematic drawing showing interactions

between synaptojanin (UNC-26) PRD and endophilin (UNC-57) SH3. Single-copy transgenes encoding UNC-

26ΔPRD::GFP and UNC-57ΔSH3::mCherry were co-expressed in unc-57; unc-26 double mutants. Pan-neuronal

promoters Prab-3 and Psnb-1 were used to drive expression of UNC-26ΔPRD::GFP and UNC-57ΔSH3::mCherry,

respectively. Summary data for locomotion rate are shown in (B). Representative traces and summary data for

endogenous EPSC rates (C–D) and for evoked EPSC amplitude (E–F) are shown for the indicated genotypes. The

number of worms analyzed for each genotype is indicated in the bar graphs. ***, p < 0.0001 when compared to wt

controls. ###, p < 0.0001 when compared to unc-57; unc-26 double mutants. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.007

The following figure supplement is available for figure 3:

Figure supplement 1. UNC-57 and UNC-26 are not overexpressed in transgenic animals.

DOI: 10.7554/eLife.05660.008
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activity even in the absence of the SH3-PRD interaction. Therefore, additional uncharacterized

mechanisms must exist to support synaptojanin function at synapses.

Distinct roles of two phosphoinositide phosphatase domains of
synaptojanin
We next investigated whether synaptojanin’s unique configuration of tandem phosphoinositide

phosphatase domains (Figure 1A) mediates the cooperation between synaptojanin and endophilin at

synapses. The N-terminal Sac1 domain degrades phosphoinositides by hydrolyzing the 3- and

4-position phosphates (Guo et al., 1999), whereas the central 5-phosphatase domain converts PI(4,5)

P2 into PI(4)P by removing the 5-position phosphate from the inositol ring (Cremona and De Camilli,

2001; Chang-Ileto et al., 2011). We found that inactivation of 5-phosphatase (D716A mutation)

(Whisstock et al., 2002) completely abolished UNC-26 rescuing ability in restoring EPSC levels and

locomotion (Figure 5 and data not shown), indicating that the enzymatic activity of 5-phosphatase is

required. By contrast, mutations (C378S,D380N) (Guo et al., 1999; Hughes et al., 2000) that

inactivate Sac1 had little impact on UNC-26 activity, independent of the presence of the PRD domain

(Figure 5, Figure 5—figure supplement 1, and Table 1). These data are consistent with previous

reports showing that the mouse synaptojanin with inactivated Sac1 supports SV endocytosis in

response to persistent activity (Mani et al., 2007), and that human patients with synaptojanin Sac1

mutations show no severe symptoms until reaching 20–40 years of age (Krebs et al., 2013). Together,

Figure 4. UNC-26ΔPRD and UNC-57ΔSH3 restore the number of SVs and recover synaptopHluorin retrieval in unc-57; unc-26 double mutants. (A) Electron

microscopy images of neuromuscular junctions were collected from the ventral nerve cords of adult hermaphrodites. Synaptic profiles of 15 synapses of

the wt, 18 synapses of the unc-57; unc-26 double mutants, and 10 synapses of the single-copy transgenic UNC-26ΔPRD::GFP; UNC-57ΔSH3::mCherry

animals were analyzed. Arrowheads indicate dense projections. Synaptic vesicle (SV) number was counted in a blind manner. ***, p < 0.0001 when

compared to wt controls. ###, p < 0.0001 and ##, p < 0.001 when compared to unc-57; unc-26 double mutants. Scale bar: 100 nm. Error bars indicate SEM.

(B) Representative images (left) and summary data (right) for axonal synaptopHluorin (SpH) fluorescence in the dorsal nerve cord are shown for the

indicated genotypes. Rescue experiments are done using extrachromosomal arrays carrying Psnb-1::unc-26ΔPRD and Prab-3::unc-57ΔSH3 (without any

fluorescent tags). The number of worms analyzed for each genotype is indicated. ***, p < 0.0001 compared to wt controls. ###, p < 0.0001 when compared

to unc-57; unc-26 mutants. Scale bar: 2 μm. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.009
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these findings indicate that synaptojanin is able to support synaptic transmission, largely independent

of its Sac1 phosphatase activity.

Sac1 is an essential domain for synaptojanin activity
To ask whether the entire Sac1 domain plays any role in synaptojanin function, we generated

a truncated UNC-26 that lacks the Sac1 domain (UNC-26ΔSac1, lacking residues 1–493). Surprisingly,

we found that removal of the Sac1 domain severely disrupted the rescuing activity of UNC-26

(Figure 5), suggesting that the physical presence of Sac1 is required. Although isolated Sac1 and 5-

phophatase fold correctly (Tsujishita et al., 2001;Manford et al., 2010), it remains possible that Sac1

deletion may perturb the folding of UNC-26. To address this issue in vivo, we used an intein-mediated

protein ligation method to reconnect Sac1 to UNC-26 post-translationally (Figure 6A). We reasoned

that if Sac1 truncation causes protein misfolding, UNC-26 would remain inactive after reconnecting

with Sac1. However, if truncated UNC-26 fragments retain correct folding structure, protein ligation

should lead to active full-length UNC-26.

We fused UNC-26 fragments with split DnaE intein from Nostoc punctiforme (NpuDnaE)

(Figure 6A), as this intein system has been shown to be active in C. elegans (Wong et al., 2012).

Co-expression of Sac1::IntN and IntC::UNC-26ΔSac1 significantly rescued the synaptic defects in unc-

26 mutants (Figure 6B and Table 1), suggesting that UNC-26 became functional upon post-

translational ligation of Sac1. By contrast, transgenic worms that only express either Sac1::IntN or IntC::

UNC-26ΔSac1 did not show functional improvements (Figure 6—figure supplement 1 and Table 1).

These data suggest that the two phosphatase domains of synaptojanin have distinct roles: the

5-phosphatase domain hydrolyzes phosphoinositides, while Sac1 plays a non-enzymatic role at

synapses. Importantly, we found that Sac1 needs to be physically linked to UNC-26 to support

synaptic transmission, as co-expression of UNC-26 fragments without the split inteins did not

significantly rescue synaptic defects (Figure 6B).

Sac1 targets synaptojanin to synapses
To gain insights into the non-enzymatic function of Sac1, we investigated the possibility that Sac1

guides 5-phosphatase for synaptic localization. We quantified synaptic abundance of GFP-tagged

Figure 5. Synaptojanin phosphatase domains have distinct functions. The 5-Pase domain hydrolyzes phosphoinositides,

while Sac1 plays an essential but non-catalytic role at synapses. Evoked EPSCs from wt, unc-26(s1710) mutant, and

indicated transgenic strains were compared. Transgenes were GFP-tagged UNC-26 variants, including Sac1 dead (C378S,

D380N; full-length UNC-26), 5-Pase dead (D716A, full-length UNC-26), and ΔSac1 (residues 494–1113). Transgenes were

driven by Prab-3. Representative traces (A) and summary data (B) for evoked EPSC amplitudes are shown for the

indicated genotypes. ***, p < 0.0001 when compared to wt controls. ###, p < 0.0001 when compared to unc-26 mutants.

The number of worms analyzed for each genotype is indicated in the bar graphs. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.010

The following figure supplement is available for figure 5:

Figure supplement 1. Sac1-inactivated synaptojanin supports synaptic transmission in a PRD independent manner.

DOI: 10.7554/eLife.05660.011
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UNC-26 variants. Full-length UNC-26 is enriched at synapses (synapse/axon ratio = 3.4 ± 0.1 fold,

Figure 7A–B). However, removal of the Sac1 domain significantly reduced synaptic enrichment of

UNC-26ΔSac1 (synapse/axon ratio = 2.4 ± 0.1 fold; Figure 7A–B), indicating that Sac1 has a critical

role in retaining UNC-26 at synapses. Consistent with this idea, isolated Sac1 domains (both wt and

the C378S,D380N mutant) are localized to synapses (Figure 7—figure supplement 1). It is likely that

Sac1 and PRD act together to enhance synaptic distribution of synaptojanin, as deletion of both PRD

and Sac1 domain further decreased synaptic enrichment (GFP::UNC-26ΔSac1ΔPRD synapse/axon

ratio = 1.9 ± 0.1 fold; Figure 7A–B).

Interestingly, we found that UNC-26ΔPRD with inactivated 5-phosphatase (D716A), but not the

version with wt phosphatase domains, exhibits significant levels of dominant-negative inhibition,

presumably by competing with wt UNC-26. When D716A UNC-26ΔPRD was expressed in wt worms,

the evoked EPSC amplitude was reduced by ∼50% (Figure 7C–D and Table 1). The dominant

negative effect was removed by elimination of the Sac1 domain (Figure 7C–D), indicating that the

inactivated 5-phosphatase alone does not produce inhibitory activity. Together, these data argue that

Sac1 plays a role in localizing synaptojanin to synapses.

Bypassing Sac1 requirement by tethering with endophilin
Because our data suggest that Sac1 acts as a targeting domain rather than an enzyme, we

speculated that it might be possible to bypass the Sac1 requirement by directly tethering the

Figure 6. Sac1 must be physically linked to UNC-26 5-phosphatase to support synaptic transmission. Split-intein

mediated ligation was used to post-translationally reconnect Sac1 to the remainder of the UNC-26 synaptojanin

protein (A). The Sac1 domain (1–493) was linked to the N-terminal half of NpuDnaE to generate Sac1::IntN. The

C-terminal half of NpuDnaE was fused with the N-terminus of the UNC-26ΔSac1 fragment. Three extra residues

(CFN) remain in the ligated product. Representative traces and summary data of evoked EPSCs are shown in

(B). Co-expression of Sac1::IntN and IntC::UNC-26ΔSac1 significantly rescued the synaptic defects in unc-26 mutant

worms. ###, p < 0.0001 when compared to unc-26 mutants. The number of worms analyzed for each genotype is

indicated in the bar graphs. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.012

The following figure supplement is available for figure 6:

Figure supplement 1. Transgenic worms that only express either Sac1::IntN or IntC::UNC-26ΔSac1 did not show

functional improvements.

DOI: 10.7554/eLife.05660.013
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UNC-26ΔSac1 mutant with non-enzymatic proteins. We utilized three categories of proteins as

candidate targeting tethers: (1) SV proteins SNB-1 (Synaptobrevin) and RAB-3; (2) lipid-binding

domains that recognize specific phosphoinositides (Lomasney et al., 1996; Várnai et al., 1999;

Stahelin et al., 2007); and (3) endocytic protein machinery adaptor AP2 subunits and accessory

proteins (Figure 8 and Figure 8—figure supplement 1). Among all proteins tested, UNC-57

endophilin was the only molecular tether that significantly restored UNC-26 activity in supporting

endogenous EPSCs and evoked responses, no matter whether the PRD domain is present

(Figure 8A–E and Table 1). The 5-phosphatase activity was still required for proper functioning of

this chimeric UNC-57::UNC-26ΔSac1 protein, as the D716A mutation disrupted its ability to rescue

synaptic defects (Figure 8—figure supplement 2). Overall, our findings indicate that the Sac1

domain has a non-enzymatic role in guiding synaptojanin 5-phosphatase, which can be replaced by

endophilin.

Endophilin BAR and synaptojanin Sac1 are functionally linked
We next investigated the molecular requirements for endophilin to functionally replace the Sac1

domain. Endophilin contains two domains: an N-terminal BAR domain that bends membranes, and

Figure 7. Sac1 is a synaptic targeting domain. (A–B) Removal of the Sac1 domain of synaptojanin perturbs synaptic targeting of synaptojanin.

Representative images (A) showing various versions of GFP::UNC-26 distribution in the dorsal nerve cord. Synaptic enrichment of GFP::UNC-26 was

quantified using ΔF/F = (Fpeak − Faxon)/Faxon and was compared for the indicated genotypes (B). Scale bar: 2 μm. (C–D) Sac1 is required for dominant

negative inhibition. The D716A mutation that blocks 5-phosphatase activity was introduced into UNC-26ΔPRD and UNC-26ΔSac1ΔPRD. These UNC-26

variants were expressed in nervous system of wt worms. The stimulus-evoked EPSC amplitudes were significantly reduced in worms carrying UNC-26ΔPRD
(D716A) mutant proteins. By contrast, animals expressing either UNC-26ΔPRD (with a functional 5Pase) or UNC-26ΔSac1ΔPRD (D716A) mutant proteins

showed normal levels of synaptic activity. The number of worms analyzed for each genotype is indicated in the bar graphs. **, p < 0.001 when compared

to wt controls. Error bars represent SEM.

DOI: 10.7554/eLife.05660.014

The following figure supplement is available for figure 7:

Figure supplement 1. GFP-tagged Sac1 domains localize to synapses.

DOI: 10.7554/eLife.05660.015
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a C-terminal SH3 domain that interacts with PRD domains. We found that tethering UNC-26ΔSac1 to

the endophilin BAR domain of either worm UNC-57 or rat endophilinA1 significantly restores synaptic

transmission in unc-26 mutants (Figure 9A–B and Table 1). In contrast, UNC-57 SH3 tethered

Figure 8. Endophilin functionally substitutes for the Sac1 domain. (A) A schematic drawing showing the chimeric

UNC-57 endophilin::UNC-26ΔSac1 protein. Other endocytic accessory proteins including DYN-1 dynamin and ITSN-

1 intersectin were tethered to UNC-26ΔSac1 using an identical strategy. Transgenes were expressed in all neurons

using Prab-3. (B–C) Chimeric UNC-57 endophilin::UNC-26ΔSac1 proteins restore evoked EPSCs in unc-26 mutant

worms. Other tethers failed to rescue synaptojanin defects. Electrophysiological data in Figure 8B–C and

Figure 8—figure supplement 1 were collected blindly. (D–E) The PRD domain is not required for the

endophilin tether to bypass the Sac1 requirement of synaptojanin. The number of worms analyzed for each

genotype is indicated in the bar graphs. ###, p < 0.0001 when compared to unc-26 mutants. ‘n.s.’ indicates p >
0.05 when compared to unc-26 mutants. Error bars indicate SEM.

DOI: 10.7554/eLife.05660.016

The following figure supplements are available for figure 8:

Figure supplement 1. Targeting UNC-26ΔSac1 to synaptic vesicles, phosphoinositides, and endocytic adaptor

protein AP2 does not recover synaptojanin function.

DOI: 10.7554/eLife.05660.017

Figure supplement 2. The endophilin tether does not bypass the requirement for a functional synaptojanin

5-phosphatase domain.

DOI: 10.7554/eLife.05660.018
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UNC-26ΔSac1 failed to rescue EPSC defects in unc-26mutants (data not shown), even though the SH3

domain enhanced the synaptic enrichment of UNC-26ΔSac1 (Figure 9—figure supplement 1).

Together, these data indicate that endophilin BAR, rather than the SH3 domain, is the functional core

for the Sac1 substitution. The functional difference between the BAR domain and the SH3 domain is

likely due to their distinct binding partners and the potential for differential targeting to sub-synaptic

regions.

Interestingly, we found that expression of a single copy of the rEndoBAR::unc-26 5Pase

(ΔSac1ΔPRD) transgene significantly restored locomotion, endogenous EPSCs, double mutants

(Figure 9C–E and Table 1), supporting the notion that synaptojanin UNC-26 and endophilin UNC-57

execute coincident action at synapses.

We next asked if BAR domains from other proteins could also functionally replace the

Sac1 domain. When tethered to UNC-26ΔSac1, BAR domains from nadrin2 (Galic et al., 2012)

and amphiphysin (Peter et al., 2004) slightly restored evoked EPSCs (Figure 9—figure

supplement 2), indicating a trend of membrane-bending BAR domains to promote synaptojanin

function.

While synaptojanin Sac1 and endophilin BAR do not bind each other in solution (de Heuvel et al.,

1997; Ringstad et al., 1997) (Figure 9—figure supplement 3), they both bind membranes (Guo

et al., 1999; Farsad et al., 2001). Therefore, we next asked whether chimeric UNC-26ΔSac1::BAR
requires the BAR-membrane interactions for its function. Indeed, we found that the disruption of BAR-

membrane interactions by either deleting the N-terminal amphipathic helix (ΔN) or by decreasing the

positively charged residues (K76E,R78E) (Gallop et al., 2006) abolished rescue activity to restore

synaptic transmission (Figure 9A–B). These data demonstrate that the membrane-binding activity of

endophilin BAR is indispensible for Sac1 substitution. Together, these findings suggest that

synaptojanin Sac1 and endophilin BAR are functionally coupled through membrane interactions to

support SV recycling (Figure 9F).

Discussion
Overall, our data suggest that Sac1, rather than PRD, plays a central role in synaptojanin function in

vivo. This is unexpected because the current model proposes that the function of synaptojanin and

endophilin requires high-affinity biochemical binding between endophilin SH3 and synaptojanin PRD.

We further show that an endophilin anchor largely eliminates the requirement of the targeting role of

Sac1, uncovering a new function of Sac1 in coupling synaptojanin and endophilin at synapses. We

discuss the implications of these results below.

The role of SH3-PRD interactions in SV endocytosis
Synaptojanin and endophilin are a classic example of the coordinated actions of endocytic proteins

for rapid SV endocytosis (Dittman and Ryan, 2009; Saheki and De Camilli, 2012). While

synaptojanin and endophilin have distinct biochemical properties, disruption of either protein leads

to similar defects in SV recycling, indicating that synaptojanin and endophilin are functional partners

in vivo (Schuske et al., 2003; Verstreken et al., 2003; Van Epps et al., 2004; Dickman et al.,

2005). Currently, the molecular basis for such functional cooperation is attributed solely to the

specific and high-affinity binding between the synaptojanin PRD domain and the endophilin SH3

domain (de Heuvel et al., 1997; Ringstad et al., 1997). Post-translational modifications such as

phosphorylation may regulate SV endocytosis by controlling PRD-SH3 interactions (Lee et al., 2004;

Irie et al., 2005). Although the current model suggests that the PRD-SH3 interactions are required,

our data show that synaptojanin and endophilin remain active without the PRD and the SH3

domains, respectively. Similarly, mutant mouse synaptojanin that is defective in PRD-SH3 binding

supports rapid endocytosis upon short stimuli (at 10 Hz) in mammalian neurons (Mani et al., 2007).

These results show that the SH3-PRD interactions are not essential for synaptojanin activity in SV

endocytosis.

Synaptojanin PRD and endophilin SH3 domains are positively selected and maintained during

evolution, evident by the sequence conservation among animal species. This observation suggests

that the SH3-PRD interactions are important for cellular activities; however, the precise role of these

interactions is unclear. It is worth noting that our findings do not rule out a modulatory role of the

SH3-PRD interactions at synapses. For example, in cultured hippocampal neurons, the SH3-PRD
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interactions enhance the fidelity and speed of SV endocytosis after intense stimulation (Mani et al.,

2007). Thus, it is possible that the PRD-SH3 interaction facilitates co-localization of endophilin and

synaptojanin, helping the Sac1-dependent mechanism to sustain membrane recycling during

persistent activity. In addition, while the PRD domain alone is not sufficient to promote SV

endocytosis, it may become required in some situations, for example, when the Sac1-membrane

interactions are reduced. Furthermore, PRD and SH3 domains may function in other important cellular

processes, contributing to their conservation. Indeed, photoreceptor neurons in the zebrafish

synaptojanin mutant exhibit significant defects in endosomes and the Golgi apparatus (George et al.,

2014), suggesting that synaptojanin is needed for membrane-trafficking events at other intracellular

organelles. The SH3-PRD interactions may be important for targeting membrane organelles in the cell

body, where synaptojanin is less abundant than at synapses.

Figure 9. Endophilin BAR domain and its membrane interactions are required for bypassing Sac1. (A–B) Endophilin BAR is sufficient to bypass the Sac1

requirement. UNC-26ΔSac1 was tethered to worm and rat endophilinA1 BAR (rEndoBAR), respectively. Mutations that disrupt BAR-membrane

interactions abolished the rescue activity of the chimeric UNC-26ΔSac1. ***, p < 0.0001 when compared to transgenic unc-26 mutants carrying rEndoBAR

wt::UNC-26ΔSac1. (C–E) Expression of a single-copy transgene encoding the rEndoBAR::UNC-26 5Pase chimera significantly restores locomotion and

evoked EPSCs in unc-57; unc-26 double mutants. Representative traces (upper) and summary data (lower) for locomotion (C), and evoked EPSCs (D–E) are

shown for the indicated genotypes. ###, p < 0.0001 when compared to unc-26 mutants. (F) A schematic diagram showing that the synaptojanin Sac1

domain and the endophilin BAR domain cooperate to promote SV endocytosis.

DOI: 10.7554/eLife.05660.019

The following figure supplements are available for figure 9:

Figure supplement 1. UNC-57 SH3 domain enhances synaptic enrichment of UNC-26ΔSac1.
DOI: 10.7554/eLife.05660.020

Figure supplement 2. Specificity in BAR proteins for bypassing the Sac1 requirement.

DOI: 10.7554/eLife.05660.021

Figure supplement 3. UNC-26 Sac1 does not bind UNC-57 in solution.

DOI: 10.7554/eLife.05660.022
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Synaptojanin requires the unique configuration of tandem phosphatase
domains
Our results indicate that the tandem phosphatase domains, Sac1 and 5-phosphatase, are essential for

synaptojanin activity in SV endocytosis. The configuration of linked phosphatase domains is a unique

feature of synaptojanin, and is reflected in its name derived from janus, the God of two faces (Majerus

and York, 2009). Interestingly, while both phosphatase domains have catalytic activities in vitro

(Cremona et al., 1999; Guo et al., 1999), the enzymatic activity of the 5-phosphatase domain is the

only one required for synaptojanin function at synapses. This is consistent with previous findings

showing that the major phosphoinositide defect in synaptojanin knockout mice is the abnormal

accumulation of PI(4,5)P2 (Cremona et al., 1999). However, the 5-phosphatase activity alone is not

enough. Expression of the 5-phosphatase, with or without the PRD domain, fails to restore synaptic

activity. Unexpectedly, an enzymatic-dead version of Sac1 restores the activity of the 5-phosphatase

domain to support synaptic transmission. These data suggest that the Sac1 domain possesses a novel

targeting activity, which the PRD domain does not have.

Phosphoinositide phosphatases often harbor multiple lipid-binding domains to detect coincident

signals for restricted localization on membranes (Carlton and Cullen, 2005). Synaptojanin is a highly

dynamic protein that is transiently recruited to endocytic intermediates. The timing of synaptojanin

recruitment is likely to be critical because SV endocytosis is a rapid process that occurs on the time

scale of seconds (Balaji and Ryan, 2007). Our findings suggest that the targeting activity of Sac1

allows synaptojanin to recognize endocytic intermediates. In agreement with this notion, tethering

synaptojanin 5-phosphatase to endophilin bypasses the requirement of the Sac1 domain and revives

synaptojanin activity, suggesting that synaptojanin 5-phosphatase functions at sites where endophilin

resides. Therefore, we propose that the Sac1 domain acts together with the 5-phosphatase as

coincident detectors for membranes enriched in PI(4,5)P2 and endophilin.

A membrane connection between synaptojanin Sac1 and endophilin
How the synaptojanin Sac1 domain recognizes endophilin-membrane complexes is currently

unknown. Biochemical studies have shown that the Sac1 domain does not directly bind endophilin

in solution (Figure 9—figure supplement 3) (de Heuvel et al., 1997; Ringstad et al., 1997). Here, we

speculate that membranes serve as the molecular connection to couple these proteins, as both the

Sac1 domain and the endophilin BAR domain bind membranes (Guo et al., 1999; Farsad et al.,

2001). The endophilin BAR domain induces defects in lipid packing (Gallop et al., 2006) and

consequently increases the exposure of lipid head groups. One possibility is that the synaptojanin

Sac1 domain recognizes the lipid-packing defects generated by endophilin BAR, which in turn

stimulates neighboring 5-phosphatase to degrade exposed PI(4,5)P2 head groups (Chang-Ileto et al.,

2011). Alternatively, it is also possible that membranes stimulate direct binding between the Sac1

domain and the endophilin BAR domain. Nonetheless, our results show that the Sac1 domain is

a crucial targeting domain for synaptojanin function. We propose that the Sac1 domain allows

synaptojanin to detect endocytic membranes on which endophilin resides.

Materials and methods

Strains and DNA constructs
Strain maintenance and genetic manipulations were performed as described (Brenner, 1974). All C.

elegans strains were maintained at 20˚C on agar nematode growth media (NGM) plates seeded with

OP50 bacteria. The N2 strain (Bristol, England) was used as wt. Mutant unc-26(s1710) and unc-57

(e406) strains were obtained from the Caenorhabditis Genetics Center and were subsequently

outcrossed 10× times to the N2 strain. The following strains were used in this study:

BJH188 unc-57(e406); unc-26(s1710)

BJH180 unc-26(s1710); pekSi8 [Prab-3::unc-26::gfp, cb-unc-119(+)]
BJH88 unc-26(s1710); pekSi7 [Prab-3::unc-26ΔPRD::gfp, cb-unc-119(+)]
BJH40 unc-26(s1710); pekEx15 [Psnb-1::mSyj1ΔPRD]
BJH298 unc-57(e406); pekSi19 [Psnb-1::unc-57ΔSH3::mCherry, cb-unc-119(+)]; unc-26(s1710);

pekSi7 [Prab-3::unc-26ΔPRD::gfp, cb-unc-119(+)]
BJH52 unc-26(s1710); pekEx27 [Prab-3::gfp::unc-26(D716A)]
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BJH55 unc-26(s1710); pekEx30 [Prab-3::gfp::unc-26(C378S,D380N)]

BJH312 unc-26(s1710); pekEx66 [Prab-3::gfp::unc-26ΔPRD(C378S,D380N)]

BJH43 unc-26(s1710); pekEx18 [Prab-3::unc-26Sac1, Prab-3::unc-26ΔSac1]
BJH46 unc-26(s1710); pekEx21 [Prab-3::unc-26ΔSac1]
BJH49 unc-26(s1710); pekEx24 [Prab-3::unc-26Sac1::IntN]

BJH48 unc-26(s1710); pekEx23 [Prab-3::IntC::unc-26ΔSac1]
BJH145 unc-26(s1710); pekEx39 [Prab-3::unc-26Sac1::IntN, Prab-3::IntC::unc-26ΔSac1]
KP5105 NuIs269 [Punc-129::gfp::unc-26]

BJH360 pekEx80 [Punc-129::gfp::unc-26ΔSac1]
BJH53 pekEx28 [Punc-129::gfp::unc-26ΔSac1ΔPRD]
BJH338 pekEx92 [Prab-3::gfp::unc-26ΔPRD(D716A)]
BJH344 pekEx98 [Prab-3::gfp::unc-26ΔSac1ΔPRD(D716A)]
BJH310 unc-26(s1710); pekEx64 [Prab-3::plc∂ PH:unc-26ΔSac1]
BJH313 unc-26(s1710); pekEx67 [Prab-3::bem1 PX::unc-26ΔSac1]
BJH314 unc-26(s1710); pekEx68 [Prab-3::btk PH::unc-26ΔSac1]
BJH317 unc-26(s1710); pekEx71 [Prab-3::aps-2::unc-26ΔSac1]
BJH319 unc-26(s1710); pekEx73 [Prab-3::itsn-1::unc-26ΔSac1]
BJH320 unc-26(s1710); pekEx74 [Prab-3::dyn-1::unc-26ΔSac1]
BJH321 unc-26(s1710); pekEx75 [Prab-3::apm-2::unc-26ΔSac1]
BJH322 unc-26(s1710); pekEx76 [Prab-3::apa-2::unc-26ΔSac1]
BJH330 unc-26(s1710); pekEx84 [Prab-3::unc-57::unc-26ΔSac1]
BJH332 unc-26(s1710); pekEx86 [Prab-3::unc-57::unc-26ΔSac1(D716A)]
BJH333 unc-26(s1710); pekEx87 [Prab-3::apb-1::unc-26ΔSac1]
BJH335 unc-26(s1710); pekEx89 [Prab-3::unc-57BAR::unc-26ΔSac1]
BJH336 unc-26(s1710); pekEx90 [Prab-3::rEndoBAR::unc-26ΔSac1]
BJH337 unc-26(s1710); pekEx91 [Prab-3::mAmphBAR::unc-26ΔSac1]
BJH340 unc-26(s1710); pekEx94 [Prab-3::rEndoBAR (K76E,R78E)::unc-26ΔSac1]
BJH341 unc-26(s1710); pekEx95 [Prab-3::rEndoBARΔN::unc-26ΔSac1]
BJH343 unc-26(s1710); pekEx97 [Prab-3::unc-26ΔSac1::snb-1]
BJH345 unc-26(s1710); pekEx99 [Prab-3::mNadrin2BAR::unc-26ΔSac1]
BJH347 unc-26(s1710); pekEx101 [Prab-3::unc-57::unc-26ΔSac1ΔPRD]
BJH348 unc-26(s1710); pekEx102 [Prab-3::unc-26ΔSac1::rab-3]
BJH396 zxIs6 [Punc-17::ChR2(H134R)::YFP; lin-15+], acr-16(ok789)
BJH397 zxIs6, acr-16(ok789); unc-26(s1710)

BJH398 zxIs6, acr-16(ok789); unc-26(s1710); pekSi7 [Prab-3::unc-26ΔPRD::gfp, cb-unc-119(+)]
BJH399 pekEx122 [Prab-3::gfp::unc-26ΔPRD]
BJH400 pekEx123 [Punc-129::gfp::unc-26Sac1(C378S,D380N)]

BJH401 pekEx124 [Punc-129::gfp::unc-57SH3::unc-26ΔSac1]
BJH403 pekEx126 [Punc-129::gfp]

BJH405 unc-57(e406); unc-26(s1710); pekSi24 [Psnb-1::rEndoBAR::unc-26ΔSac1ΔPRD;

cb-unc-119(+)]
BJH406 pekEx127 [Punc-129::gfp::unc-26Sac1]

BJH402 nuIs122 [Pacr-2::synaptopHluorin]

BJH407 unc-57(e406); unc-26(s1710); nuIs122; pekEx125 [Psnb-1::unc-26ΔPRD; Prab-3::unc-57ΔSH3]
BJH408 unc-57(e406); unc-26(s1710); nuIs122

Psnb-1 and Prab-3 promoters were used for neuronal rescue experiments, and Punc-129 for

imaging analyses. cDNAs of unc-26, unc-57, snb-1, rab-3, dyn-1, apa-2, apb-1, apm-2, aps-2, and itsn-

1 were amplified from total mRNA extracted from wt worms. cDNAs encoding rat endophilin A1,

mouse Nadrin2, and mouse amphiphysin were amplified from a cDNA library from Clontech

(Mountain View, CA, USA).

Transgenes and germ line transformation
Transgenic strains for rescue experiments were generated by microinjection of various plasmids (2 ng

μl−1) together with co-injection markers, including Pmyo-2::his11::gfp (BJP-B36, 2 ng μl−1), Pvha-6::gfp
(BJP-B197, 10 ng μl−1), Pmyo2::NLS-MaxFP Green (KP-JB473, 2 ng μl−1), and Pttx-3::DsRed (KP-JB761,
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50 ng μl−1). For dominate-negative inhibition experiments, plasmids (BJP-M13, BJP-M82, and BJP-

M185) were injected at ∼60 ng μl−1. For imaging experiments, variants of Punc-129::gfp::unc-26 were

injected at 15 ng μl−1, unless specified. Blank vector pBluescript was used as an injection filler to bring

final DNA concentration to 100 ng μl−1. Integrated transgenes were obtained by UV irradiation of

strains carrying extrachromosomal arrays. Transgenic worms were outcrossed at least 10 times.

Single copy insertion of transgenes
Mos1-mediated single-copy transgene insertion methods were used to generate transgenic animals

carrying single-copy transgenes (Frøkjaer-Jensen et al., 2012). The Mos1 target sites used in this study

are ttTi5605 (chromosome II, for unc-57 transgenes) and ttTi14024 (chromosome X, for unc-26

transgenes). The following constructs were used to generate single-copy transgenes: BJP-B178 [Prab-3::

unc-26::gfp for ttTi14024 (X)], BJP-B179 [Prab-3::unc-26ΔPRD::gfp for ttTi14024 (X)], BJP-B384 [Psnb-1::

unc-57ΔSH3::mcherry for ttTi5605 (II)], and BJP-M208 [Prab-3::rEndoBAR::unc-26 5Pase for ttTi5605 (II)].

Transgenic worms carrying single copy insertion of transgenes were outcrossed at least 4 times.

Worm tracking and analysis
Worm movement on 10 cm agar plates without bacterial lawn was recorded for 30 s. Young adults

(reared at 20˚C) were transferred to room temperature 1 hr prior to behavior tests. Videos of

individual animals were captured on a CCD camera (MU130, AmScope, Irvine, CA) mounted on

a stereomicroscope using 0.8× magnification. The center of mass was determined for each animal on

each video frame using open-source object tracking scripts developed by Jesper S Pedersen (http://

www.phage.dk/plugins/wrmtrck.html) in ImageJ (NIH, Bethesda, MD). Average speed was de-

termined for each animal. Statistical analysis was performed using Igor Pro 6 (Wavemetrics, Lake

Oswego, OR). Average values and standard error of the mean (SEM) were reported. p values were

generated using one-way ANOVA followed by Dunnett’s test.

Electrophysiology
Young adult worms were immobilized on Sylgard-coated coverslips with cyanoacrylate glue

(Histoacryl Blue, Aesculap, Center Valley, PA). Animals were dissected in extracellular solution via

a dorsolateral incision. Gonads and intestines were removed to reveal the underlying ventral nerve

cord and body-wall-muscle quadrants as previously described (Richmond et al., 1999; Bai et al.,

2010). The worm prep was mounted onto a fixed stage upright microscope (BX51WI, Olympus,

Japan) equipped with a 60× water-immersion objective lens.

Whole-cell patch clamp recordings were carried out at 20˚C. A body wall muscle cell was voltage

clamped at −60 mV to record postsynaptic currents. Evoked EPSC responses were induced by

applying a 0.4 ms, 30 μA pulse, generated by a stimulus isolator (A365, WPI, Sarasota, FL), through

a borosilicate pipette (∼2 MΩ) placed in close apposition to the ventral nerve cord. Series resistance

was compensated to 70% for the evoked EPSC recording. The currents were amplified using EPC-10

(HEKA, Germany). The signals were sampled at 10 kHz using Patchmaster (HEKA) following low-pass

filtering at 2 kHz. Patch pipettes (2–5 MΩ) were pulled using borosilicate glass and were fire polished.

Extracellular solution contains (in mM) 150 NaCl, 5 KCl, 1 CaCl2, 5 MgCl2, 10 glucose, and 10 HEPES

and was titrated to pH 7.3 with NaOH, 330 mOsm with sucrose. Internal solution contains 135

CH3O3SCs, 5 CsCl, 5 MgCl2, 5 EGTA, 0.25 CaCl2, 10 HEPES, and 5 Na2ATP and was adjusted to pH

7.2 using CsOH. All chemicals were purchased from Sigma (St. Louis, MO).

Electrophysiological data were analyzed with open-source scripts developed by Eugene Mosharov

(http://sulzerlab.org/Quanta_Analysis_8_20.ipf; Mosharov and Sulzer, 2005) in Igor Pro 6 (Wave-

metrics). Average values and SEM were reported. Statistical analysis was performed using Igor Pro 6.

p values were generated using one-way ANOVA followed by Dunnett’s test. A p-value < 0.05 was

considered to be significant.

Retinal feeding
NGM plates (60 mm) were seeded with 250 μl of OP50 bacteria and 4 μl of 100 mM all-trans retinal

(Sigma, St. Louis, MO). Seeded retinal plates were kept in the dark at 4˚C and were used within 7 days.

Channelrhodopsin-2 transgenic worms (L4 hermaphrodites) were transferred from regular plates to

retinal plates in the dark at room temperature and then grown for an additional 16 hr before

electrophysiological experiments.
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Light stimulation
A TILL Oligochrome light source (Till Photonics, Germany) was controlled by TTL signals from a HEKA

EPC-10/2 amplifier. Blue light (460–500 nm) through a GFP filter set (49012, Olympus) was used to

excite channelrhodopsin-2. The light intensity output from the 60× objective (1.0 NA) was 12 mW/

mm2, quantified by an XR2100 power meter (X-Cite, Canada). Light pulses (8 ms duration, 2 Hz) were

used to evoke post-synaptic currents at neuromuscular junctions.

Transmission electron microscope
Approximately, 5 adult hermaphrodites were loaded at room temperature into a 100 μm specimen

chamber containing space-filling bacteria and M9 buffer. These worms were frozen instantaneously

at ∼ −180˚C in either a Leica EM PACT2 (Leica, Germany) or a BAL-TEC HPM010 (Bal-Tec,

Liechtenstein) system. The frozen worms were fixed in a Leica EM AFS2 machine using 1% osmium in

0.1% UA in acetone fixative and then embedded in Eponate 12 from Ted Pella, Inc (Redding, CA).

Serial sections were cut at a thickness of 40 nm, collected on pioloform covered slotted grids

(notchnum 1 × 2 mm oval) from Ted Pella, Inc., and counterstained in 6% aqueous uranyl acetate for

1.5 hr, followed by Reynolds lead citrate for 7 min. Images were obtained on a JEOL JEM 1400

transmission electron microscope (JEOL, Japan) operating at 120 KV. Micrographs were collected

using the Gatan Ultrascan 1000XP, 2k × 2k high-resolution camera (Pleasanton, CA). Synapse profiles

were used to count the number of synaptic vesicles (∼30 nm in diameter). Each profile represents

a single section that passes through the dense projection. Vesicle counting was performed blindly. p

values were generated using one-way ANOVA followed by Dunnett’s test.

In vivo microscopy and image analysis
Animals were immobilized with 2,3-Butanedione monoxamine (30 mg ml−1; Sigma–Aldrich) and were

mounted on 2% agarose pads for imaging. Fluorescence images were collected on an inverted

Olympus FV-1000 confocal microscope with an Olympus PlanApo 60× Oil 1.4 NA objective at 5×
zoom. GFP was excited using a 488 nm argon laser (0.5% laser power). Images of fluorescent slides

(Chroma Technology Group, Rockingham, VT) were captured during each imaging session to provide

a fluorescence standard for comparing fluorescence intensities between animals. Line scans were

analyzed with custom-written scripts developed by Jeremy Dittman (Weill Cornell Medical College;

Dittman and Kaplan, 2006) in Igor Pro (Wavemetrics, OR). Background signal was subtracted before

analysis. ‘Synaptic enrichment’ (% ΔF/F) is defined as (Fpeak − Faxon)/Faxon. All the values reported in

the figures are mean ± SEM.

FM4-64 loading and unloading
Young adult worms were immobilized in standard medium (150 mM NaCl, 5 mM KCl, 2 mM CaCl2,

4 mM MgCl2, 10 mM glucose, and 10 mM HEPES [pH 7.3]) on Sylgard-coated coverslips with

cyanoacrylate glue (Histoacryl Blue, Aesculap). The head neuron ganglion was exposed by a small

incision using a sharp needle. After the ganglion was exposed, a second incision was made at the

middle section of worm body to release internal pressure. Dissected worms were gently rinsed with

standard medium. To stimulate FM4-64 (Invitrogen, Carlsbad, CA) loading, dissected worms were

incubated with high-potassium buffer (85 mM KCl, 70 mM NaCl, 2 mM CaCl2, 4 mM MgCl2, 10 mM

glucose, and 10 mM HEPES [pH 7.3]) in the presence of 10 μM FM4-64 dye for 1 min. Stimulated

preparations were then incubated with standard medium containing 10 μM FM4-64 dye for 2 min to

allow for vesicle recycling to proceed. To remove surface-bound dye, dissected worms were gently

washed in a Ca2+-free low-K+ buffer (0.5 mM EGTA and 1 mM ADVASEP-7 [Sigma]) for 5 min. Dye

unloading from releasable vesicles was carried out by incubation with high-potassium medium without

FM4-64 dye for 5 min. Imaging was done on a Zeiss LSM 780 confocal microscope (Zeiss, Germany)

with a 40×/0.8 objective. FM4-64 was excited with a 561-nm laser (1% laser power), and fluorescence

emission was collected between 643 nm and 751 nm. A set of Z-stack images (9–12 sections, step size

1.71 μm) was obtained for each worm. Images were imported into ImageJ for data analysis (NIH). For

all images in each Z-stack, an area of interest (AOI) was defined by drawing a circle of 45 μm in

diameter around the neuron ganglion. Total fluorescence of each image was obtained by integrating

fluorescence pixel intensity within the AOI. Background fluorescence was subtracted from all images.

The fluorescence signal (arbitrary unit, a.u.) with the highest value from each stack was used for
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comparison. Statistical analyses were performed using one-way ANOVA followed by Dunnett’s test.

All the values reported in the figures are mean ± SEM.

Recombinant protein purification
All versions of recombinant UNC-57 and UNC-26 proteins were expressed in an Escherichia coli strain

BL21(DE3) as fusion proteins. DNA fragments encoding UNC-57 full-length, UNC-57 BAR (residues

1–283), and UNC-57 SH3 (residues 284–379) were inserted into pGEX4T-1 using BamHI and NotI sites.

Recombinant GST::UNC-57 variants were immobilized onto glutathione beads (Genscript, Piscataway,

NJ). UNC-26 Sac1 (residues 1–493), 5-phosphatase (residues 494–986), and PRD (residues 987–1113)

were fused to the C-terminus of the maltose-binding protein (MBP) using overlapping PCR. DNA

fragments encoding MBP::UNC-26 variants were subcloned into PET28a using NdeI and XhoI sites to

produce C-terminal His6-tagged fusion proteins. Recombinant MBP-UNC-26Sac1-his6 proteins were

purified using Ni-NTA Agarose (Qiagen, Valencia, CA) and were eluted in HEPES buffer (50 mm

HEPES, pH 7.4, 150 mM NaCl) plus 250 mM imidazole. For antibody development, DNA encoding

UNC-57 BAR::mCherry was inserted into PET28 using BamHI and NotI sites, and DNA encoding

SUMO::UNC-26 (residues 494–986) was inserted into PET28 using NcoI and NotI sites. Purification of

GST- and His6-tagged proteins was performed essentially as previously described (Bai et al., 2004).

Pull-down assays
GST-pull down assay was performed as previously described with modification (Bai et al., 2004). GST-

tagged UNC-57 proteins (10 μg) were immobilized on glutathione beads (Genscript). Recombinant

MBP::UNC-26::His6 fragments (2 μM) were then incubated with beads in a binding buffer composed

of 20 mM HEPES, 150 mMNaCl, 1% Triton X-100, and 1 mM Dithiothreitol (DTT). After 2 hr, the beads

were washed 3 times with binding buffer, and the sample was treated with SDS sample buffer,

subjected to SDS-PAGE, and visualized by staining with Coomassie Brilliant Blue G-250.

Monoclonal antibody production
Monoclonal antibodies to C. elegans UNC-57 BAR and UNC-26 5-phosphatase proteins were

generated in the FHCRC Monoclonal Antibody Core Facility. Recombinant proteins (UNC-26 5-

phosphatase [residues 467–986] and UNC-57ΔSH3 [residues 1–283]) were used as antigens. Mice

(e.g., Swiss Webster, A/J, and C57BL/6) were immunized, and immune splenocytes were isolated

from mice showing positive antisera titers (ELISA, enzyme-linked immunosorbent assay). Isolated

splenocytes were electrofused (BTX, Harvard Apparatus, Holliston, MA) to the NS-1/FOX-NY

myeloma cell line. Antibody secreting hybridomas were identified using standard ELISA screens,

and monoclonal hybridomas were isolated by limiting dilution subcloning. Monoclonal antibodies

to UNC-57 and UNC-26 were further screened and characterized by Western blot analysis of

recombinant proteins and C. elegans detergent extracts.

Worm lysis and Western blot
Worms were reared on 10–15 enriched peptone plates (15 cm) at 20˚C. Adult animals were collected

using the sucrose flotation method, frozen in liquid nitrogen, and homogenized for 20 s using a mini

bead-beater16 (Biospec Product, Bartlesville, OK) in M9 buffer with 2 mM Ethylenediaminetetraacetic

acid (EDTA), 1 mM DTT, and 1× protease inhibitor cocktail (Sigma). Worm samples were then cooled

for 1 min on ice. The beat/cool cycle was repeated 6 times to completely lyse the worms. Triton-X100

(final 1%) was next added to extract total protein. After 15 min of incubation, crude protein extracts

were centrifuged at 14,000 rpm in an Eppendorf centrifuge (5417C, Eppendorf AG, Germany) for 10

min at 4˚C to remove the beads, worm debris, and unbroken worms. The protein concentration of

worm extracts was determined by the Pierce bicinchoninic acid (BCA) assay (Thermo Scientific,

Waltham, MA). Primary antibodies against UNC-57BAR and UNC-26 5-phophatase were used for

Western blot. Immunoreactive bands were visualized using enhanced chemiluminescence and were

quantified using a Bio-Rad ChemiDoc MP imaging system (Bio-Rad, Hercules, CA).
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