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Abstract

With increased demand on freshwater resources for agriculture, it is imperative that more water-use efficient crops are developed. Leaf sta-
ble carbon isotope composition, d13C, is a proxy for transpiration efficiency and a possible tool for breeders, but the underlying mecha-
nisms effecting d13C in C4 plants are not known. It has been suggested that differences in specific leaf area (SLA), which potentially reflects
variation in internal CO2 diffusion, can impact leaf d13C. Furthermore, although it is known that water movement is important for elemental
uptake, it is not clear how manipulation of transpiration for increased water-use efficiency may impact nutrient accumulation. Here, we char-
acterize the genetic architecture of leaf d13C and test its relationship to SLA and the ionome in five populations of maize. Five significant
QTL for leaf d13C were identified, including novel QTL as well as some that were identified previously in maize kernels. One of the QTL
regions contains an Erecta-like gene, the ortholog of which has been shown to regulate transpiration efficiency and leaf d13C in
Arabidopsis. QTL for d13C were located in the same general chromosome region, but slightly shifted, when comparing data from two dif-
ferent years. Our data does not support a relationship between d13C and SLA, and of the 19 elements analyzed, only a weak correlation be-
tween molybdenum and d13C was detected. Together these data add to the genetic understanding of leaf d13C in maize and suggest that
improvements to plant water use may be possible without significantly influencing elemental homeostasis.
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Introduction
The impacts of global population growth and climate change on
natural resources indicate that the future of food security will de-
pend on increasing both the productivity and sustainability of ag-
riculture systems (National Academies of Sciences, Engineering,
and Medicine 2018). Improving crop water-use efficiency (WUE)
would ameliorate the effects of the increasing frequency and se-
verity of droughts (Sheffield and Wood 2008; Chapman et al. 2012;
Leakey 2019) . Agronomic WUE can be defined as the amount of
yield, whether grain or biomass, produced per the total amount
of water utilized by the crop (Condon et al. 2004). Many factors
can affect WUE including transpirational water loss through the
stomatal pores on the leaf’s surface. In C3 plants the amount of
carbon available for assimilation is limited by stomatal and me-
sophyll conductances to CO2 (Flexas et al. 2016) and therefore cor-
related to the rate of transpiration. For example, yield was shown
to be positively associated with cumulative transpiration in soy-
bean (Purcell et al. 2007), and higher net carbon assimilation was
accompanied by higher transpiration in rice (Adachi et al. 2017).
However, higher rates of biomass yield do not always correspond

to higher transpiration rates in C4 plants due to the evolution of
the carbon concentrating mechanism. The uncoupling of CO2 as-
similation and transpiration has been demonstrated in the field
and greenhouse-grown maize (Walker 1986; Kolbe et al. 2018a).
Thus, there is the potential to increase transpiration efficiency,
or carbon gain per amount of water transpired, without reducing
productivity in C4 species (Leakey 2019). A large amount of varia-
tion is present in the transpiration rates of C4 crop species, in-
cluding sorghum (Hammer et al. 1997), and maize (Bunce 2010),
suggesting that existing occurring alleles could be exploited for
optimizing WUE.

Although increasing transpiration efficiency provides a strat-
egy to avoid the negative effects of water limitation on plant
growth and development (Passioura 1996; Chaves et al. 2002;
Jaleel et al. 2009), there is the possibility of pleiotropic side effects
given the fundamental requirement for water movement in
plants. A potential impact of reducing transpiration could be a
corresponding reduction in the uptake and mobilization of water-
soluble nutrients. As water is absorbed by roots, nutrients in so-
lution come in contact with the root surface in a process known
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as mass flow (Barber et al. 1963). Most nutrients are acquired by
mass flow, although phosphorus is a notable exception that con-
tacts the root through diffusion (Barber 1962). Reducing transpi-
ration may also affect nutrient uptake facilitated by symbiosis
with mycorrhizal fungi (Marschner and Dell 1994). Therefore, the
manipulation of basic plant processes such as transpiration for
improved WUE must also consider potential impacts on the
availability of essential plant nutrients. Essential elements con-
tribute to cellular function in numerous ways including in bio-
chemical reactions as catalytic cofactors, for charge balance in
cellular and subcellular compartments, as well as in DNA and
protein, the building blocks of life (Baxter 2009). Previous research
has shown in the C4 plant sorghum that total leaf mineral con-
tent is positively correlated with transpiration efficiency (Masle
et al. 1992). While meta-analyses of high CO2 grown plants with
reduced transpiration have shown a drastic reduction in nutrient
accumulation in several tissues including the leaves and grain of
C3 crops (McGrath and Lobell 2013), sorghum showed no differ-
ence and maize had similar levels of zinc, protein, and phytate,
but a decrease in iron accumulation in the grain (Myers et al.
2014). Although part of the reduction in nutrient content can be
explained by dilution, due to increased growth at high CO2, this
does not completely account for the observed reduction. An iono-
mics (high-throughput elemental profiling) approach has been
used in maize to assess kernel nutrient content (Baxter et al.
2014). A similar ionomics approach in leaf tissue could be used to
assess the effect of transpiration on nutrient accumulation in the
leaves.

The difficulty and labor-intensive nature of accurately quanti-
fying the amount of water that an individual plant transpires
have been a major limitation to breeding for transpiration effi-
ciency. This has resulted in the selection for drought tolerance
rather than applying a direct selection for water use (Cooper et al.
2014; Gaffney et al. 2015). One alternative method is the use of
leaf stable carbon isotopes as a proxy for transpiration efficiency.
The stable carbon isotope composition, d13C, reflects the amount
of 13C present in plant tissue relative to a standard (Keeling 1979).
Enzymes in the process of carbon fixation discriminate differ-
ently against the heavier 13C atoms in a process known as frac-
tionation (Farquhar et al. 1982; O’Leary 1988). It has been widely
shown that stable carbon isotopes can be used as a proxy trait for
quantifying a plant’s transpiration efficiency in C3 plants
(Farquhar et al. 1989a,1989b; Condon et al. 1990; Virgona et al.
1990; Condon et al. 1993; Barbour et al. 2010) and in C4 plants
(Henderson et al. 1998; von Caemmerer et al. 2014; Ellsworth et al.
2017, 2020; Twohey III et al. 2019). Due to the differences in the
photosynthetic pathways, d13C is positively correlated with WUE
in C3 species, but negatively correlated with d13C in C4 species.
Studies have also shown that d13C can be influenced by environ-
mental factors such as light intensity and drought, as well as an-
atomical traits and bundle-sheath leakiness to CO2 (reviewed in
Cernusak et al. 2013). However, genes underlying variation for
d13C remains unknown in C4 species.

Kolbe et al. (2018b) showed that leaf d13C did not correlate with
the leaf activity of any of the photosynthetic enzymes previously
posited to influence d13C variation. In addition, a transcriptome
analysis was unable to identify a clear candidate gene (Kolbe et al.
2018b). Quantitative genetic approaches have the potential to re-
veal the genetic control of d13C in C4 species because genomic
locations are tested for associations with the trait of interest,
without a priori knowledge of the mechanism underlying the vari-
ation. Maize is ideal for use in mapping studies due to its high
level of recombination and low linkage disequilibrium (Yu and

Buckler 2006). Mapping methods have been successfully used for
decades to identify genes controlling complex traits in maize,
with evolving approaches to tackle more difficult traits (Wallace
et al. 2014). In addition, maize is both a model organism with
available populations and genomic data, and one of the three
most important global crops contributing to 30% of the total calo-
ries consumed by humans (Shiferaw et al. 2011).

There have been several previous studies that have used
quantitative genetics to investigate d13C in C3 species (Teulat et al.
2002; Masle et al. 2005; Rebetzke et al. 2008; Xu et al. 2009). In
Arabidopsis, the gene ERECTA was identified in a QTL study for
isotopic discrimination and was found to alter transpiration effi-
ciency by altering stomatal density (Masle et al. 2005). Genetic
mapping of leaf d13C has also been performed in the C4 species
Setaria viridis (Feldman et al. 2018; Ellsworth et al. 2020) and kernel
d13C has been mapped in the C4 maize (Gresset et al. 2014;
Avramova et al. 2019). Although the QTL found for C4 species still
require fine-mapping to identify the causative gene, no correla-
tion was observed between kernel d13C and leaf d13C (Foley 2012).
The lack of correlation may be the result of post-photosynthetic
fractionation (Badeck et al. 2005; Cernusak et al. 2013), and there-
fore mapping QTL for d13C in leaves may reveal additional loci
not found using kernels. In this study, we focus on leaf d13C in
maize and its association with leaf elemental composition. We le-
verage results from previous studies to select biparental mapping
populations. Specifically, the NAM founder lines CML103,
CML333, and Tx303 consistently contrast B73 with respect to leaf
d13C (Kolbe et al. 2018b; Twohey III et al. 2019). The founder line
NC358 had a moderate leaf d13C value (Kolbe et al. 2018b; Twohey
III et al. 2019) and was also included in this study. In addition to
leaf d13C, we also investigated variation in specific leaf area (SLA)
and its potential relationship to leaf d13C by CO2 diffusion.
Characterization of the genetic architecture of leaf d13C will pro-
vide a better context for understanding what drives d13C, which
will allow breeders to utilize this trait in crop improvement.

Materials and methods
Plant material
All experiments were planted at the University of Illinois Crop
Sciences Research Farm, Urbana, IL, USA and were subject to nat-
ural conditions without supplemental irrigation. Plants did not
show signs of stress prior to sample collection. Weather data col-
lected less than 1.5 km from the field site can be found in
Supplementary Table S5 (Water and Atmospheric Resources
Monitoring Program, Illinois Climate Network 2020). NAM RIL
families CML103, CML333, NC358, and Tx303 and NAM founder
parents (McMullen et al. 2009) are publicly available through the
Maize Genetic Cooperative Stock Center. The NAM RIL families
were planted in the summer of 2015 and a subset was planted in
2019 using an augmented incomplete block design. Fifteen ker-
nels were planted in each 3.7 m row with 0.8 m spacing between
rows and 0.9 m alleys. The families were randomized together,
with each block consisting of 20 lines and 2 checks (B73 and one
of the other founder lines). Ten percent of the plots were dedi-
cated to checks with the common parent B73 appearing in each
block with one of the four founder lines. All lines used for the
GWAS experiment are publicly available through the USDA
Germplasm Resources Information Network (GRIN). This experi-
ment was planted in the summer of 2016. Twenty kernels were
planted in each 3.7 m row with 0.8 m spacing between rows and
0.9 m alleys, and then thinned to 15 plants per row. The reference
line B73 was replicated 22 times within the experiment. A
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complete list of lines used can be found in Supplementary Tables
S1–S3.

Tissue sampling
Samples for d13C analysis from the 2015 NAM RIL populations
were collected 6 weeks after planting (approximately V9) as fol-
lows. A rectangular piece of tissue approximately 7.5 cm � 5 cm
was taken from the middle of the leaf blade (excluding the mid-
rib) of the uppermost fully expanded leaf from four plants in
each plot. Samples were placed in a coin envelope and dried at
65�C for at least 7 days. After drying, four-hole punches (each
0.058532 cm2) were taken and placed in a 6 mm � 4 mm tin cap-
sules (OEA Laboratories # C11350.500P) for analysis using a Delta
PlusXP (Washington State University) isotope ratio mass spec-
trometer. Leaf samples for SLA measurements were collected
from four plants in each of the plots (preferentially but not neces-
sarily the same plants as were collected for d13C) using a 1.6 cm
diameter cork borer. Leaf discs were dried at 65�C for at least
7 days prior to weighing on an analytical balance (Model
MS204S). SLA was calculated as the area of a leaf disc divided by
its dry weight. These same leaf discs were then used for ionomics
analyses as described in Pauli et al. (2018). Leaf samples for d13C
analysis from the GWAS panel and the 2019 NAM RIL population
were collected at approximately V10 (6–7 weeks after planting)
using the hole punch method and processed as described previ-
ously (Twohey III et al. 2019). Due to the high level of diversity in
this panel, some lines were flowering when samples were col-
lected, which resulted in tissue being collected from the flag leaf.
These samples were analyzed using a Costech instruments ele-
mental combustion system and a Delta V Advantage isotope ratio
mass spectrometer.

Statistical analysis
All analyses were completed using custom scripts (available
upon request) and statistical packages in R (R Core Team 2017). A
mixed model approach was utilized to obtain the best linear un-
biased estimation (BLUE) of the fixed genotypic effect (Henderson
1975). For both years 2015 and 2019, the experimental design of
the RIL panel was blocked containing partial repeated entries of
the parental genotypes, B73 and CML103. A mixed-effect model
was created using the R package “lme4” to account for the varia-
tion among repeated entries and to estimate d13C for each geno-
type (Bates et al. 2015). In the model, genotypes were treated as
fixed effects with year and block terms treated as random effects.
In addition, the block term was nested within year as the geno-
types were randomly assigned to blocks each year. The R package
“emmeans” utilized Least-Square Means to provide BLUEs for
each genotype (Searl et al. 1980).

Correlation analysis
Pearson correlations using phenotype mean values were calcu-
lated with corr.test() in R package “psych” (Revelle 2017) using
complete observations and Holm’s method (Holm 1979) to adjust
P-values for multiple testing. The correlation matrix was visual-
ized using pairs.panel() in the R package “psych” (Revelle 2017).

Single family QTL mapping
The analysis was completed using NAM_phasedImputed_1cM_
AllZeaGBSv2.3 dataset. The file contains fully imputed and
phased genotypes for most of the RILs in the NAM population
(Zhao et al. 2006; Lipka et al. 2015). This HapMap format file was
converted to numeric format where 0 is the B73 homozygote ref-
erence, 1 is a heterozygote, and 2 is the homozygote alternative

parent. Phenotypic means were regressed onto genotype. Lowest
P-values from the ANOVA values of the linear model were
recorded (i.e., pvalues[i] ¼ anova(lm(mypheno�geno[i , ])). The
previously identified marker was added to the model and re-run
in a stepwise regression procedure. The final model included all
identified QTL. Significance thresholds were determined by 200
permutations and alpha was set at 0.05. All analysis was com-
pleted using custom scripts in R (R Core Team 2017). Results were
then compared to composite interval QTL mapping completed in
R package “r/QTL” (Broman et al. 2003). QTL locations are indi-
cated using B73 version 2 positions.

Joint linkage mapping
The analysis was completed using HapMapv2 (Chia et al. 2012).
The genotypic dataset consisted of 836 markers were scored on
624 RILs from four biparental families with B73 as a common par-
ent. The marker subset is composed of markers that could be
placed unambiguously on the physical map, previously described
in Brown et al. (2011). Unambiguous markers are defined by those
anchored in CDS positions of genes that have held consistent
over genome versions verified by MaizeGDB cross-reference
tables. The markers are approximately evenly spaced across the
genome with an average spacing of 1.6 cM. Missing data were im-
puted as previously described in Tian et al. (2011). Joint linkage
models were constructed using custom script in R (R Core Team
2017) by a stepwise regression procedure. In general, we used
linkage to test every marker across all four families to find the
most significant QTL. The model has a family term and a marker:
family term. The family term accounts for differences in mean
phenotype between families. Inclusion of the marker: family
term means that for each QTL we are assigning a separate effect
to each family. The family term was included in the model and
each of the 836 possible marker-by-family terms were assessed
following the method of Ogut et al. (2015). The lowest P-values
from the ANOVA values of the linear regression model were
recorded (i.e., JL_pvalues[i] ¼ anova(lm(my_pheno�familyþgeno[,
i]: family)). All 836 marker-by-family terms were tested. SNP
effects were nested in families to reflect the potential for unique
QTL allele effects within each family. Significance thresholds
were determined using 1000 permutations for each family inde-
pendently and alpha was set at 0.05. The lowest resulting P-value
was recorded for each permutation.

Genome-wide association study
A subset of 413 of 503 diverse lines from Hirsch et al. (2014) that
included the Wisconsin Diversity Set of Hansey et al. (2011) was
grown in 2016 and listed in Supplementary Table S2. Hirsch et al.
(2014) collected RNA from whole seedling tissue which was se-
quenced via IlluminaHiSeq and filtered to create a working set of
485,179 SNPs that is available at https://datadryad.org//resource/
doi : 10.5061/dryad.r73c5. The 413 lines were grown in 2016 and
tissue was sampled when B73 was at the developmental stage
V10. Isotopic analysis is described above. A genome-wide associa-
tion analysis was run using R package “GAPIT” (Lipka et al. 2012)
on leaf d13C. Removal of SNPs with a minor allele frequency of
less than 0.05 resulted in a subset of 438,222 SNPs being used in
this analysis. A MLM model was used with model selection set to
true to find the optimum number of principal components to ac-
count for population structure (Lipka et al. 2012). Significance
thresholds were calculated using the Bonferroni correction of
familywise error rate. An alternative significance test was calcu-
lated using the Benjamini-Hochberg procedure for controlling the
false discovery rate (Benjamini and Hochberg 1995).
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Data availability
Genotypic datasets were downloaded from Panzea CyVerse iPlant
Data Storage Commons (http://datacommons.cyverse.org/
browse/iplant/home/shared/panzea). All phenotypic datasets
were quality controlled for complete technical replicates and
availability of genotypic data. A list of all genotypes used in each
analysis is provided in Supplementary Tables S1–S4 and have
been uploaded to figshare. Briefly, the d13C analysis was com-
pleted with 640 RILs; including 156 CML103 RILs, 160 CML333
RILs, 159 NC358 RILs, and 165 Tx303 RILs (Supplementary Table
S1). The element analysis was completed using a total of 704
RILs; including 175 CML103 RILs, 181 CML333 RILs, 175 NC358
RILs, and 173 Tx303 RILs (Supplementary Table S1). The SLA
analysis used a total of 683 RILs; including 172 CML103 RILs, 176
CML333 RILs, 168 NC358 RILs, and 167 Tx303 RILs
(Supplementary Table S1). The Joint linkage analysis was com-
pleted using a total of 624 RILs; including 154 CML103 RILs, 159
CML333 RILs, 151 NC358 RILs, and 160 Tx303 RILs
(Supplementary Table S2). Supplementary Table S3 lists the 413
lines used in the GWAS of leaf d13C. Supplementary Table S4
includes the QTL coordinates identified in the elemental QTL
analyses. Supplementary Figure S1 shows the distribution of leaf
d13C for each of the NAM RIL families. Supplementary Figure S2
presents the correlation matrix for the elemental analysis, and
Supplementary Figure S3 shows the chromosomes where signifi-
cant QTL were identified for each element. Supplementary Figure
S4 is the LOD plot from the GWAS mapping of leaf d13C.
Supplementary material is available at figshare: https://doi.org/
10.25387/g3.14114234.

Results
Single-family QTL mapping
The RIL families generated from four NAM founder lines
(CML103, CML333, NC358, and Tx303) were grown for linkage
analysis. Consistent with previous studies, both the CML103 and
CML333 parent lines had a significantly less negative leaf d13C
than B73 (P< 0.05), when grown as replicated controls among the
RILs. However, the Tx303 and NC358 parental lines were not
found to be significantly different from B73. Transgressive segre-
gation was observed in all four RIL families (Supplementary
Figure S1).

Stepwise regression analyses found significant QTL for leaf
d13C in the NAM RIL families CML103, CML333, and Tx303 but not
in NC358 (Figure 1A). Interestingly, none of these QTL were
shared between RIL families in this analysis. The CML103 RIL
family had two significant QTL, one on chromosome 5 at
211.7 Mb and another on chromosome 7 at 142.4 Mb. Combined
these two QTL accounted for 21.36% of the total phenotypic vari-
ance (R2 ¼ 0.2136; Table 1). The RIL family CML333 had one signif-
icant QTL on chromosome 3 at 183.9 Mb, which accounted for
8.37% of the total phenotypic variation explained (Table 1).
Finally, the Tx303 RIL family had a significant QTL on chromo-
some 2 at 13.5 Mb explaining 9.48% of phenotypic variation
(Table 1). No significant QTL for leaf d13C were identified in the
NC358 RIL family.

SLA was used as a proxy trait to test for a relationship between
leaf thickness and leaf d13C. No significant correlation was ob-
served between SLA and leaf d13C (P¼ 0.304, r ¼ �0.0414). In addi-
tion to testing for a correlation with leaf d13C, QTL mapping was
performed for SLA to identify any possible overlaps with genomic
regions identified for leaf d13C. Mapping of SLA in the four RIL

families identified two significant QTL. In the CML103 RIL family,
a QTL was identified on chromosome 5 at 86.1 Mb and in the
Tx303 RIL family a QTL on chromosome 9 at 107.8 Mb. Neither of
the SLA QTL identified overlapped with QTL for leaf d13C (Figure
1C).

To test a potential link between transpiration and nutrient up-
take, an elemental analysis was performed on leaf samples from
each of the four RIL families. Samples were analyzed for 19 differ-
ent elements using an ICP-MS. A full correlation matrix shows
that some elements are highly correlated with each other
(Supplementary Figure S2), but no strong correlations (r > 6 0.7)
were identified with d13C. However, there was a weak but signifi-
cant correlation (P¼ 6.745E-05, r ¼ 0.18) between leaf d13C and Mo
(Figure 2). Subsequent QTL mapping of the 19 element concentra-
tions identified 28 QTL across 12 different elements (Figure 3,
Supplementary Figure S3). Significant QTL were found for B, Mg,
P, S, K, Fe, Mn, Co, Cu, Rb, Sr, and Mo (Supplementary Table S4).
None of the elemental QTL overlapped with those found for leaf
d13C or SLA. However, in some cases multiple elements had com-
mon QTL, such as Mg and Mn on chromosome 10 in the CML103
RIL family and Co and Cu on chromosome 3 in the NC358 RIL
family. In addition, common QTL for an element were found
across families, as in the case of Mg in the NC358 and Tx303 RIL
families.

Joint linkage QTL mapping
A joint linkage analysis was performed for leaf d13C to test
whether any additional QTL would be identified by combining
the four RIL families into a single analysis. The joint linkage
analysis identified the same significant QTL for leaf d13C on chro-
mosomes 2, 3, and 5 (Table 2) as in the single-family stepwise re-
gression analysis. Although the QTL on chromosome 7 was not
found using the joint linkage approach, an additional significant
QTL was identified on chromosome 1. Given that no significant
QTL for leaf d13C were identified in the NC358 RIL family, we
tested whether removing this family from the joint linkage analy-
sis would change the outcome. When the joint linkage analysis
was rerun excluding family NC358, the same four QTL were rei-
dentified with decreased P-values, and the total phenotypic varia-
tion explained (R2 value) increased in later steps of the model.
However, no new QTL was identified with this approach.

QTL are consistent across years
One of the biparental mapping populations was grown in a sec-
ond field trial to investigate the repeatability of the QTL between
years. The CML103 RIL family had a significant QTL on chromo-
some 5 in both years (Figure 1B). The peak of the QTL shifted
slightly (<1 Mb) between years, such that the 1 LOD intervals did
not overlap (Table 1). However, there was overlap when a 2 LOD
interval was calculated. A Best Linear Unbiased Estimate (BLUE)
was calculated using the blocking information to account for spa-
tial effects in each grow out. Again a QTL was identified in the
same region, although shifted from what was observed when an-
alyzing each year independently. The second QTL observed on
chromosome 7 in the 2015 CML103 RIL family was not significant
in 2019, nor was it significant when using BLUE for mapping.

Genome-wide association study
Once significant QTL intervals were identified for leaf d13C using
a biparental mapping strategy (Figure 1, A and C), we performed
a genome-wide association study to try and narrow down the
intervals to specific genic regions. The Wisconsin Diversity Panel
was chosen because it represents a large portion of variation
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found within maize and has a robust publicly available 485,179
SNP set. A subset of 413 of the possible lines was chosen due to
seed availability, and were grown in a single randomized block.
No significant SNP associations with leaf d13C were identified
(Supplementary Figure S4).

Discussion
Leaf d13C has a moderately high heritability in maize (Twohey III
et al. 2019), which facilitates the use of quantitative genetics
approaches to pinpoint the genomic locations controlling this
trait. Here we characterized the genetic control of d13C in maize
using leaf tissue collected at vegetative stage V9-V10 to reflect

the photosynthetic pool during active growth. We were able to
identify several significant QTL for leaf d13C across three NAM
RIL families using stepwise regression. Using these populations
we were also successful in identifying QTL for SLA and 12 differ-
ent elements. Contrary to our hypothesis, no significant correla-
tion was observed between leaf d13C and SLA or elemental
composition.

We strategically picked NAM RIL families based on the
founder parents that had the largest differences in their d13C for
single family and joint linkage analyses. However, we also in-
cluded a parent which was not extremely different from B73.
Interestingly, we were unable to identify significant QTL in the
NC358 RIL family despite transgressive segregation. We interpret

Figure 1 d13C and SLA Single Family Stepwise Regression QTL Mapping. d13C QTL (A) were identified in NAM RIL families CML103 (black), CML333
(orange), and Tx303 (blue) but not in NC358 (gray). Panel (B) shows the CML103 RIL family QTL from 2015 (black), 2019 (red), and the combined analysis
(gray). SLA QTL (C) were identified in NAM RIL families CML103 (black) and Tx303 (blue). Significance thresholds (dashed horizontal line) were
determined by 200 permutations and an alpha of 0.05.

Table 1 d13C single family stepwise regression QTL

Year Step Marker Family Chr. Peak position (Mb) P-value TPVEa (%) Effect size 1 LOD inter-
val (Mb)

2015 1 824 CML103 5 211.7 7.03E�06 12.32 0.1286 211.5–212.9
2015 2 1032 CML103 7 142.4 7.52E�05 9.08 �0.1064 141.2–149.7
2015 1 470 CML333 3 183.9 2.07E�04 8.37 0.1137 178.6–195.7
2015 1 251 Tx303 2 13.5 6.04E�05 9.48 �0.1457 13.5–15.2
2019 1 818 CML103 5 210.8 1.00E�06 13.46 0.0927 208.2–210.4
BLUE 1 805 CML103 5 205.5 7.86E�07 13.26 0.0958 204.8–208.0

a Total percent of variation explained.
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this result as an indication the NC358 contains only small effect

QTL relative to B73 that were not detected in this study.

Alternatively, NC358 leaf d13C may be more sensitive to the grow-

ing environment with a smaller genetic component. Twohey III

et al. (2019) noted that while several maize lines were stable when

tested in greenhouse and field environments, there were other

lines that had highly variable isotopic signatures. A large amount

of environmental influence over this trait in some backgrounds

would obscure the genetic contribution and our ability to detect

significant QTL.
When we compared the regions identified here with regions

previously mapped in S. viridis no obvious overlap was observed

(Ellsworth et al., 2020). However, of the QTL identified for kernel

d13C in maize (Gresset et al. 2014; Avramova et al 2019), our QTL

for leaf d13C overlapped those on chromosomes 1, 3, and 7. This

result demonstrates that some QTL for d13C may be shared be-

tween tissues, and that these QTL are identified across several

populations and environments. Indeed, when the CML103 RIL
family was grown over two seasons the major effect QTL on chro-
mosome 5 was observed in both growing environments.

Although the QTL analyses presented here do not provide
gene-level resolution, we were able to look for candidate genes
within the intervals. The 2015 chromosome 5 QTL includes an
Erecta-like gene (er1, GRMZM2G463904, 211.8 Mb). However, er1
was located outside of the 1 LOD interval of the 2019 chromo-
some 5 QTL. Furthermore, mapping of BLUE further shifted the
chromosome 5 QTL peak away from er1 (Table 1). Unfortunately,
stomatal density data were not collected on these populations,
which would further support the role of er1 in variation of leaf
d13C. This would be an interesting area of future research given
that this gene was found to effect d13C in Arabidopsis by changing
stomatal density (Masle et al. 2005). We also looked for genes that
have been previously shown to directly influence transpiration
efficiency in maize (reviewed in Leakey 2019). However, none of
these were found to be located in our QTL intervals.

The linkage analyses using biparental mapping populations
identified several significant QTL, but none of the single-family
QTL were independently identified in more than one family
(Figure 1). This result indicates that leaf d13C can be controlled by
different factors depending on the genetic background.
Furthermore, if in fact leaf d13C is controlled by many small-ef-
fect QTL, this may explain why the GWAS did not identify any
significant SNP associations with leaf d13C. Identifying rare alleles
with small to moderate effect size is a known weakness of the
GWAS method (Bazakos et al. 2017). A better understanding of the
mechanisms influencing leaf d13C would allow future analyses to
move beyond single marker tests and instead look at SNPs in
genes representing a particular pathway or process that could be
collectively significant. This approach was successfully used to
study maize lipid biosynthesis (Li et al. 2019a).

The diffusion of CO2 into mesophyll cells is a potential
source of variation in leaf d13C, which could be linked to stomatal
density or leaf thickness. Previous work in maize has shown
that stomatal density is not correlated with leaf d13C in a small
diversity panel of maize (Foley 2012). SLA has not been linked to
d13C in maize, but in rice d13C and SLA have shared QTL (This
et al. 2010). In this study, we were able to test SLA and d13C in four
RIL families, and no correlation was observed. Likewise, a com-
parison of the QTL analyses showed no overlapping regions for
SLA and those mapped for leaf d13C. This result suggests two pos-
sibilities. First, it is possible that differences in SLA observed in
these populations are not due to leaf thickness, but rather com-
position. Identifying the causative genes underlying the QTL
would give insight into the mechanism. A second possibility is
that leaf anatomical traits other than leaf thickness influence
leaf d13C. A variety of anatomical traits could affect d13C and
would not be directly captured by measurement of SLA, such as
stomatal ratios, interveinal distance, mesophyll surface area,
chloroplast placement, and cell wall thickness. Variation in ana-
tomical traits has the potential to influence CO2 diffusion as well
as bundle sheath leakiness to CO2, both of which could influence
leaf d13C.

With our data, we were able to indirectly test the relationship
between nutrient uptake and transpiration. If reducing transpira-
tion limits nutrient uptake, transpiration efficiency as a trait for
increasing WUE would have limited application. The 19 elements
tested here were previously reported to have narrow-sense herit-
abilities ranging from 0.11 to 0.66 (Baxter 2014). The only element
found to be significantly correlated to leaf d13C was Molybdenum.
Molybdenum is required for several vital biological processes

Figure 2 Pearson’s r Correlations. Correlations of mean phenotypic
values using complete observations and Holm’s method to adjust P-
values for multiple testing.
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related to nitrogen and water (Baxter 2008). Because molybde-
num is a required cofactor for ABA synthesis, maize plants overex-
pressing molybdenum cofactor sulfurase gene have increased
drought tolerance (Lu et al. 2013). However, in our study, we observed
a positive correlation between leaf d13C and molybdenum, which is
contrary to expectation given that an increase in d13C signifies a de-
crease in WUE. Overall, it is encouraging that the majority of ele-
ments sampled were not associated with d13C. This suggests that
breeding for leaf d13C as a means to reduce transpiration would be
unlikely to result in plants with nutrient uptake deficiencies.

Although the main focus of this study was to investigate leaf
d13C and its relationship to SLA and nutrient accumulation, the
QTL mapping of the analyzed elements was an interesting biproduct.
Mapping the leaf ionome of the four RIL families resulted in many
significant QTL, including some overlapping intervals for different
elements. Multi element QTLs are common, and are thought to be
due to loci affecting processes such as the acidification of the

rhizosphere or altering the permeability of the casparian strip (Baxter
2015). Interestingly there was not much overlap between the ionomic
QTL identified here and a previous study on kernels (Table 4; Baxter
et al. 2014). The only overlapping QTL was for rubidium on chromo-
some 3. There are several possible causes for the limited overlap be-
tween these methods. There could be differences between the leaf
and grain ionome due to differential mobilization of nutrients from
vegetative tissues into kernels during grain fill. In addition, the ion-
ome is strongly influenced by genotype by environment interactions,
with many of the QTL identified in previous studies being location
specific (Asaro et al. 2016). Environmental interactions may also ex-
plain the unexpected high correlation between Fe and Al. One possi-
ble mechanism for this correlation is the variance in soil pH, either
due to field effects or to the acidification of the rhizosphere by the
plants roots. Both Fe and Al are more available at lower pHs.
Interestingly, the Fe QTL did overlap a Zinc and Iron transporter
(ZmZIP5; Zm00001d036965) on chromosome 6 (Li et al. 2019b).

Figure 3 Element Single Family Stepwise Regression QTL Mapping. QTL mapping identified 28 QTL across 12 different elements. Significant QTL (alpha
¼ 0.05) for each element are plotted. QTL location is shown across the 10 maize chromosomes (cM) on the x-axis. Dashes indicate a significant QTL, with
the NAM RIL family in which the QTL was found designated by color; CML103 (black), CML333 (orange), Tx303 (gray), NC358 (blue). All dashes are the
same length for visibility.

Table 2 d13C joint linkage mapping QTL

Step Marker Family Chr. Peak position (Mb) P-value TPVEa (%) Effect size 1 LOD interval (Mb)

All four families
1 m0200 Tx303 2 13.8 2.82E�06 7.9 �0.144 12.6–15.8
2 m0677 CML103 5 211.2 1.98E�04 11.8 0.123 211.2–212.7
3 m0385 CML103 3 182.1 1.44E�04 15.24 0.115 180.0–195.3
4 m0132 Tx303 1 263.2 4.41E�05 18.19 �0.126 257.1–263.6

Excluding NC358
1 m0200 Tx303 2 13.8 5.70E�06 7.47 �0.144 12.6–15.9
2 m0677 CML103 5 211.2 2.86E�04 12.31 0.123 211.2–212.7
3 m0385 CML103 3 182.1 1.60E�04 16.45 0.115 180.0–195.3
4 m0132 Tx303 1 263.2 5.97E�05 20.05 �0.121 253.0–263.6
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