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B cells form a branch of the adaptive immune system, essential for the body’s immune
defense against pathogens. B cell dysfunction has been implicated in the pathogenesis of
immune mediated liver diseases including autoimmune hepatitis, IgG4-related
hepatobiliary disease, primary biliary cholangitis and primary sclerosing cholangitis. B
cells may initiate and maintain immune related liver diseases in several ways including the
production of autoantibodies and the activation of T cells via antigen presentation or
cytokine production. Here we comprehensively review current knowledge on B cell
mechanisms in immune mediated liver diseases, exploring disease pathogenesis,
B cell therapies, and novel treatment targets. We identify key areas where future
research should focus to enable the development of targeted B cell therapies.

Keywords: IgG4-related disease, autoimmune hepatitis, primary biliary cholangitis (PBC), primary sclerosing
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INTRODUCTION

B cells form a branch of the adaptive immune system that confer long-lived targeted responses to
pathogens and other non–self-proteins (1). Developing in the bone marrow and spleen, B cells
mature from lymphoid progenitors to mature B cells which express B cell receptors, each with its
own unique antigen affinity. On meeting its cognate antigen, naïve B cells proliferate within B cell
follicles producing short lived antigen secreting cells and germinal center (GC) B cells. GC B cells
undergo rounds of proliferation and somatic hypermutation within GCs, resulting in populations of
cells including long-lived memory B cells, plasmablasts (PB) and plasma cells (PC), which are able
to secrete high affinity antibodies (1). Antibody subclass is directed by class switch recombination,
which enables the production of several immunoglobulin (Ig) subtypes IgM, IgD, IgG (types 1-4),
IgA and IgE [reviewed in (2)]. B cells can affect immune control directly via neutralizing antibodies,
or indirectly via communication with the complement cascade and other effector immune cells such
as macrophages and T cells through cytokine production or antigen presentation [reviewed in (3)].
B cells can also have regulatory functions, through production of anti-inflammatory cytokines
[reviewed in (4)].

B cell dysfunction has been implicated in the pathogenesis of a number of immune mediated
liver diseases including autoimmune hepatitis (AIH), IgG4-related hepatobiliary disease (IgG4-
HBD), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Here we review
current knowledge on B cell mechanisms in immune mediated liver diseases, exploring disease
org April 2021 | Volume 12 | Article 6611961
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pathogenesis, B cell therapies, and novel treatment targets. The
role of B cells in biliary atresia and drug-induced liver injury has
been explored elsewhere (5) and will not be covered in
this review.
AUTOIMMUNE HEPATITIS

Autoimmune hepatitis (AIH) is a chronic inflammatory liver
disease characterized by raised serum total immunoglobulin G
(IgG), the presence of circulating autoantibodies and liver
histology showing interface hepatitis with a lymphoplasmacytic
infiltrate (6). Although no single disease trigger has been identified,
multiple genetic, epigenetic and environmental factors are
associated with AIH development [reviewed in (7, 8)].
Corticosteroids induce disease remission and immunosuppressives
such as thiopurines and mycophenolate are used to maintain the
therapeutic response. Biochemical and histological disease relapse is
frequent on withdrawal of immunosuppression.

Whilst early studies supported T cell dysregulation as being
central to AIH pathogenesis [reviewed in (8)], a role for B cells
became evident when B cell depletion with Rituximab was shown
to induce clinical improvement in AIH patients refractory to
conventional therapy (9, 10) and in murine models of AIH (11).
Several pathogenic mechanisms of B cells in AIH have been
proposed including the generation of auto-reactive antibodies, B
cell overactivation, excess immunoglobulin production and the
recruitment of T cells through cytokine production and
antigen presentation.

Auto-Antibodies in AIH
Specific autoreactive antibodies can be detected in AIH patients,
including anti-nuclear (ANA), anti-smooth muscle (SMA), anti-
liver-kidney microsomal type 1 or 3 (anti-LKM-1, anti-LKM-3),
anti-liver cytosol type 1 (anti-LC1), anti-soluble liver antigen
(anti-SLA) or anti-asialoglycoprotein receptor (ASGPR)
[reviewed in (12)]. Total IgG levels and titers of autoantibodies
are part of the diagnostic criteria for AIH and can correlate with
liver biochemical and histological markers of disease activity (6,
13). Autoantibody detection can also be used to sub-classify AIH
into type 1 and type 2, the latter affecting younger individuals
with increased disease severity (Table 1).

The events leading to autoantibody production in AIH are
not clear, but some evidence suggests they might form in
response to infection with hepatitis C virus or human herpes
Frontiers in Immunology | www.frontiersin.org
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virus 6, where viral and human epitopes share sequence
homology (14, 15). Although autoantibody detection has a
predominantly diagnostic role, there is evidence that anti-
LKM-1 and anti-LC1 are directly pathogenic. Anti-LKM-1
production is triggered by expression of cytochrome P450 2D6
(CYP2D6) on the surface of hepatocytes in AIH. It may be
directly cytotoxic or activate auto-reactive T cells that target
CYP2D6 expressing hepatocytes (14).

Activation of B Cells and IgG Production
Activated B cells may be a determinant of disease activity in AIH.
In new onset AIH there are increased numbers of activated B
cells and PC compared to healthy controls (16). PCs positively
correlate with serum IgG levels, suggesting they might be the
source of excess IgG production, characteristic of active
disease (16).

Several factors might regulate B cell overactivation in AIH.
Circulating follicular helper T (Tfh) cells necessary for B cell
differentiation and maturation and their hallmark cytokine IL-
21, which drives B cell activation, PC differentiation, and
immunoglobulin production, are increased in AIH and
correlate with serum IgG and hepatic inflammation (16, 17).
Blockade of IL-21 suppresses Tfh cell generation and can prevent
AIH development in murine models. B cell activating factor
(BAFF), necessary for B cell survival and differentiation, is also
increased in the serum of individuals with AIH (18, 19). BAFF
levels positively correlate with liver transaminases and histological
liver inflammation, but not with serum IgG titer (19).

Finally, T cells themselves might be the drivers of B cell
activation in AIH. Sequencing of B and T cell receptors in the
blood and liver of individuals with AIH showed skewing of T
rather than B cell receptor profiles (20). T cell expression of
activation markers PD1 and CD38 and the magnitude of ex-vivo
cytokine responses towards autoantigenic peptides correlates
with AIH disease activity (20–22). Autoreactive T cell
responses specific to autoantigen SLA have been investigated
by flow cytometry and single cell RNA sequencing (23), showing
SLA CD4 T cells transcriptionally upregulate expression of genes
associated with B cell help and inflammation. These cells are
similar in profile to so called T peripheral helper (Tph) cells that
have been identified as drivers of B cell inflammation in other
autoimmune conditions such as Rheumatoid Arthritis and IgG4-
related disease (24). The population of PD1 positive activated
Tph cells was expanded amongst all CD4 T cells in AIH,
produced IL-21 and interferon gamma (IFNg) on ex-vivo
restimulation and drove B cell differentiation in co-cultures (23).

Together these data suggest overactivation of the B cell axis in
AIH is associated with IgG production and liver inflammation.

Antigen Presentation in AIH
Antigen presentation by B cells to T cells may play an important
role in AIH pathogenesis. In patients with new onset AIH, there
is increased expression of CD86 on B cells (16), suggesting they
are primed for T cell co-stimulation. In a murine model of AIH,
B cell depletion was associated with a reduced cytotoxic and
proliferative capacity of intrahepatic T cells, implying in this
model at least, B cells are necessary for T cell function (11).
TABLE 1 | Autoantibodies in AIH.

AIH subtype Associated auto-antibodies

AIH type 1 Anti-nuclear antibodies (ANAs)
Anti-smooth muscle antibodies (SMA)
Anti-neutrophil cytoplasmic antibodies (ANCA)
Anti-asialoglycoprotein receptor (ASGPR)
Anti-soluble liver (anti-SLA)

AIH type 2 Anti-liver kidney microsomal antigens type 1 or type 3
(anti-LKM-1, anti-LKM-3)
Anti-liver cytosol type 1 (anti-LC1)
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Ex-vivo proliferation assays of T cells from these AIH mice
showed that CD19+ B cells as compared to CD19- lymphocytes
were effective antigen presenting cells to CD4+ T cells (11).
There is also evidence that B and T cells might share epitopes for
the same autoantigens, as LKM1 specific immune responses have
overlap between B and T cell epitope sequences (21). Together
these observations suggest the B and T cell arms of the adaptive
immune response respond to the same autoantigens in AIH,
and B cells are necessary to support T cell function through
antigen presentation.

Cytokines Regulating Inflammation and
Recruitment in AIH
Cytokine and chemokines provide signals that orchestrate the
immune response. In a murine model of AIH, hepatic B cells
expressed higher levels of proinflammatory cytokines including
interferon gamma (IFNg) than B cells from healthy murine
counterparts. These proinflammatory cytokines might attract T
cells, which are found co-located with B cells within
inflammatory lesions in the liver (11). B cells can also produce
C-X-C motif chemokine ligand 10 (CXCL10 or IP-10), which
correlates with liver transaminase levels in individuals with AIH
(25). After B cell depletion in AIH there is a decrease in
proinflammatory cytokines as well as CXCL10 (10, 11),
supporting that B cells are an important source of proinflammatory
signals during active disease.

The role of B cells in anti-inflammatory cytokine production
has also been investigated. In a mouse model of AIH, B cell
depletion prior to AIH onset led a more severe AIH phenotype
with increased liver inflammation (26). Adoptive transfer of IL-
10 dependent B regulatory cells, ameliorated inflammation by
inhibition of T cell responses in this model (26). This was in
contrast to a different mouse model of AIH, where B cell
depletion prevented AIH development (11). These results
suggest different B cell subtypes might have different roles in
AIH pathogenesis, and that the balance between pro- and anti-
inflammatory cytokines might be key.

The Gut Microbiome in AIH
The liver is anatomically and physiologically linked to the gut
microbiota via the enterohepatic circulation (27). The gut
microbiota is essential to maintain immune homeostasis of the
gut-liver axis and is a major modulator of autoimmunity (27, 28).
Shifts in microbiota composition activates a mucosal immune
response, causing an imbalance of homeostasis, translocation of
bacteria and migration of immune cells into the liver (28).
Microbial antigens are recognized by the immune system via
presentation on major histocompatibility complex (MHC) class
II molecules to CD4+ T cells. Intestinal microbial exposure
triggers expansion of B cell populations and antibody
production in the liver, with proliferating antibody secreting
plasmablasts derived from gut associated lymphoid tissues
present in animal and human liver disease (29).

Animal models of AIH provided the first evidence that AIH
was associated with reduced genetic diversity of the gut
microbiome (30). A recent study in humans confirmed these
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findings, showing individuals with steroid-naïve AIH have a
distinct microbial composition compared with healthy
volunteers, with lower intraindividual diversity (31). Expansion
of potential pathobiont genus Veillonella was associated with
active disease status and therefore may be directly involved in
AIH pathogenesis (31). Further studies are required to
understand whether B cells or other immune mediators are
directly involved in the response to the Veillonella genus.
IGG4-RELATED HEPATOBILIARY DISEASE

IgG4-related hepatobiliary disease (IgG4-HBD) is part of the
chronic multi-system fibroinflammatory condition IgG4-related
disease (IgG4-RD). IgG4-HBD is characterized clinically by
masses and/or biliary strictures, elevated serum immunoglobulin
G4 (IgG4) subclass levels, and organ infiltration with IgG4-
positive plasma cells and CD4 T helper cells, a storiform pattern
offibrosis and obliterative phlebitis (32). IgG4-HBD has an elderly
male preponderance and is associated with other autoimmune
conditions such as thyroiditis and coeliac disease. The disease is
steroid responsive, but many patients experience disease relapse.

B cells play several potential roles in disease pathogenesis
including the production of autoreactive antibodies, presentation
of antigen to T cells, cytokine/chemokine production and
directly contributing to fibrosis. B cell depletion with rituximab
has shown efficacy in treating active IgG4-RD as both an
induction and maintenance agent, and is commissioned in the
UK as a third-line therapy (33). Postulated mechanisms of B cell
involvement in IgG4-HBD are summarized in Figure 1.

IgG4 Antibodies in IgG4-HBD
Abundance of circulating and tissue-infiltrating IgG4 antibodies
are evident in IgG4-HBD. Elevated serum IgG4 levels are a useful
adjunct in disease diagnosis and if elevated they are helpful in
disease monitoring and in relapse prediction. Circulating IgG4+
PB also show utility in disease monitoring in those with active
disease (34).

IgG4 responses comprise approximately 4% of IgG subclass
circulating antibodies in health (35). They have a unique
structure and function and can undergo exchange of their
antigen binding fragments (Fab) in a process known as Fab
arm exchange (36). The resulting heterodimeric antibodies are
poor complement binders that are unable to induce the
formation of large immune complexes (37, 38). Circulating
memory B cells have lower surface expression of complement
receptor 2 (CR2, CD21) on IgG4 compared to IgG1 B cells,
suggesting IgG4 memory B cells themselves are less responsive to
complement signals (39). Hypocomplementemia occurs in IgG4-
RD involving the renal, pancreatic and biliary systems, but its
role in pathogenesis is not yet clear.

IgG4 B cells are produced in response to repetitive antigenic
stimulation (40), developing for example after administration of
therapeutic monoclonal antibodies (41). IgG4 responses may be
formed as a protective mechanism to dampen immune reactions
towards antigens encountered repeatedly [reviewed in (42, 43)].
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IgG4 B cells also localize to tissue sites of inflammation (44),
supporting that their recruitment may be a local mechanism to
contain immune responses. Both type 2 helper T cells (Th2) and
their signature interleukins (IL) -4, -10 and -13, and Tfh cells
producing IL-21 are associated with IgG4 production (45–52).
However, in IgG4-HBD the exact mechanisms triggering and
sustaining the predominance of the IgG4 subclass remain elusive.

Autoantibodies and B Cell Clonality
in IgG4-HBD
Excess IgG4 antibodies may be autoreactive to an as yet
unidentified antigen. Autoantibodies against a range of
different antigens such as galectin-3, prohibin, annexin A11
and laminin 511-E8 have been identified in patients with
IgG4-RD (53, 54). However, all are non-specific ubiquitous
proteins, expressed with variable frequencies across organs in
patients with systemic disease. Indeed, polyclonal expansion of
IgG4 autoantibodies has been demonstrated in response to
multiple common environmental antigens in IgG4-HBD (55),
indicating the predominance of IgG4 responses might be a more
generalized phenomenon.

Next generation sequencing data of both circulating IgG4 B
cells and PBs shows oligoclonal expansion of B cell receptor
clones in IgG4-HBD (56–58). Circulating PB that re-expand on
disease relapse have a different clonality to those at disease
presentation (58). This suggests alternative epitopes might
drive subsequent rounds of inflammation, although it does not
Frontiers in Immunology | www.frontiersin.org 4
rule out a common driving autoantigen. Further studies are
required to understand in vivo, whether IgG4 B cells are
pathogenic themselves or whether other immunological
conditions drive and sustain B cell proliferation and IgG4
antibody production.

Antigen Presentation to Pathogenic
T Cells in IgG4-HBD
Expanded B cells and PBs may present antigen to pathogenic
subsets of T cells in IgG4-HBD. Expansion of clonally restricted
CD4+ SLAMF7+ cytotoxic T cells (CTLs) cells that interact with
B cells and produce pro-fibrotic cytokines have been
demonstrated in the circulation and inflamed tissue of
individuals with IgG4-RD. Depletion of B cells with rituximab
leads to profound clinical and radiological improvement in
disease activity, paralleled by a decline in PB and CD4 CTLs,
implying B cells are necessary to sustain the expanded CTL
population (59, 60).

Antigen-experienced B cells can regulate Tfh cell
differentiation by priming naïve CD4 T cells and polarizing
them towards IL-21-producing Tfh cells that enhance
immunoglobulin production in cocultured B cells (61). Tfh are
activated and expanded in IgG4-HBD, and play a crucial role in
B cell differentiation and GC formation in involved organs (51,
52, 62–66). Circulating activated Tfh cells have been observed to
positively correlate with PB number, IgG4 class switch
promoting cytokines such as IL-4, serum IgG4 levels, disease
activity and organ involvement in IgG4-HBD (51, 52, 62–66). It
is plausible that bidirectional signaling between Tfh and B cells
might sustain a cycle of IgG4 humoral responses in IgG4-HBD,
although this has yet to be shown definitively in vivo.

Fibrogenic B Cells in IgG4-HBD
Storiform fibrosis is an integral histopathological feature of
lesions in IgG4-HBD. Indirect evidence that B cells play a role
in fibrosis came from histological sections showing B cells in
close proximity to fibrotic ducts in IgG4-HBD (67). Further
evidence shows in vitro B cells derived from individuals with
IgG4-RD are able to activate primary pancreatic human
fibroblasts to produce collagen (67). PBs rather than naïve or
memory B cells were most successful in collagen production
when cultured in vitro with fibroblasts. Transcriptomic analysis
showed genes associated with fibroblast proliferation, including
lysyl oxidase homolog 2 (LOXL2), were upregulated and
demonstrated direct expression of collagen by PBs themselves
(67). B cell depletion with Rituximab reduces clinical disease
activity, the Enhanced Liver Fibrosis score (ELF score), a
surrogate marker of fibrosis (68), and the number and size of
tissue myofibroblasts in IgG4-RD. These observations support a
role for B cell depletion in treating those with fibrotic disease and
the potential to reverse fibrosis in the longer term.

The Gut Microbiome in IgG4-HBD
A single microbiome study in IgG4-RD evaluating stool
microbiome by metagenomics showed IgG4 patients to have a
decreased alpha diversity compared with healthy controls, and
expansion of potentially pathogenic and pro inflammatory
FIGURE 1 | Postulated mechanisms of B cell involvement in IgG4-hepato
biliary disease. B cells (B) have several possible mechanisms in IgG4-hepato
biliary disease pathogenesis including antigen presentation to cytotoxic CD4 T
cells (CD4+ CTL), cross talk with T follicular helper cells (Tfh) and fibroblast
activation. IgG4 positive plasmablasts (PB) also contribute to fibrosis as well
as producing IgG4 antibodies. Image created using BioRender.com.
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species such as Th17-inducing strain of E. lenta (69). There was
potential microbiome-driven skewing of the immune cell
population to favor both fibrotic and pre-inflammatory
pathways in this disease, with microbial similarities seen to
systemic sclerosis (in terms of fibrosis, perhaps sharing the
CTLs that shape B cell proliferation and antibody production)
and rheumatoid arthritis (in terms of inflammation) but differing
to the pathogens observed in inflammatory bowel disease (69).
Further studies to understand the relationship between the gut
microbiome and B cells in IgG4-HBD as well as its response to B
cell depletion therapy will further our understanding of its role in
disease pathogenesis.
PRIMARY BILIARY CHOLANGITIS

Primary biliary cholangitis is a chronic cholestatic disease
characterized by inflammation of the small intrahepatic bile
ducts, resulting in fibrosis and cirrhosis (70). PBC has a female
preponderance and is frequently associated with concurrent
autoimmune disorders such as Sjögren ’s syndrome.
Immunosuppressive agents are not effective in PBC treatment,
but ursodeoxycholic acid (UDCA) is able to induce disease
remission in a proportion of patients.

In PBC both environmental and genetic risk factors contribute
to a loss of immune tolerance towards biliary epithelial cells (71).
Although T cells have been implicated in disease pathogenesis, B
cells are also thought to play an important role. B cells and PCs can
be detected in the inflammatory infiltrate surrounding bile ducts
in PBC (72). Circulating CD19+ B cells are increased in PBC, and
positively correlate with biochemical indices of disease activity
including alkaline phosphatase (ALP) levels (73). Genetic studies
have identified several risk loci coding for proteins involved in B
cell development and function including CD80, CXCR5,
POU2AF1, SPI, IKZF3, ARID3A and CD40L (74–79). Current
evidence supports a role for B cells in PBC pathogenesis though
autoantibody production, cytokine secretion and reduced
regulatory functions.

Autoantibodies and B Cell Clonality in PBC
Antimitochondrial antibodies (AMA) are detectable in the
majority of individuals with PBC and, being highly sensitive
and specific, are useful for disease diagnosis (70). Pyruvate
dehydrogenase complex - E2 subunit (PDC-E2), a major target
of AMA, is aberrantly expressed on biliary epithelial cells in
individuals with PBC (80).

Several lines of evidence support that AMAs might be
pathogenic in PBC. The frequency of B cells specific to
mitochondrial antigens were found to be correlated with
increasing stage of PBC in the early inflammatory phase (81).
Antibody secreting PBs and PCs isolated from the livers of
individuals with PBC were able to produce AMA ex-vivo (82)
and PCs surrounding inflamed bile ducts on liver biopsies were
observed to correlate with AMA titers (72). AMA have also been
shown to stimulate macrophages to produce pro-inflammatory
cytokines (83) that can directly drive inflammation in PBC.
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The association of PBC with AMA and their ability to inhibit
energy generation by the pyruvate dehydrogenase complex led to
the hypothesis that fatigue in PBC might be ameliorated by B cell
depletion. However a phase II randomized controlled trial of
treatment with the B cell depleting agent Rituximab in PBC
conferred no significant improvement in fatigue (84), despite
being associated with reduced AMA titers (84, 85). Further, a
minority of PBC patients do not have detectable AMAs, suggesting
they might not be pathogenic in of themselves. CD4 T cells with
autoreactivity to PDC-E2 are present even in AMA negative
persons with PBC, indicating T rather than B cell responses
towards PDC-E2 might drive immunopathogenesis (86).

Alternative auto-antibodies can be useful to diagnose
individuals with AMA negative PBC (70). The presence of the
antinuclear antibodies anti-Sp100 anti-gp210 are associated with
a more severe clinical course (87, 88). Other autoantibodies
include kelch-like 12 (KLHL12) and hexokinase 1 (HK1) are
specific to PBC (89, 90). Studies investigating the clonality of the
B cell repertoire in PBC have reported an oligoclonal expansion
within the B cell repertoire and have identified disease associated
clones shared between different PBC donors (91, 92). This
suggests the selection of common autoantigens might drive the
altered B cell clonality in PBC, but it is unclear why loss of
tolerance towards self-antigen occurs.

As well as specific autoantibodies, a polyclonal IgM response
is commonly observed in PBC which is mirrored by infiltrating
IgM positive PBs in the portal tracts on liver histology (93–95). T
cell expression of CD40-ligand (CD40L) can interact with CD40
on B cells, promoting B cell activation and differentiation. In
PBC, methylation of the CD40L promotor is reduced, resulting
in increased CD40L expression on CD4 T cells and higher serum
IgM levels (96). CD40L has also been identified as a central
upstream regulator in PBC by GWAS and microarray analysis
(79), supporting that T and B cell communication via the
CD40L-CD40 axis has an important role in pathogenesis.
B Cell Expansion and Activation in PBC
Studies of circulating lymphocytes in PBC have observed
increases in CD19+ B cells and activated CD25+ B cells,
correlating with disease stage (73, 97). Within the B cell
compartment, different B cells subsets seem to be altered
including decreased circulating memory B cells and increased
naïve B cells and PBs (73, 98). In liver biopsy specimens from
individuals with PBC, CD20+ B cells were found in lymphoid
follicle like aggregations a distance from portal tracts, or more
scantily as part of the lymphoplasmacytic infiltrate surrounding
inflamed bile ducts. Plasma cells expressing IgM or IgG were
consistently found surrounding bile ducts in a coronal
distribution alongside CD4 and CD8 T cells, and thus local
interactions between PCs and T cells via cytokine production or
direct antigen presentation are possible (72).

Several factors have been identified that might drive B cell
expansion in PBC. CXCR5+ Tfh cells, necessary for B cell
differentiation, were found to be expanded in the blood and
liver of individuals with PBC and ex-vivo, enhanced AMA
production from autologous B cells in co-culture (73).
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Furthermore the Tfh associated cytokine IL-21 is increased in the
serum and livers of treatment naïve PBC patients, is positively
correlated with the percentage of circulating PBs and reduces
with successful treatment with UDCA (73). In addition, CD19+
B cells have higher expression of the IL-21 receptor in PBC,
suggesting they might be more receptive to IL-21 signaling (73).
BAFF, another signal associated with B cell maturation, has been
shown to be increased in PBC and positively correlates with AST
and bilirubin (99). These observations support that B cell
expansion and activation in PBC are driven by signals such as
BAFF and IL-21 from Tfh cells.
Cytokines Regulating Inflammation
and Recruitment in PBC
There is evidence that B cells produce cytokines in PBC that
might contribute to disease pathogenesis.

Ex-vivo CD19+ B cells from PBC patients produced increased
inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis
factor alpha (TNF-a) compared to CD19+ cells from healthy
controls (73). Circulating CXCL10, which can be produced by a
variety of cells including B cells, has been observed to be
increased in PBC patients and is expressed in portal regions or
by hepatocytes in areas of focal necrosis (25, 100). These data
support that B cells might contribute the inflammatory milieu in
PBC, leading to the perpetuation of inflammation.

Other reports have investigated anti-inflammatory regulatory
B cells in PBC. One study found although peripheral B regulatory
cells (CD19+CD24hiCD38hi) were increased in PBC, ex-vivo
these cells produce lower inhibitory signals such as IL-10 and
showed less inhibitory activity towards CD4+ T cells (101).
Instead, proinflammatory cytokines such as IL-6 and IL-12
were produced and CD4 T cell differentiation towards a Th1
phenotype occurred (101). However, other studies have not
detected differences in circulating B regulatory cells in PBC
(73) and a recent analysis of immune cells at the single cell
level found a different population of regulatory B cells with a B10
phenotype (high CD24 and IgD expression) were decreased
rather than increased in PBC patients (98). Together these
results suggest the role of different B cell subsets in PBC
pathogenesis is likely to be nuanced, and dependent on the
fine tuning of pro- and anti- inflammatory cytokines.
The Gut Microbiome in PBC
Several studies support that the gut microbiome may play an
important role in PBC pathogenesis. AMAs have been found to
cross react with several bacterial proteins including Escherichia
coli, which might initiate their production early in PBC (21, 102–
104). Changes in the fecal microbiome may drive the polyclonal
IgM response in PBC, which is less diverse in persons with PBC
than in healthy counterparts (105–107). Specific bacterial
populations in PBC are associated with alterations in bile acids,
which are thought to directly contribute to biliary epithelial cell
damage (108). Alterations in bile acid composition correlate with
serum IgM in PBC both before and after treatment (108). Further
work is required to determine causality between these associations.
Frontiers in Immunology | www.frontiersin.org 6
PRIMARY SCLEROSING CHOLANGITIS

Primary sclerosing cholangitis is a chronic disease characterized
by immune mediated damage of the biliary tree resulting in
concentric fibrosis and stricturing of the extrahepatic or
intrahepatic bile ducts (109). Currently there is no effective
treatment. PSC is strongly associated with Inflammatory Bowel
Disease (IBD). PSC-IBD subjects have been shown to have a
distinct gut microbiome as compared to individuals with IBD
alone or healthy controls (110), leading to the hypothesis that
loss of immunological tolerance to shared gut and liver antigens
might be involved in PSC pathogenesis. The role of B cells in PSC
pathogenesis is incompletely understood, but there is evidence
that autoantigens towards microbiome sensing proteins and
antibody secreting plasma cells might play a role.

Autoantibodies and B Cell Clonality in PSC
The association of several autoantibodies with PSC and evidence
of their potential roles in pathogenesis is accumulating. Anti-
neutrophil cytoplasmic antibodies (ANCA) are commonly
detected in PSC, but their presence is not specific, and over 10
antigenic targets have been proposed [reviewed in (111)]. In one
large European PSC cohort, 80% were positive for ANCA
predominantly with a perinuclear staining pattern (p-ANCA)
(112). Whether the presence of ANCA antibodies in PSC is
protective or detrimental is not yet clear. ANCA specific for
proteinase 3 (PR3), detected in 35% of PSC patients in one
cohort, was shown to positively correlate with liver transaminase
and ALP levels (113). An association between ANCA negative
PSC patients and biliary cancer has also been reported (112).

Through the connection of PSC with IBD, common
autoantibody targets have been investigated. Autoantibodies of
the IgA subclass targeting glycoprotein 2 (GP2) were identified in
patients with both PSC and IBD (114, 115). GP2 is not known to
be expressed on the biliary epithelium but is present on intestinal
microfold (M) cells and plays a role in antigen sensing of the gut
microbiome (116, 117). This supports that the gut-liver axis
might be key in PSC pathogenesis and loss of tolerance may
initially occur in the gut (reviewed in (118)). The presence of
anti-GP2 antibodies in individuals with PSC is associated with
cholangiocarcinoma, increased mortality and reduced transplant
free survival (119, 120), indicating anti-GP2 antibodies might
play a pathogenic role. However observational studies report
only 31–50% of PSC patients are anti-GP2 positive (120),
suggesting other mechanisms are likely to be relevant.

Autoantibodies directed at the biliary epithelium itself have
also been investigated. Sera from individuals with PSC has been
shown to induce the production of pro-inflammatory cytokines
such as IL-6 by biliary epithelial cells (121, 122). Supernatants
from liver infiltrating B cells isolated from PSC patients and
cultured ex-vivo have been shown to react to several proteins in
an array assays, including nucleolar protein 3 (NOD3), expressed
by cholangiocytes (82). B cell clonality studies also point to the
involvement of as yet unidentified auto-antigens, with
individuals with PSC exhibiting increased B cell clonality in
the liver and gut compared to healthy tissue (123). This study
also found significant overlap in expanded B cell clones shared
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between the gut and liver (123), further supporting the
hypothesis that loss of tolerance in the gut is important.

Liver Infiltrating B Cells in PSC
A single study has addressed the phenotype of infiltrating B cells
in PSC livers (123). Although B cells were significantly lower
than in livers from PBC patients, PSC specimens had
proportionally higher percentages of IgA or IgG positive PBs
amongst antibody-secreting cells, and ex-vivo were able to secrete
IgA and IgG immunoglobulins (82). This supports that PBs
might be the predominant local source of autoantibody
production in PSC, although further work is necessary to
validate this and understand the mechanisms maintaining
PB expansion.

Mdr2-/- mice which lack the biliary transport protein Mdr2,
demonstrate sclerosing cholangitis and progressive liver fibrosis
and have been used to model autoimmune cholestatic diseases
including PSC (124). A recent study investigating the role of B
cells in the pathogenesis of this model has revealed intrahepatic B
cells produce IgG constitutively, the levels of which positively
correlated with serum BAFF. BAFF blockade or depletion of
CD20+ B cells by monoclonal antibody reduced hepatic fibrosis
in this model (125), raising the possibility that similar effects
could be seen with B cell depletion in PSC patients. However, as
the primary deficit in this model is due to impairment in bile
transport rather than alterations in the gut-liver axis, the
translation of these findings to PSC may not bare out.

The Gut Microbiome in PSC
In PSC and PSC-IBD, microbiome association studies in both
stool and the intestinal mucosa have identified alterations in the
bacterial component of the microbiome (126). Increased relative
abundance of Enterococcus, Veilonella and Streptococcus genera
have been reported in multiple studies, with Klebsiella
pneumoniae-harboring microbiomes from patients with PSC/
UC being implicated as a driver of Th17 responses in gnotobiotic
mouse models (127). Human studies to examine the relationship
between the gut microbiome and B cells in PSC will be required
to understand whether they are causally linked.
B CELL RESPONSES TO
IMMUNOMODULATORY THERAPIES

Corticosteroids
Corticosteroids are steroid hormones used as first line induction
therapy to control inflammation in patients with AIH, IgG4-
HBD and autoimmune overlap with cholestatic liver disease,
usually leading to both clinical and biochemical improvement
(13, 70, 109). On reduction of steroid dose or withdrawal of
medication, disease relapse occurs frequently (>80% in AIH and
35-60% in IgG4-HBD) (128, 129). Prednisolone therapy has been
shown to decrease activated T cells, inhibit the differentiation of
B lymphocytes into PC, reduce IL-10 and IL-21 cytokine levels,
and the expression of BLIMP-1 and Bcl6 that regulate PC
differentiation in mouse models of autoimmune disease (130).
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Intra-hepatic B cells and T regulatory cell proliferation is
suppressed by prednisolone in adults with AIH (131).
Circulating PBs and activated PD1+ Tfh cells are decreased and
clonal B cell expansion is reduced within 12 weeks of prednisolone
therapy in adults with IgG4-HPB disease (57, 132, 133).

Ursodeoxycholic Acid
Ursodeoxycholic acid (UDCA) is a secondary bile acid used to
treat cholestatic liver diseases. UDCA main mechanisms of
actions include a) protection of cholangiocytes against
cytotoxicity of hydrophobic bile acids, b) stimulation of
hepatobiliary secretion and c) protection of hepatocytes against
bile acid induced apoptosis. In patients with PBC UDCA
improves liver biochemistry, may delay disease progression to
severe fibrosis/cirrhosis, and prolongs transplant free survival. In
patients with PSC it improves liver biochemistry and surrogate
markers of prognosis (70, 109). In patients with IgG4-HBD it
may also improve liver biochemistry but has no known impact
on disease progression or survival. Reductions in CD19+ B cells
and B cell clonal expansion have been observed after UDCA
treatment in patients with PBC (92), although it is not known if
this has a direct or indirect relationship to UDCA treatment, and
whether the observed alterations in the B cell compartment
contribute to disease remission. Similar studies in PSC and
IgG4-HBD in response to UDCA have not been done.

Rituximab
Rituximab is a monoclonal antibody which targets the humoral
immune response by inducing B lymphocyte depletion and
decreased production of autoantibodies. It has been used to
treat individuals intolerant or unresponsive to standard therapy
therapies in AIH and IgG4-HBD (28, 114) and in a clinical trial
for symptomatic fatigue in PBC (84).

A prospective open label trial (134) and several retrospective
observational studies of between 10 and 60 participants support
rituximab as an effective agent to treat active IgG4-RD [Table 2
(68, 134–141)]. Maintenance treatment with further rituximab
infusions reduces the risk of IgG4-RD relapse compared with
induction therapy alone (141), but this has not been confirmed in
randomized trials. Side effects including infusion reactions,
hypogammaglobulinemia and infection have been reported
(134–136, 139, 140). In IgG4-HBD, rituximab not only
depletes CD20+ B cells, but also short-lived CD20- PBs and
reduces cytotoxic CD4+ T cells (137, 138). Long-lived CD20-
PCs that reside in the bone marrow are also not depleted and
might represent a niche of pathogenic cells that drive disease
relapse. If disease reactivation occurs expanded PBs of different
clonalities are observed (59), indicating B cells with different
antigen affinities might be involved in repeated rounds of
inflammation. Interestingly, rituximab leads to selective
decreases in serum IgG4 levels in both patients with IgG4-RD
and in Rheumatoid arthritis where serum IgG4 levels at baseline
are normal (134, 144, 145). This suggests short-lived PB are the
main contributors to serum IgG4 levels and disease activity is
reduced through depletion of these cells.

A single center open label trial of rituximab in 6 AIH patients
and a retrospective cohort of 22 AIH patients in France between
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TABLE 2 | Studies of Rituximab for treatment of IgG4-RD.

se events Efficacy outcome
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tivation

- Clinical improvement in 90% (n=9) within 1 month.
- Steroids discontinued by median 5.3 months.
- Recurrence in 20% (n=2) by 6 months.
- Complete remission in 40% (n=4) at 6 months.

action
ia
itis obliterans

- Complete remission 83% (n=10) post induction.
- Radiological improvement 80% (n=8) by median 4.5 months.
- Reduced IgG4-RI and serum IgG4.
- Disease response in 97% (n=29) at 6 months.
- Primary outcome (reduction IgG4-RI, no disease flare and off
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- Complete remission in 40% (n=12) at 12 months.
- Recurrence in 10% (n=3) by 6 months and 13% (n=4) by 12
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decreased from 8.3 to 6.3 at 4 months.
- Relapse in 20% (n=2) by 13 months.

d - Relapse in 37% (n=21) by median 253 days. Relapse
incidence 0.39 per person year.
- Baseline serum IgG4, IgE and absolute eosinophil levels
associated with relapse.

action

maglobulinemia

- Clinical response in 93.5% of those with symptoms
(n=29/31).
- Relapse in 42% of responders (n=13/31) by median 19
months. Mean relapse free survival of 30 months.
- IgG4-RI over 9 points at baseline was predictive of relapse.

action
ection

- Symptomatic improvement in 100%.
- Radiological improvement in 88%.

action - Clinical response in 100% after 1 month.
- Complete remission in 36% after 6 months.
- Disease remission in 57% after 6 months.
- Free relapse rate significantly lower in group 2 (n=0/7, on
maintenance) compared to group 1 (n=5/7, no maintenance).
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Study Study Design Intervention Participant
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Treatment population Adve

Khosroshahi et al. (135) Retrospective single
centre cohort

Rituximab x2 1g 15 days
apart
Repeat dose if disease
relapse occurred

10 Active IgG4-RD
Steroid refractory

- Asthma fl

- HBV reac

Hart et al. (136) Retrospective single
centre cohort

Rituximab x4 375 mg/m2 12 IgG4-related AIP
Steroid refractory or
intolerant

- Infusion r
- Neutrope
- Bronchio

Carruthers et al. (134) Prospective open label
trial

Rituximab x2 1g 15 days
apart

30 Active IgG4-RD
Steroid refractory

- Infection

Wallace et al. (137) Retrospective single
centre cohort

Rituximab x2 1g 15 days
apart

12 Active untreated IgG4-
RD

Not report

Della-Torre et al. (68) Retrospective single
centre cohort

Rituximab x2 1g 15 days
apart

10 Active IgG4-RD, no
hepatic disease

Not report

Wallace et al. (138) Retrospective single
centre cohort

Rituximab x2 1g 15 days
apart
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- Infection

IgG4-RD, IgG4-related disease; AIP, autoimmune pancreatitis; IgG4-RI, IgG4 responder index (142); ELF score, enhanced liver fibrosis score (143);
IgG4-RI score under 3 points on treatment; partial response, decrease in IgG4-RI score of over 2 points but total score remains over 3 (142).
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2007 and 2017 demonstrated significant improvements in serum
IgG and liver transaminases sustained for up to 24 months after
treatment and reported no significant adverse events (9, 10).
Compared to IgG4-RD, AIH involves a more cell-mediated
immune process, however rituximab has been used successfully
in other diseases with a similar mechanism such as multiple
sclerosis, indirectly altering cell-mediated responses (146).
Mouse models have shown that B lymphocyte depletion
impairs CD4+ T cell activation in response to pathogen
challenges, which may in part explain the effect of rituximab in
AIH. In paired liver biopsies of AIH before and after rituximab
therapy, inflammation grade which correlated with CD4
regulatory T cells, improved with treatment (10). This suggests
B cell depletion in AIH might work therapeutically through an
indirect reduction in liver infiltrating CD4 T cells.

Rituximab has been shown to reduce auto-antibody
production (AMA, IgM) and biochemical values (ALP) in a
small number PBC patients unresponsive to standard therapy
with UDCA (85, 147). A randomized trial of rituximab in 57
early stage PBC patients on UDCA did not significantly improve
fatigue (primary end point), but those in the treatment arm had
significantly lower ALP levels 3 months after infusion (84).
Assessment of B cell function in PBC patients after rituximab
demonstrated that depletion of B cells influences the induction,
maintenance, and activation of both B and T cells. Transient
decreases in memory B cell and T cell frequencies and an
increase in T regulatory cells are observed. This is associated
with increased in mRNA levels of forkhead box P3 (FoxP3) and
tissue growth factor-beta (TGF-b) and a decreased TNF-a in
CD4 T cells after B cell depletion treatment (147).
NOVEL B CELL THERAPEUTIC TARGETS

Several novel therapies are under investigation for immune-
mediated liver diseases that directly or indirectly target the B
cell lineage (Figure 2). These have various mechanisms of action
including B cell depletion, inhibition of direct B cell signaling
through cell-cell interactions and inhibition of B cell signaling
through cytokine production.

Agents that directly target B cells include monoclonal
antibodies specific for the CD19 receptor. Treatment leads to
depletion of CD19 expressing cells including B cells and PBs and
has shown efficacy in treating other autoimmune disorders
where B cells play a role in pathogenesis including systemic
sclerosis (148), multiple sclerosis (149), and neuromyelitis optica
(150). A randomized placebo-controlled trial of Inebilizumab, a
monoclonal antibody specific for CD19, is currently underway in
patients with active IgG4-RD (151).

Other monoclonal antibodies that directly target B cells or PBs
inhibit signaling through specific surface receptor targets. These
include LOXL2, which plays a role in fibrogenesis in PSC and
IgG4-RD (67), SLAMF7 which is expressed highly on PBs and
CTLs in IgG4-RD (59, 60) and CD38 which is expressed on
expanded PBs in IgG4-RD (34, 58, 132, 152). Simtuzumab, a
monoclonal antibody specific to LOXL2, has been evaluated in 234
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PSC patients for its ability to reverse fibrosis. However it did not
achieve a reduction in hepatic collagen content on liver biopsy or
improve Ishak fibrosis stage (153). It had not been evaluated other
autoimmune liver diseases. Elotuzumab, a monoclonal antibody
specific to SLAMF7 and Daratumumab, a monoclonal antibody
specific to CD38 are also available [reviewed in (154)] but have not
been evaluated for therapy of autoimmune liver disease.

Other monoclonal antibodies alter B cell or PB surface
receptor co-engagement with receptors on other cells. These
include interruption of T cell activation by antigen presenting B
cells through blocking CD80/86 – CD28 signaling by Abatacept,
and suppression of B cell responses through co-engagement of
the Fc-gamma receptor IIb with CD19 by XmAb5871 (155–157).
Abatacept has shown efficacy in other B cell mediated
autoimmune conditions such as Rheumatoid arthritis (158).
Disappointingly, an open label trial of Abatacept in 16 PBC
patients who had not responded to UDCA therapy reported that
only a single patient met the primary endpoint of a reduction in
ALP of over 40% from baseline and there were no significant
reductions in serum IgM (159). However, clinical trials of
Abatacept in IgG4-RD and AIH are ongoing and have not yet
reported (160, 161). Results of XmAb5871 in autoimmune liver
diseases have been more promising. XmAb5871 was evaluated in a
prospective open label clinical trial in 20 individuals with active
IgG4-RD (162). The primary outcome, improvement in IgG4 disease
responder index by over 2 points by day 169 after therapy, was
achieved in 80% of participants. During follow up, pneumonia,
chronic lymphocytic leukemia and chronic inflammatory
demyelinating polyneuropathy occurred certain individuals, but
may not have been directly related to therapy (162, 163).

B cells and PBs are also indirectly targeted by several therapeutic
agents. For example, B cell activating factor receptor (BAFF)
inhibitors such as Inalumab (VAY736), prevent BAFF signaling
and indirectly lead to B cell depletion. Inalumab has recently shown
safety and efficacy in a phase II trial in individuals with primary
Sjögren’s syndrome, a B cell mediated autoimmune disease
involving exocrine glands (164) and has been used successfully to
induce remission in 2 reported cases of difficult to treat AIH (165).
A randomized controlled trial assessing Inalumab (VAY736) for the
treatment of AIH is currently recruiting (166).

Finally, novel therapeutic agents indirectly targeting B cell
signaling through cytokine production are also available. For
example NI-0801 is a monoclonal directed towards CXCL10,
which is produced by B cells and is increased in the serum of PBC
patients (25, 100). NI-0801 has been trialed in 29 PBC patients
that were unresponsive to UDCA but unfortunately was not
efficacious at reducing ALP levels (167).

Currently the majority of novel B cell therapies are in early-
stage clinical trials and their associated risk profiles are being
elucidated. In the case of Rituximab, which is used for the
treatment of several autoimmune conditions and lymphoproliferative
disorders, the risks of treatment include reactivation of latent viral
illness, hypogammaglobulinemia and in impaired B cell
reconstitution, which can result in recurrent or reactivation of
infection (168, 169). The extent to which these risks might occur
with other B ell depleting or suppressing therapies in the specific
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context of treating autoimmune liver disease requires investigation.
Despite these potential risks, overall novel B cell therapies hold great
promise to improve the treatment options for autoimmune liver
diseases going forward.
CURRENT RESEARCH GAPS
AND POTENTIAL DEVELOPMENTS
IN THE FIELD

Current data support that B cells play a role in autoimmune liver
disease pathogenesis, through autoantibody production,
interaction with T cells via antigen presentation or cytokine
signaling. Evidence that B cell depletion with rituximab can
induce disease remission has led to support for its use for
treatment refractory cases of IgG4-RD and AIH (33, 170).
Several other treatments targeting B cells are under development
for the treatment of immune mediated liver diseases, for example
monoclonal antibodies targeting CD19 or BAFF. Some of these
agents are in phase I therapeutic trials, which if successful could
increase the armory of therapeutic agents for the treatment of
autoimmune liver conditions (160–162, 166).

Due to the relative rarity of autoimmune liver disease, the
evaluation of novel therapies with sufficient power to detect
efficacy will need to be done collaboratively on a national and
international scale. Inclusive trials that evaluate efficacy in a
group of rare conditions with similar pathogenesis is one
Frontiers in Immunology | www.frontiersin.org 10
mechanism to recruit sufficient patients, an approach that has
been taken with other immune mediated rare diseases such as the
vasculitidies (171, 172). In the UK, nationally recruiting cohort
studies for AIH [AIH-UK (173)], IgG4-RD [IgG4-systemic
disease (174)], PBC [PBC-UK (175)] and PSC [PSC-UK (176)]
provide an existing network for clinicians and scientists working
collaboratively on autoimmune liver diseases, that could be
harnessed for national therapeutic clinical trials.

The holistic patient experience living with autoimmune liver
disease covering the spectrum of symptoms, diagnosis, treatment
and management pathways should also be considered when
evaluating B cell targeting therapies. Recent data from the UK-
AIH national cohort study indicate quality of life is significantly
impaired in AIH patients, as is particularly associated with
steroid use (177). A recently published systematic review of
patient reported outcomes in studies of PBC and PSC
concluded that although the use of patient reported outcomes
has increased over time, many are nonspecific and unvalidated
(178). This underscores the importance in developing and
evaluating relevant patient reported outcomes in clinical trials
of novel therapeutics alongside clinical efficacy signals.

Finally, studies evaluating immunotherapies should focus on
in depth evaluation of the immunological response to therapy
both in the peripheral blood and if possible, at the site of disease.
Recent data has shown liver fine needle aspirate (FNA) to safe in
assessing the hepatic immunological milieu and has highlighted
differences between immune responses in the blood and the liver
(179). Studies evaluating the immunological response to B cell
FIGURE 2 | Novel B cell therapeutic targets for immune-mediated liver diseases. Treatments under development or evaluation include agents that deplete or disrupt
B cells (B) or plasmablast (PB) signaling through CD-19, disruption of PB activation through CD-38, inhibition of PB mediated fibrosis through LOX-2 and inhibition of
SLAM-F7 on PB and T cells (T). Other targets prevent B cell signaling through soluble mediators such as BAFF and receptor mediated T cell (T) co-activation through
CD80/86. Image created using BioRender.com.
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targeting therapies in autoimmune liver diseases should consider
employing FNA to understand the local response to treatment,
and in turn develop more targeted therapies towards B cells
within the liver itself.
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