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Abstract: Terpenoids are economically and ecologically important compounds, and they are vital
constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs),
trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway
of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete
RcTPSs, and 9 RcNUDX1 genes in the genome of Rosa chinensis. During the flower opening process of
butterfly rose (Rosa chinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU
flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five
short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis
of differential volatile terpenes and differential expressed genes indicated that higher emission of
geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of
volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18
may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular
mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.

Keywords: Rosa; terpene synthase; trans-prenyltransferases; NUDIX; farnesene synthase

1. Introduction

Volatile terpenoids constitute the largest class of plant volatile compounds [1]. All
plant organs, such as leaves, branches, flowers, and roots, can emit terpene volatiles to
ensure healthy plant growth [2]. Petals are the main release parts of floral fragrance in many
plants, such as rose (Rosa spp.) [3]. The role of volatile terpenoids released from flowers is
to attract pollinators, and to defense against biotic and abiotic stresses [4]. For example,
geraniol has certain antibiotic activity and can be detected with high response by the
honeybees’ antennae [5]. The β-ocimene and linalool were common attracting compounds
for pollinators and has antibacterial effect [6,7]. (E)-α-farnesene released from the flowers
of Brassica rapa showed attraction of bees instead of butterflies [8], and (E)-β-caryophyllene
is beneficial for plant fitness and functions in defense against pathogenic bacteria [9].

In most plants, the volatile terpenoids are constructed from two C5 precursors, namely
isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), which
are produced through either the methylerithritol phosphate pathway (MEP) in the chloro-
plast or the mevalonate pathway (MVA) in the cytosol [4,10]. Then, the IPP and DMAPP
units are condensed by prenyltransferases (PTs, also referred to as isoprenyl diphosphate
synthases or prenyl diphosphate synthases) to form direct terpene precursors, such as
geranyl diphosphate (C10, GPP), farnesyl diphosphate (C15, FPP), or geranylgeranyl diphos-
phate (C20, GGPP) [11]. Subsequently, terpene synthase (TPS), which is the primary enzyme
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in the terpenoid biosynthetic pathways, converts the precursors into various terpene prod-
ucts, such as monoterpene (C10), sesquiterpene (C15), and diterpene (C20) [12]. These
products can undergo further modifications under the action of various enzymes, such as
dehydrogenases, methyltransferases, acyltransferases, and glycosyltransferases to form
highly diverse metabolites [13,14].

Rose is widely cultivated as a garden plant for the cut-flower industry, and floral
fragrance is a vital characteristic of ornamental roses [14,15]. The terpenoid volatiles in the
floral rose scent are mainly monoterpenes and sesquiterpenes, as well as their derivatives.
Compared with moderately and less fragrant rose cultivars, the very fragrant cultivars
produced a certain amount of monoterpenoids, including geraniol, citronellol, and nerol,
all three of which have roselike fragrances [16]. In addition, the aldehyde and acetate ester
derivatives of these three compounds were also produced [16,17]. Other monoterpenoids
including α-pinene, β-pinene, limonene, and linalool are emitted at low levels in rose floral
scent [17]. Sesquiterpenes, including germacrene D, δ-cadinene, α-copaene, α-cubenene,
β-cubenene, β-elemene, and β-caryophyllene, are emitted from rose flowers, whereas
germacrene D was highly released from some rose cultivars [17–20].

Only several genes involved in the biosynthesis of rose volatile terpenes have been
identified. The first TPS gene cloned in rose was germacrene D synthase (RhGDS), which cat-
alyzes the substrate FPP to germacrene D as a unique product [20]. Three TPS genes, namely
RcLINS, RcLIN-NERS1, and RcLIN-NERS2, have been characterized, and the expression
levels of these genes were low in rose petals [21]. RcLINS belonging to the TPS-b subfamily
is responsible for the presence of a small amount of (3R)-(-)-linalool in rose scent. The
bifunctional RcLIN-NERS1 and RcLIN-NERS2, belonging to the TPS-g subfamily, produce
(3S)-(+)-linalool and nerolidol when incubated with GPP and FPP, respectively, whereas
RcLIN-NERS3 has been identified as a pseudogene. Moreover, a novel TPS-independent
pathway for monoterpene biosynthesis was described in rose [22]. An enzyme of the Nudix
hydrolase family (RhNUDX1) localized in the cytoplasm was reported to be involved
in geraniol biosynthesis. Another study showed that RwNUDX1-2 was involved in the
biosynthesis of a group of sesquiterpenoids [23]. However, no trans-prenyltransferases
(TPT) gene has been characterized in Rosa plants.

Rosa chinensis ‘Mutabilis’ (butterfly rose, MU), with single petals, is a fragrant an-
cient Chinese rose cultivar. Some monoterpene alcohols were released from MU flowers,
including geraniol, nerol, and linalool, and the monoterpene contents in MU exhibit a sig-
nificant increase from unopened buds to floral maturity and further accumulation during
senescence [18,24]. The butterfly rose is a good material to study the metabolism of floral
volatile terpenoids.

Although cis-prenyltransferases (CPTs) that initially predicted to synthesize long-chain
isoprenyl diphosphates were involved in terpenoids biosynthesis pathway, none of the
three RcCPT genes were expressed in MU petals on our pre-study so we focused on the
trans-prenyltransferases (TPT) genes [25,26]. A very recently published article identified
the 49 TPS genes in R. chinensis, but the results included three pseudogenes and three
missing full-length genes [27]. In this study, a genome-wide identification of the genes
involved in middle and downstream pathway of volatile terpene biosynthesis in R. chinensis
was conducted, including TPS genes, TPT genes and RcNUDX1 genes. RNA sequencing
(RNA-seq) was performed to investigate the expression patterns of these terpene-related
genes during different flower development stage. Furthermore, the differential volatile
terpenes and differential expressed genes (DEGs) were analyzed to elucidate the potential
functions of DEGs. These results may be useful for decoding the genes involved in terpene
biosynthesis pathways, which provide insights for the manipulation of genetic engineering
in rose and other plants.
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2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of RcTPT Gene Family

The complete rose (R. chinensis ‘Old Blush’) genome sequence was obtained from the
official website (https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/, accessed
on 4 May 2022). In total, 26 TPT protein sequences of Arabidopsis thaliana and tomato
(Solanum lycopersicum) (Table S1) were used as a query for BLASTP search with default
parameters. A Hidden Markov Model (HMM) search were also conducted by using
polyprenyl synthase domain (PF00348) [28], with an E-value < 0.001. The BLASTP and
HMM search results were integrated to identify candidate TPT genes. Then, a maximum
likelihood phylogenetic tree was constructed using RAxML online platform (https://raxml-
ng.vital-it.ch, accessed on 13 June 2022). Signal peptides were predicted using TargetP 2.0
(https://services.healthtech.dtu.dk/service.php?TargetP-2.0, accessed on 13 June 2022) and
LOCALIZER (https://localizer.csiro.au/, accessed on 13 June 2022) online platform [13,29].

2.2. Re-Identification and Sequence Analysis of the RcTPS Gene Family

Two HMM profiles (PF03936 and PF01397) were used as a query to search the rose
genome [30], with an E-value < 0.001. All candidate TPS genes were aligned using MAFFT
v7.475 [31] before manually figuring out the conserved regions. The genes with all con-
served regions and expected gene structure were classified as complete RcTPS genes,
whereas those with incomplete or mutated conserved regions were classified as par-
tial/pseudo (TPS-p) genes.

2.3. Chromosomal Localization and Collinearity Analyses

Nine homologous RcNUDX1 genes were identified as described by Sun et al. [23]. The
RcTPTs, RcTPSs, and RcNUDX1 genes of R. chinensis were mapped on the chromosomes
according to their positions in the annotated genome documents by using TBtools v1.0 [32].
The tandemly duplicated genes were confirmed based on three criteria: (a) length of
alignable sequence covered >70% of the longer gene; (b) similarity of aligned regions >70%;
(c) close chromosome location (<100 kb) and few separated genes (≤5) [33].

Collinearity analysis within R. chinensis was conducted, and segmentally duplicated
genes were identified in the collinear segments. The whole-genome sequences and an-
notation documents of peach (Prunus persica), strawberry (Fragaria vesca), and R. rugosa
were downloaded from The Genome Database for Rosaceae [34]. The whole-genome se-
quences and annotation documents of grapevine (Vitis vinifera) were downloaded from
Phytozome. The interspecific collinearity analysis between R. chinensis and these plants
was performed using TBtools software to determine the interspecies collinear relationships
among orthologous TPS and TPT genes [32].

2.4. Plant Materials

Two Chinese old rose cultivars, butterfly rose (R. chinensis ‘Mutabilis’, MU) and Rosa
‘Qinglian Xueshi’ (QL), were collected from Kunming Yang Chinese Rose Gardening Co., Ltd.
(Kunming, China), and planted in the germplasm garden of our institute under open field
conditions (116◦43′ N, 40◦16′ E) for 2–3 years. According to our observation, the MU
flowering process lasts approximately 4 days. Different floral developmental stages of MU
flowers, namely bud about to open (S3), first day of anthesis (D1), second day of anthesis
(D2), third day of anthesis (D3), and fourth day of anthesis (D4), were analyzed (Figure 1).

The upper half of rose petal without additional anthocyanin coloration in the abaxial
surface was sampled from different individuals at 8:00 a.m.–9:00 a.m. on sunny days and
frozen in liquid nitrogen, and the samples were stored at−80 ◦C. Three biological replicates
collected on different days were used as samples. More than 60 flowers were collected
at D1 and D3 stages, and more than 30 flowers were collected at S3, D2, and D4 stages
(approximately 0.13 g per flower).

https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/
https://raxml-ng.vital-it.ch
https://raxml-ng.vital-it.ch
https://services.healthtech.dtu.dk/service.php?TargetP-2.0
https://localizer.csiro.au/
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Figure 1. Photos of butterfly rose (R. chinensis ‘Mutabilis’) at different floral developmental stages
and Rosa ‘Qinglian Xueshi’. S3: bud about to open; D1: first day of anthesis; D2: second day of
anthesis; D3: third day of anthesis; D4: fourth day of anthesis.

2.5. RNA-Seq Analysis

Then, five butterfly rose samples at different developmental stages were used for
RNA-seq. The samples stored at −80 ◦C were sent to Guangzhou Gene Denovo Biological
Technology Co., Ltd. (Guangzhou, China) to perform RNA isolation, RNA-seq library
preparation, and sequencing [35]. The libraries of three biological replicates were prepared
independently. After removing low-quality reads, the clean reads were mapped to the
R. chinensis reference genome (https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/,
accessed on 4 May 2022), and the FPKM (fragments per kilobase million) value was used
to determine the gene expression levels. The raw sequence data reported in this paper
have been deposited in the Genome Sequence Archive [36] in the National Genomics
Data Center [37], China National Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences (GSA: CRA006521) that are publicly accessible at https://
ngdc.cncb.ac.cn/gsa (accessed on 4 May 2022).

2.6. Volatile Sampling and Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

The fresh petals (D1) and old petals (D3) of butterfly rose were selected for floral
volatile analysis, whereas the fully bloomed QL flowers collected at the same time were
used as control. After the samples were grounded into powder in liquid nitrogen, 1 g of the
powder was transferred immediately to a 20 mL headspace vial (Agilent, Palo Alto, CA,
USA) containing NaCl-saturated solution to inhibit any enzymatic reaction [38,39]. The
vials were sealed using crimp-top caps with TFE-silicone headspace septa (Agilent) and
heated at 100 ◦C for 5 min. Then, 120 µm divinylbenzene, carboxen, or polydimethylsilioxan
fiber (Agilent) was exposed to the sample headspace for 15 min at 100 ◦C.

VOC identification and quantification were conducted using an Agilent Model 8890 GC
and a 5977B mass spectrometer (Agilent, Palo Alto, CA, USA) equipped with a DB-5MS
(30 m × 0.25 mm × 0.25 µm) capillary column. After sampling, desorption was performed
at 250 ◦C for 5 min in the split-less mode of the GC apparatus. Helium was used as the
carrier gas at a linear velocity of 1.2 mL/min. The oven temperature was programmed from
40 ◦C (3.5 min), increasing at 10 ◦C/min to 100 ◦C, at 7 ◦C/min to 180 ◦C, at 25 ◦C/min to
280 ◦C, and hold for 5 min. Other GC-MS analytical conditions used were as described by
Gong et al. [39]. Volatile compounds were identified by comparing the mass spectra with
the data system library (MWGC or NIST) and retention index.

2.7. qRT-PCR Analysis

Total RNA was extracted using the OmniPlant RNA Kit (DNase I) (CoWin Bio-
sciences, Taizhou, China). The first strand of cDNA was synthesized from 15 µL of
total RNA by using MonScript™ RTIII All-in-One Mix with dsDNase (Monad Biotech-
nology Co., Ltd., Wuhan, China). RhUBI2 (JK618216) and Actin were used as internal
controls [40]. Primers were designed using Primer Premier 5.0 software (Premier Biosoft
International, Palo Alto, CA, USA) and synthesized by Sangon Biotech (Shanghai, China)

https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/
https://ngdc.cncb.ac.cn/gsa
https://ngdc.cncb.ac.cn/gsa
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(Table S2). qRT-PCR was performed on a ABI 7500 FAST DX Real-Time PCR instru-
ment (Thermo Fisher Scientific, Inc., Waltham, USA). Each reaction was conducted in
a 20 µL mixture containing 10 µL of 2× Universal Blue SYBR Green qPCR Master Mix
(Wuhan Servicebio Biotechnology Co., Ltd., Wuhan, China), 7.4 µL of RNase-free H2O,
1 µL of cDNA, 0.8 µL of forward primer, and 0.8 µL of reverse primer. The PCR machine
was programmed as follows: PCR initial activation step for 2 min at 95 ◦C, followed by
40 cycles at 95 ◦C for 5 s and 60 ◦C for 30 s. The relative gene expression was calculated
using the 2−∆∆CT method [41].

2.8. Data Analyses

Differential expression analysis between D1 and D3 samples was performed using
DeSeq2 in OmicShare tools (www.omicshare.com/tools, accessed on 4 May 2022), with
a Q-value threshold of 0.05. Heatmap were performed using the ComplexHeatmap and
pheatmap package [42]. One-way analysis of variance (ANOVA) followed by Waller-
Duncan post-hoc test was applied to examine the data significant levels among groups by
SPSS 23 (SPSS Inc., Chicago, IL, USA). The Student’s test was performed to determine the
difference between two groups by Microsoft Excel 2019 (Seattle, WA, USA). After Pareto
scaling the volatile emission abundance by SIMCA software (V14.1, MKS Data Analytics
Solutions, Umea, Sweden), the variable importance in projection (VIP) of volatile terpenoids
was calculated for the subsequent screening of differential compounds [43].

3. Results
3.1. Identification of RcTPT Genes

Based on the BLASTp and HMMER search results, 17 candidate TPT genes were
originally obtained from the genome of R. chinensis. After aligning the candidate sequences
by MAFFT software, seven genes comprising five typical domains were identified full-
length RcTPT genes, encoding polypeptides ranged from 329 to 426 amino acids (Figure S1).
A maximum likelihood phylogenetic tree was constructed using protein sequences of seven
complete RcTPTs and other characterized TPTs in eudicots to explore the evolutionary
relationship. Phylogenetic analysis grouped RcTPTs into two RcFPPS, two RcGGPPS,
one RcSSUII, one RcGPPS, and one RcSPPS (Figure 2). These genes were renamed based
on subgroup, including six putative short-chain TPTs and one putative long-chain TPT
(Table 1). The other 10 genes encoding shorter proteins were categorized as partial genes as
they contained partial TPT domains (Table S3).
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Table 1. Members of full-length RcTPT genes and their sequence characteristics.

Group Name Id Chr Amino
Acid

Exon
Number

Localization
Conserved Motif

TargetP LOCALIZER

SC 1

RcGGPPS1 RchiOBHmChr2g0102671 2 363 1 C 3 C DDX(2–4)D, DDXXD, CXXXC
RcGGPPS2 RchiOBHmChr3g0493061 3 360 1 C C DDX(2–4)D, DDXXD, CXXXC

RcSSUII RchiOBHmChr6g0279181 6 329 2 C C DDX(2–4)D, DDXXE, CXXXC, CXXXC
RcGPPS RchiOBHmChr5g0014811 5 426 12 M 4 M DDX(2–4)D, DDXXD
RcFPPS1 RchiOBHmChr5g0000321 5 342 12 / / DDX(2–4)D, DDXXD
RcFPPS2 RchiOBHmChr5g0075621 5 342 11 / / DDX(2–4)D, DDXXD

LC 2 RcSPPS RchiOBHmChr5g0028851 5 421 6 / C DDX(2–4)D, DDXXD

1 SC: short-chain; 2 LC: long-chain; 3 C: Chloroplast; 4 M: Mitochondria.

3.2. Re-Identification of RcTPS Genes

The present study originally obtained 80 nonredundant candidate gene models cor-
responding to PF01397 or PF03936. After removing the sequences that did not con-
tain the typical TPS domains, a total of 74 putative TPS genes were identified, 49 of
which were predicted to encode functional TPS enzymes. Each complete RcTPS gene
had an open reading frame of expected size and organization and contained typical
TPS domains comprising either the Mg2+ binding (DDxxD/E) and NSE/DTE regions
or the DxDD motif (Figure S2). The remaining 25 TPS genes were categorized as par-
tial/pseudo genes as they contained partial or mutant TPS domains (Table S3). The
genes were then renamed based on their locations for better understanding (Table 2). The
candidate TPS genes identified were RcGDS (MG673512, RcTPS30), RcLINS (MG673509,
RcTPS-p9 + RcTPS-p10), RcLIN-NERS1 (MG673510, RcTPS20), RcLIN-NERS2 (MG673511,
RcTPS22), and RcLIN-NERS3 (MG673515, RcTPS23). Phylogenetic analysis separated
RcTPSs into five groups, including 32 TPS-a, 8 TPS-b, 4 TPS-g, 3 TPS-e/f, and 2 TPS-c
genes (Figure S2).

Table 2. Members of 49 complete RcTPS genes.

Name Id Chr Sub-
Family

Amino
Acid Name Id Chr Sub-

Family
Amino
Acid

RcTPS1 RchiOBHmChr1g0313881 1 a 562 RcTPS24 RchiOBHmChr5g0023471 5 e/f 799
RcTPS2 RchiOBHmChr1g0326051 1 a 581 RcTPS25 RchiOBHmChr5g0023641 5 e/f 724
RcTPS3 RchiOBHmChr1g0326061 1 a 580 RcTPS26 RchiOBHmChr5g0036921 5 a 561
RcTPS4 RchiOBHmChr1g0326071 1 a 546 RcTPS27 RchiOBHmChr5g0037011 5 a 555
RcTPS5 RchiOBHmChr1g0326251 1 a 556 RcTPS28 RchiOBHmChr5g0037601 5 a 549
RcTPS6 RchiOBHmChr1g0326391 1 a 556 RcTPS29 RchiOBHmChr5g0038021 5 a 565
RcTPS7 RchiOBHmChr1g0331211 1 b 583 RcGDS RchiOBHmChr5g0038101 5 a 565

RcLINS
RchiOBHmChr2g0160421(RcTPS-p9)+
RchiOBHmChr2g0160441(RcTPS-p10) 2 b 601

RcTPS31 RchiOBHmChr5g0044191 5 a 565
RcTPS32 RchiOBHmChr5g0059501 5 a 557

RcTPS8 RchiOBHmChr2g0160561 2 b 570 RcTPS33 RchiOBHmChr5g0059511 5 a 557
RcTPS9 RchiOBHmChr2g0160591 2 b 501 RcTPS34 RchiOBHmChr5g0059541 5 a 544
RcTPS10 RchiOBHmChr2g0162311 2 e/f 852 RcTPS35 RchiOBHmChr5g0065101 5 a 557
RcTPS11 RchiOBHmChr3g0474411 3 a 560 RcTPS36 RchiOBHmChr6g0245751 6 a 557
RcTPS12 RchiOBHmChr3g0474441 3 a 560 RcTPS37 RchiOBHmChr6g0246001 6 a 559
RcTPS13 RchiOBHmChr3g0474501 3 a 560 RcTPS38 RchiOBHmChr6g0252721 6 b 569
RcTPS14 RchiOBHmChr3g0474541 3 a 557 RcTPS39 RchiOBHmChr6g0265741 6 a 567
RcTPS15 RchiOBHmChr3g0475221 3 a 560 RcTPS40 RchiOBHmChr6g0270581 6 a 564
RcTPS16 RchiOBHmChr3g0484891 3 b 566 RcTPS41 RchiOBHmChr6g0274871 6 a 553
RcTPS17 RchiOBHmChr4g0418071 4 a 564 RcTPS42 RchiOBHmChr6g0290871 6 c 857
RcTPS18 RchiOBHmChr5g0004591 5 b 580 RcTPS43 RchiOBHmChr6g0290941 6 c 825
RcTPS19 RchiOBHmChr5g0004631 5 b 583 RcTPS44 RchiOBHmChr6g0305391 6 a 570
RcLIN-
NERS1 RchiOBHmChr5g0004711 5 g 544 RcTPS45 RchiOBHmChr7g0210371 7 a 565

RcTPS21 RchiOBHmChr5g0004731 5 g 509 RcTPS46 RchiOBHmChr7g0212441 7 a 558
RcLIN-
NERS2 RchiOBHmChr5g0004761 5 g 580 RcTPS47 RchiOBHmChr7g0227831 7 a 571

RcLIN-
NERS3 RchiOBHmChr5g0004801 5 g 580 RcTPS48 RchiOBHmChr7g0228501 7 a 539

3.3. Chromosomal Localization and Gene Duplication

The complete and partial/pseudo RcTPSs and RcTPTs, along with nine RcNUDX1
genes were mapped to the seven chromosomes of the R. chinensis (Figure 3). RcChr5
contained the largest number of TPT and TPS genes, including 18 RcTPSs, 10 RcTPS-p genes,
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4 RcTPTs and 6 RcTPT-p genes, which suggest the multiple duplication and recombination
events on this chromosome [44]. Most TPS-p genes were distributed near the putative
full-length TPS genes. Six tandemly duplicated TPS genes were present in the R. chinensis
genome, which occurred in the TPS-a, -b, and -g subfamilies, forming five gene clusters.
Some of the RcTPS genes were localized in the vicinity of RcTPT genes, which indicated that
some RcTPS and RcTPT genes probably evolved together through genomic duplication [30].
Additionally, no segmentally duplicated RcTPS or RcTPT genes were detected in the
R. chinensis genome.
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Figure 3. Chromosomal distribution of RcTPSs, RcTPTs, and RcNUDX1 genes in the R. chinensis
genome. The corresponding IDs of RcNUDX1 genes are listed in Table S4. Black letters represent
putative complete TPS genes, blue letters represent complete trans-prenyltransferase (TPT) genes,
gray letters represent putative partial/pseudo TPS (TPS-p) genes, purple letters represent partial
TPT (TPT-p) genes, and green letters represent RcNUDX1 genes. The tandemly duplicated genes are
indicated in pink lines, and gene clusters are indicated in red lines. *Asterisk indicates a stop codon
is interrupting the open reading frame of this sequence [23].

3.4. Collinearity Analysis of RcTPT and RcTPS Genes

The comparative collinearity maps of R. chinensis associated with other representative
species were constructed to further infer the phylogenetic mechanisms of the TPS and TPT
gene family. Four RcTPS genes, namely RcTPS18, RcLIN-NERS1, RcTPS42, and RcTPS-p8,
exhibited genomic shuffling across the Rosaceae species and grapevine, indicating that
these genes were derived probably from the ancestors of dicotyledonous plants (Figure 4).
Unlike the other three genes with only one collinear gene pair in each plant genome,
RcLIN-NERS1 had three collinear gene pairs in the R. rugosa genome and strawberry
genome. RcLIN-NERS1 and its two collinear genes in strawberry (FaNES1 and FaNES2)
are bifunctional terpene synthase that can efficiently convert GPP and FPP into linalool
and nerolidol, respectively [21,45]. This indicates that collinear TPS genes may exhibit
similar catalytic function in relative plants. RcTPS27 (TPS-a) and RcLIN-NERS1 (TPS-b) in
R. chinensis shared the same collinear TPS genes in R. rugosa and strawberry, indicating that
TPS-a (RcTPS27) is probably derived from TPS-g. Unlike the RcTPS gene family, there are
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six RcTPT genes exhibited genomic shuffling across the four Rosaceae species, suggesting
the TPT gene family is evolutionarily conserved in Rosaceae (Figure S3).
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3.5. Effect of Developmental Stages on RcTPS Expression

There are nine RcTPS genes belonging to three subfamilies (TPS-a, -b, and -g) expressed
in MU opening petals, whereas the RcTPS8 and RcTPS9 expressed only in the buds about to
open (S3) and hardly expressed in the petals of open flowers. These petal-expressed RcTPSs
exhibited great differences in the expression levels and patterns (Figure 5a). RcGDS, which
was responsible for catalyzing the synthesis of germacrene D as the only product, exhibited
the highest average expression level. RcTPS32 and RcTPS33, which encoded the same
protein sequences, exhibited the second and third highest expression levels, respectively.
The expression levels of other RcTPSs in petals and buds was relatively low.

The oscillations in RcTPS expression at different developmental stages of MU petals
were analyzed. These nine genes exhibited three expression patterns. The first group
comprised RcLINS, RcTPS18, RcLIN-NERS1, and RcGDS, whose expression peaked in the
buds about to open (S3) or in the early opening flowers (D1) and declined in old flowers.
The second group comprised RcLIN-NERS3, RcTPS32, RcTPS33, and RcTPS46, whose
expression levels increased when the flowers opened and peaked in old flowers. The third
group comprised RcTPS39, whose peak expression was on the second day after flowering
(D2) (Figure 5b). These petal-expressed RcTPSs were selected to further validate the RNA-
seq results in five samples using qRT-PCR. The results confirmed the differential TPS gene
expression patterns in different samples (Figure S4). The concordance between qRT-PCR
and RNA-seq results demonstrated the reliability of RNA-seq data in the present study.
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Figure 5. Expression profiles of RcTPSs, RcTPTs, and RcNUDX1 genes at different flower develop-
mental stages. (a) Terpene biosynthesis pathways in rose [23,46] and expression levels of RcTPSs,
RcTPTs, and RcNUDX1 genes. The genes marked with asterisk (*) indicated that the average FPKM of
all members of this family was less than 1 in five MU samples. Clustering_distance_rows ‘euclidean’,
clustering_method ‘complete’. (b) The gene expression patterns in different MU samples. Bars
represent the standard error (n = 3). The genes with different expression patterns are illustrated in
different colors. Different lowercase letters indicate statistically significant differences among samples
at different developmental stages (ANOVA test, p < 0.05).
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3.6. Effect of Developmental Stages on RcTPT and RcNUDX1 Expression

The expression profiles of RcTPTs and RcNUDX1s genes were analyzed at different
flower developmental stages. Among the five short-chain RcTPT genes involved in the
biosynthesis of floral volatile terpenes, RcGGPPS1 exhibited the highest average expression
level. Similar to the expression profiles of RcTPSs, there are also three expression patterns
in RcTPTs. The RcGGPPS1 and RcSSUII exhibited highest expression in buds or fresh
flowers, and RcGPPS expression peaked in senescent flowers, whereas the expression of
two RcFPPS genes peaked in buds and old flowers.

There are six RcNUDX1 genes expressed in MU petals. Among them, RcNUDIX1-1a3
showed the highest average expression level (Figure 5a). All six RcNUDIX1 genes exhibited
significantly increased expression after flowering. Four RcNUDIX1s exhibited constant
expression throughout the flowering stage, whereas RcNUDIX1-1a1 and RcNUDIX1-1a4
exhibited significantly higher expression in old flowers than in fresh flowers (Figure 5b).

3.7. Analysis of Differential Volatile Terpenes and Differential Gene Expression

Based on the differential expression patterns of petal-expressed RcTPSs, the butterfly
rose petals sampled on the anthesis day (D1, fresh flower) and day 3 post-anthesis (D3, old
flower) were selected for volatile analysis. In total, 24 monoterpenoids and 30 sesquiter-
penoids were identified (Figure 6a). The levels of almost all monoterpenes emitted from D3
samples were higher than the levels of those from D1 samples, whereas different sesquiter-
penes exhibited peak release from D1 or D3 samples. As the VIP value of most volatile
terpenes was very low, differential metabolites were screened based on |Log2FC| ≥ 0.8
and VIP ≥ 0.6. Compared with D1 samples, 14 compounds in the D3 sample including two
sesquiterpenes and 12 monoterpenoids were upregulated, whereas five sesquiterpenoids
were downregulated (Figure 6b).

Differential gene expression analysis between D1 and D3 samples were conducted.
Differential expression of genes involved in the middle and downstream pathway of
terpene biosynthesis (short-chain RcTPTs, RcTPSs, and RcNUDX1s) were screened based
on |Log2FC| ≥ 0.8 and Q < 0.05 (Figure 6c). Compared with D1 samples, four RcTPSs
and RcNUDX1-1a4 were upregulated and four RcTPS genes were downregulated in D3
samples. Both RcFPPS1 and RcFPPS2 were upregulated in D3 samples.

The relationship between DEGs and differential volatiles was analyzed. RcGDS
expression was higher in D1 samples than in D3 samples, which was consistent with the
decreased germacrene D emission in D3 samples (40% of D1 samples). Germacrene D was
not classified as a differential volatile because of its low VIP value. Increased RcLIN-NERS3,
as well as decreased RcLINS and RcLIN-NERS1, were expressed in D3 samples, whereas
the linalool emission level was higher in D3 samples (130% of D1 samples). The chirality of
linalool could not be detected due to the detection method limitations. Thus, it is difficult
to analyze the correlation between linalool and these three genes.

The emission abundances of geraniol, nerol, and some monoterpenes [myrcene,
(Z)-ocimene, and (E)-β-ocimene] from the D3 samples were 1.3–2.1 times those from the
D1 samples, which might be related to the upregulated expression of RcNUDX1-1a4 in
D3 samples. However, the protein sequences of RcNUDX1-1a4 was identical with other
three RcNUDX1-1 genes, so that the qRT-PCR validation of RcNUDX1-1a4 were not carried
out. In order to verify the correlation between the RcTPT expression levels and emission
amounts of geraniol, volatile analysis and qRT-PCR were performed between D1 and D3
samples (Figure 6d). The results showed that only RcGPPS showed similar expression trend
to emission of geraniol, suggesting that it might be related to the biosynthesis of geraniol.
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Figure 6. Differential metabolites and genes involved in middle and downstream pathway of volatile
terpene biosynthesis in different samples. (a) Heatmap of volatile terpenes in D3 and D1 samples.
Clustering_distance_rows ‘euclidean’, clustering_method ‘complete’. (b) Volcano plot of differential
volatile terpenes between D1 and D3 samples. (c) Volcano plot of differential terpene-related genes
between D1 and D3samples. (d) Emission abundance of geraniol and expression levels of three
RcTPTs in D1 and D3 samples. RhUBI2 was used as an internal control. Data are presented as the
mean ± standard error (n = 3). Asterisks indicate significant differences between D1 and D3 samples
at ** p < 0.01; *** p < 0.001 by Student’s t-test.

3.8. Functional Analysis of Petal-Expressed RcTPSs in Butterfly Rose

Phylogenetic analysis was performed using the maximum likelihood method, includ-
ing nine petal-expressed RcTPSs, two bud-expressed RcTPSs, and other characterized TPS
genes (Figure 7). Of these, five RcTPS-a genes expressed in MU petals were grouped into
two clusters. RcTPS39 was clustered with some genes that can catalyze monoterpenoid
products, such as FvPINS (strawberry) [45], PcTPS2 and PcTPS5 (P. campanulate) [47],
PdTPS1 (Prunus dulcis) [48], and MdPIN/CAM (Malus domestica) [49]. An evolutionary
analysis on the TPS-a genes of Poaceae exhibited that some TPS-a members can convert
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GPP into monoterpenes derived from an initial C6-C1 closure [50]. Further studies will be
conducted to investigate the ability of RcTPS39 to catalyze monoterpene products. The
other four RcTPS-a genes were mainly clustered with TPSs that catalyzed (E,E)-FPP to C15
products by an initial C10-C1 or C11-C1 closure. RcTPS32, RcTPS33, and RcTPS46 might
have the ability to convert (E,E)-FPP to produce sesquiterpenes.
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Figure 7. Maximum likelihood phylogeny of petal-expressed RcTPSs and other characterized terpene
synthases. RcTPSs are highlighted in blue. The sequences used in this analysis are listed in Table S5.
The subfamilies are illustrated with different colors: TPS-a (purple), TPS-b (green), TPS-e/f (orange),
and TPS-g (blue).

The four RcTPS-b genes were grouped into three clusters. RcTPS8 and RcTPS9 were
clustered with ocimene synthases, whereas RcLINS was clustered with other linalool
synthases. RcTPS18 was clustered together with other angiosperm α-farnesene syn-
thases (AFSs) from Malus domestica (MdAFS) [51], Prunus campanulate (PcTPS7) [47], peach
(PpTPS2) [52], Glycine max (GmAFS) [53], Populus trichocarpa (PtTPS2) [54], tomato (SlTPS27) [13],
grapevine (VvGwbOciF) [55], and Ricinus communis (RcSeTPS7) [56], forming an α-farnesene
synthase cluster (Figure 7). All genes in this cluster were predicted or identified as be-
ing localized in the cytoplasm. Sequence analysis showed that RcTPS18 exhibited 59%
to 66% identity with other AFSs of Rosaceae plants. RcTPS18 and other AFSs exhibited
conserved structural features including the RRx8W motif, DDxxD motif, NSD/DTE motif,
and H-α1 loop. The last motif demonstrated function in the binding of the metal ion K+ in
MdAFS (Figure 8a) [57].
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Figure 8. Functional analysis of RcTPS18. (a) Protein sequence alignment of RcTPS18 and other (E,E)-
α-farnesene synthases. The arrows indicated the crucial residues for AFS activity. (b) Micro-synteny
analyses among Rosa chinensis, Prunus persica and Fragaria vesca. The collinear gene pairs are linked in
the same color. The characterized genes are in bold. 1: Characterized RcLIN-NERS3 with incomplete
sequence. 2: The location of FaNES2 in the strawberry genome was revised based on its amino acid
sequence. (c) Emission abundance of (E,E)-α-farnesene and RcTPS18 expression levels in three rose
samples. RhUBI2 was used as an internal control. QL: Rosa ‘Qinglian Xueshi’. Data are presented
as the mean ± standard error (n = 3). Different lowercase letters indicate statistically significant
differences (ANOVA test, p < 0.05).

The distribution of RcTPS18, RcLIN-NERS1, and RcLIN-NERS3 on the chromosome is
very close, forming a gene cluster (Figure 3). Interspecific micro-synteny analysis found
that the chromosome distributions and functions of these three TPS gene were relatively
conserved in peach and strawberry (Figure 8b). RcLIN-NERS1 and its three collinear genes
(FaNES1, FaNES2, and PpTPS3) showed same catalytic functions [21,45,52]. The RcTPS18
and PpTPS2 were colinear gene pairs, indicating that they may have similar functions.

In order to verify the correlation between the expression level of RcTPS18 and emission
amounts of (E,E)-α-farnesene, volatile analysis and qRT-PCR were performed among D1,
D3 and petals of Rosa ‘Qinglian Xueshi’. The results showed that the emission amounts of
(E,E)-α-farnesene in the three rose samples had the same trend as the RcTPS18 expression
levels (Figure 8c). A combined analysis of sequence homology, conserved structural
features, volatile emissions and qRT-PCR analysis indicated that RcTPS18 may encodes
(E,E)-α-farnesene synthase.

4. Discussion
4.1. Evolution and Function of the RcTPT Genes

The present study documented that the R. chinensis genome comprised seven complete
RcTPTs, indicating that the number of TPTs in R. chinensis is less than those reported in
Arabidopsis thaliana (16), tomato (10), Cinnamomum camphora (10), and Oryza sativa (12), and
more than or equal to that in Chlamydomonas reinhardtii (4) and Physcomitrella patens (7)
(Table S5) [25,28,58]. Unlike the TPT gene family in Cinnamomum camphora (Lauraceae)
that has segmentally duplicated TPT genes [28], no such TPT genes were observed in
the genome of R. chinensis, which may be due to that R. chinensis exhibited only the core
eudicot-specific gamma whole-genome triplication with no recent polyploidization [59].

The RcFPPS is predicted to produce FPP, the precursor of sesquiterpene, so the expres-
sion patterns of RcFPPSs combined the expression patterns of different putative sesquiter-
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pene synthase genes. Both homodimeric and heterodimeric geranyl(geranyl)diphosphate
synthase are involved in monoterpene biosynthesis [60–62]. Among the five homodimeric
GPPS clustered with RcGPPS (Figure 2), three enzymes (SlDPPS, CrGPPS, and MiGPS1)
were predicted to be located in mitochondria like RcGPPS. Both CrGPPS and MiGPS1
produced GPP as the sole or main product with IPP and DMAPP as substrates [60,63].
However, the SlDPPS produced C45 and C50 prenyl diphosphates [64]. The VvGPPS
and AtPPPS were predicted cytosolic localization. The expression of VvGPPS were up-
regulated preceding and during the increase in precursor volatile organic compounds of
monoterpenol [65]. The AtPPPS that originally proposed as a homomeric C10-geranyl
pyrophosphate is identified as a trans-type polyprenyl pyrophosphate synthase, so it is
suggested that the precursor C10-GPP for monoterpene biosynthesis in Arabidopsis may
be provided only by heteromeric G(G)PPS [66]. Although the RcGPPS expression and
geraniol emission in MU samples showed similar trend, the products of RcGPPS in rose
need further research.

4.2. Evolution of the TPS-b and TPS-g Genes in R. chinensis

There are four complete TPS-g genes in the genome of R. chinensis that were distributed
in a small segment (65 kb) of the chromosome (Figure 3). The RcLIN-NERS1 exhibited
collinearity with other plants, which indicates its ancient origin (Figure 4). However, the
RcLIN-NERS1 and the other three TPS-g genes differed in gene structure (Figure S2) and
were located on different phylogenetic clusters (Figure 7). Moreover, RcLIN-NERS1 and
RcLIN-NERS3 exhibited different expression patterns during the flowering stage (Figure 5b),
indicating the divergence of RcTPS-g gene functions.

In the RcTPS-b subfamily, both RcTPS18 and RcTPS-p8 had collinear TPS gene pairs
in other plants (Figure 4). The RcTPS18 was located on a special phylogenetic cluster,
which differed from other petal-expressed RcTPS-b genes (Figure 7). Some TPSs in this
cluster can catalyze GPP and FPP to acyclic monoterpenes or sesquiterpenes, respectively.
Although many TPSs have broad substrate specificity and catalyze several substrates
in vitro, their function in vivo may be limited due to their subcellular localization [67].
The RcTPS18 protein sequence was predicted to be located in the cytoplasm. Thus, it
may use FPP as a substrate to catalyze the formation of acyclic terpenoids, demonstrat-
ing that the TPS-b gene subfamily has undergone complex gene loss and duplication
events [68]. RcTPS-p8, a putative pseudogene that encodes a short protein (455 aa), had
collinear genes in all representative plants. The collinear genes of RcTPS-p8 in R. rugosa
(Chr6.5828, 587 aa) and peach (ONI18546, 629 aa) may be functional, but the collinear genes
in grapevine (VIT_12s0059g02710, 519 aa) and strawberry (FvH4_6g43710, 144 aa) were
also putative pseudogenes. Thus, RcTPS-p8 might have lost fragments from its ancestral
gene during evolution.

4.3. Different TPS Expression Profiles during Flower Developmental Stages

Some RcTPS genes exhibited peak expressions in fresh flowers or buds that are about to
open. In most plants producing floral scents, volatile emission peaks when the flowers are
ready for pollination and decreases afterwards [69]. Corresponding to this phenomenon,
the TPS genes encoding scent biosynthetic enzymes typically peak 1–2 days ahead of
emission of the corresponding compound, and the related TPS expression decreases during
petal senescence stages when scent emission declines, such as the LoTPS1 and LoTPS2
in Lilium ‘Siberia’ [70–72]. Previous studies have reported that germacrene D emitted
from the petals of Rosa ‘Fragrant Cloud’ reached a maximum value in mature petals and
then decreased [17,20], which is similar to the RcGDS expression pattern observed in the
present study.

Notably, some RcTPSs exhibited increased expression in late stage of flowers. In
Osmanthus fragrans flowers, the expression of OfTPS2 that exclusively produced linalool
increased from the full flowering stage to the late full flowering stage [73]. Only a small
amount of linalool and its oxides were released at the late full flowering stage, whereas more
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glycosylated linalool and its oxides were accumulated in the flower [73]. Some other plants
also released or accumulated higher terpenoids in old flowers. For example, higher levels
of 1,8-cineole and β-ocimene were emitted from senescent ginger (Hedychium coronarium)
flowers, and maximum monoterpenes accumulated in old flowers of some wild Rosa
species [24,74]. Additionally, higher levels of caryophyllene and β-cubebene were released
in old flowers of Rosa ‘Honesty’ [19]. Since glycosylation is involved in regulating the
release of volatile terpenes, the correlation between increased TPS gene expression and
terpene emission in senescent petals needs further research.

5. Conclusions

In this study, we identified 7 full-length RcTPT genes and 49 putative functional
RcTPSs in the R. chinensis genome. There are 20 genes, expressed in the opening petals of
butterfly rose, were involved in middle and downstream pathway of volatile terpene biosyn-
thesis, including 9 RcTPS, 5 short-chain RcTPTs, and 6 RcNUDX1. These terpene-related
genes exhibited different expression patterns during five different flower developmental
stages. The emissions of geraniol were higher from old MU petals than from fresh MU
petals, which might be related to the RcGPPS expression. Combining volatile emissions,
bioinformatic analysis and differential expression analysis, it is indicated that RcTPS18,
a member of the TPS-b subfamily, may encode (E,E)-α-farnesene synthase. The highly
expressed RcTPS32, a predicted sesquiterpene synthase, exhibited increased expression in
senescent petals, deserves further study on its products and functions. The present study
provided valuable insights into the terpenoid biosynthesis mechanism in rose flowers.
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