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Abstract: Alcohol dependence is a common mental disease worldwide. Excessive alcohol consump-
tion may lead to alcoholism and many complications. In severe cases, it will lead to inhibition and
paralysis of the centers of the respiratory and circulatory systems and even death. In addition, there
is a lack of effective standard test procedures to detect alcoholism. EEG signals are data obtained
by measuring brain changes in the cerebral cortex and can be used for the diagnosis of alcoholism.
Existing diagnostic methods mainly employ machine learning techniques, which rely on human
intervention to learn. In contrast, deep learning, as an end-to-end learning method, can automatically
extract EEG signal features, which is more convenient. Nonetheless, there are few studies on the
classification of alcohol’s EEG signals using deep learning models. Therefore, in this paper, a new
deep learning method is proposed to automatically extract and classify EEG’s features. The method
first adopts a multilayer discrete wavelet transform to denoise the input data. Then, the denoised
data are used as input, and a convolutional neural network and bidirectional long short-term memory
network are used for feature extraction. Finally, alcohol EEG signal classification is performed. The
experimental results show that the method proposed in this study can be utilized to effectively
diagnose patients with alcoholism, achieving a diagnostic accuracy of 99.32%, which is better than
most current algorithms.

Keywords: alcoholism; machine learning; EEG signals; discrete wavelet transform; bidirectional long
short-term memory; convolutional neural network

1. Introduction

Excessive alcohol consumption is the most common mental illness in the world, and
deaths from alcohol intoxication due to excessive alcohol consumption frequently occur.
According to the WHO global status report on alcohol and health 2018, the harmful use of
alcohol resulted in 3.3 million deaths worldwide, accounting for approximately 5.9% of
total global deaths [1]. Approximately 2 billion people around the world consume alcoholic
beverages, and most of them suffer from alcoholism. It has been estimated that alcohol
abuse represents the world’s third-largest risk factor for disease and disability [2]. Long-
term alcohol use not only causes damage to many organs, such as the liver, gallbladder
and heart muscle, but also causes irreversible damage to the nervous system, resulting in
mental health problems and memory loss [3,4].

Excessive alcohol consumption in a short period of time can lead to symptoms such as
dyskinesia, stumbling, incoherence, and increased heart rate. If alcoholism is not detected
and treated at an early stage, it may lead to other complications, such as accidental injury,
acid-base imbalance, water and electrolyte disorders, pneumonia and even acute renal
failure. These complications will cause serious damage to the patient’s health and endanger
the patient’s life. In addition, alcohol not only affects alcoholics but also causes serious harm
to people and society because of the behaviors of the person with alcoholism. The diagnosis
of alcoholism is currently complicated by the lack of objective criteria. The assessment of
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alcohol abuse and alcoholism is usually based on, but not limited to, the following activities:
(i) Question the patient on their alcohol drinking history. (ii) Perform a physical exam
and complete a psychological evaluation. (iii) Perform lab tests, such as the detection of
serum ethanol concentration and arterial blood gas analysis. However, such procedures
are laborious, time-consuming, and subjective and thus may lead to diagnostic errors.
Considering that most of the harmful consequences of alcoholism are based on altered
brain function, an electroencephalogram (EEG), which reflects the status of the brain, can be
used as a noninvasive and objective technique to assist in the diagnosis of alcoholism [5,6].
Taran S et al. proposed an automatic recognition and analysis method of alcohol EEG
signals based on the characteristics of brain rhythm [7]. Mumtaz W et.al. summarized EEG
signal abnormalities associated with the condition of patients with alcohol use disorders [8].
Bavkar S proposed a rapid screening method for alcoholism based on EEG signals [9].

In recent years, extensive research has been performed on the use of EEG signals to
diagnose alcoholism. The traditional method for diagnosing alcohol EEG signals is to
determine whether alcohol intoxication is caused by visual analysis of EEG signal data
by experienced medical experts based on their own clinical experience, which requires
much time and effort [10]. With the development of computer technology, computer-aided
diagnosis technology has been applied to the diagnosis of EEG signals. Compared with
traditional diagnosis methods, computer-aided EEG analysis technology provides a faster
and more effective method. This technique reduces the errors that may be caused by manual
diagnosis and is more objective [8–22]. Interference during the acquisition of EEG signals
is usually caused by eye blinks, head movements, and EMG activities of muscles near the
recording point, resulting in artifact contamination. Therefore, in computer-aided diagnosis,
it is usually necessary to extract the features of EEG signals to improve the signal-to-noise
ratio [12,13]. The commonly used feature extraction methods can be summarized as time
domain analysis [14,15], frequency domain analysis [16,17] and time-frequency domain
analysis [18,19]. Since EEG signals are usually transient and unstable, compared with time-
domain analysis and frequency-domain analysis, time-frequency domain analysis has the
ability to represent the local characteristics of signals in both the time domain and frequency
domain and has more advantages in processing nonstationary signals. Common time-
frequency analysis methods include empirical mode decomposition (EMD) [20,21], wavelet
transform [22], short-time Fourier transform (STFT) [23] and so on. Machine learning
technology has been widely used as a standard procedure to evaluate the meaning of EEG
signals. Machine learning combines various feature extraction methods with classifiers for
EEG signal processing and alcoholism detection [24–33]. However, the traditional feature
extraction of machine learning mainly depends on manual extraction. For simple and
obvious tasks, manual feature extraction is simple and effective, but when the features of
EEG signals are not obvious, it is often difficult for hidden features to be correctly extracted.

Deep learning, which automatically learns from complex datasets, can be utilized
to discover hidden features that are difficult to find manually. Currently, there are some
related works on the diagnosis of alcohol EEG signals based on deep learning. Commonly
used methods are ANN, CNN, and LSTM networks [34–37]. However, there is still a lack
of effective deep learning systems to diagnose alcoholism through EEG signals. Therefore,
this research aims to fill this gap, and a DWT-CNN-Bi-LSTM deep learning framework
is proposed. In this research, we adopt a discrete wavelet transform to extract the time-
frequency domain features of the signal, then use the convolutional neural network and
bidirectional long short-term memory network to further extract the spatiotemporal features
in the signal, and finally accurately classify these features as a patient with alcoholism or
patient control. Compared with machine learning methods, the architecture we propose
can automatically extract hidden features in EEG signals. In addition, the EEG signals
have temporal and spatial information. Most of the current deep learning methods only
extract temporal or spatial information, while our deep learning architecture captures the
temporal and spatial features in EEG signals. At the same time, the Bi-LSTM network can
capture the information of the network before and after and improve the accuracy of the
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experiment. The experimental results show that the classification accuracy of the model
reaches 99.32%, which can be used in the diagnostic classification system of alcoholism.

2. Materials and Methods
2.1. Dataset and Configurations

The dataset used in this research was collected by the Neurodynamics Laboratory
at the State University of New York Health Center in Brooklyn and was taken from the
machine learning library of the University of California, Irvine (UCI) [38]. In this research,
we adopted the full dataset. The data in this dataset contain measurements from 64 elec-
trodes placed on the scalp of the subject. In this research, each electrode represents a
channel, and the input terminal takes a total of 64 channels of EEG signal data. These
electrodes were sampled at 256 Hz for 1 s. A total of 120 experiments were collected from
122 subjects, and different stimuli were utilized. The electrode positions were located at
standard sites (Standard Electrode Position Nomenclature, American Electroencephalo-
graphic Association 1990). As shown in Figure 1, sample a and sample b represent alcohol
EEG signals and control EEG signals, respectively. To evaluate the performance of the
proposed DWT-CNN-Bi-LSTM system, our implementation was derived in Python using
Keras with TensorFlow backend, and one hour of training was completed using an NVIDIA
1080 GPU.
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Figure 1. sample (a) and sample (b) are alcoholic and normal EEG signals, respectively.

2.2. StandardScaler

In the electrical signal analysis experiment, sometimes there are sometimes few sam-
ples available for a single subject. To enhance the credibility of the classification, it is
necessary to uniformly classify multiple subjects’ eigenvalues uniformly. The characteristic
values of EEG signals of different subjects are usually different, and sometimes there are
even great differences in the order of magnitude, which will lead to a decrease in classifi-
cation accuracy [39]. Therefore, this research uses standard deviation standardization to
deal with the initial data. The standardized data are subtracted from the mean and then
divided by the standard deviation. The processed data are in accordance with the standard
normal distribution, i.e., the mean is 0, and the standard deviation is 1. The standardization
equation is as follows:

X = (X− µ)/σ (1)
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where µ is the mean value of all sample data, and σ is the standard deviation of all
sample data.

2.3. Discrete Wavelet Transform

At the same time, due to the nonstationary and transient characteristics of EEG
time-series signals as well as artifacts caused by electromagnetic interference and muscle
movement, it is difficult for signal analysis based on fast Fourier transform to capture the
instantaneous frequency of events. As a time-frequency analysis method of the signal,
wavelet transform can be used to represent the local characteristics of the signal in the
time-frequency domain. The continuous wavelet transform formula is defined as follows:

W f (a, b) =
1√
|a|

∫ +∞

−∞
f (t)ψ(

t− b
a

)dt (2)

where a and b are scale parameters and time parameters or translation parameters, respec-
tively. W f (a, b) represents the transformation value of the signal f (t) after wavelet transform
when the frequency is a and the time is b. However, the amount of calculation required
for continuous wavelet transform is very large, and the calculated results are redundant
to a certain extent. To simplify the calculation without losing the result information, the
discrete wavelet transform of a continuous signal is implemented. The DWT is defined as:

D(j, k) = 2−(j/2)
∫ +∞

−∞
x(t)ψ(

t− 2jk
2j )dt (3)

Scaling and shifting parameters are converted to powers of two, called dyadic scales
and positions, respectively. Among them, a and b are replaced by 2j and k2j, respectively,
Ref [40]. In this study, a discrete wavelet transform is used to process the standardized data,
and the approximate signal is continuously decomposed to improve the signal-to-noise
ratio of the brain signal to obtain higher quality data.

2.4. Convolutional Neural Network

In recent years, deep learning has been greatly developed and widely used in various
fields. Convolutional neural networks, which are among the most well-known deep learn-
ing models, extract rich features by using various filters in the convolution layer, pooling
layer, normalization layer and fully connected layer to improve the performance of various
tasks [41]. By using multiple filters to perform a one-dimensional convolution operation,
a one-dimensional convolutional neural network can extract effective and representative
features from time-series data. Moreover, because the convolution filter and feature map-
ping adopted in this research are one-dimensional, a one-dimensional measurement data
sequence can be directly used as the input of a one-dimensional convolutional neural
network without conversion to a two-dimensional signal, maintaining the correlation of
the original signal.

2.5. Bidirectional Long Short-Term Memory

Although convolutional neural networks show great advantages in feature extraction,
they cannot retain the memory of previous time-series patterns. Compared with convolu-
tional neural networks, LSTM networks are more successful in processing time data. The
principle of the LSTM hidden layer structure is shown in Figure 2. ft, it and ot represent the
values of the forget gate, input gate and output gate at time t, respectively, and at represents
the preliminary feature extraction of ht−1 and xt at time t [42].



Brain Sci. 2022, 12, 778 5 of 12

Version June 6, 2022 submitted to Journal Not Specified 5 of 12

Figure 2. LSTM network structure

The mathematical expression of the LSTM unit is defined as follows: 160

f (t) = σ(W f ht−1 + U f xt + b f ) (4)

i(t) = σ(Wiht−1 + Uixt + bi) (5)

a(t) = tanh(Waht−1 + Uaxt + ba) (6)

o(t) = σ(Woht−1 + Uoxt + bo) (7)

where xt represents the input of moment t, ht−1 represents the hidden layer state value 161

of moment t;W f , Wi, Wo and Wa represent the weight coefficients of ht−1 in the process 162

of forget gate, input gate, output gate and feature extraction, respectively; U f , Ui, Uo and 163

Ua represent the weight coefficient of xt in the process of forget gate, input gate, output 164

gate and feature extraction, respectively. b f , bi, bo and ba represent the offset values of the 165

forget gate, the input gate, the output gate and the feature extraction process, respectively; 166

tanh represents the tangent hyperbolic function, and σ represents the sigmoid activation 167

function. The results of the calculation of the forget gate and the input gate act on c(t-1) to 168

form the cell state c(t) at time t, which is expressed by the formula as follows: 169

c(t) = c(t− 1)� f (t) + i(t)� a(t) (8)

where � is the Hadamard product. Finally, the hidden layer state h(t) at time t is 170

calculated from the output o(t) and the current cell state c(t): 171

h(t) = o(t)� tanh(c(t)) (9)

Generally, the LSTM network can only obtain information from the previous input, while 172

the bidirectional long short-term memory (Bi-LSTM) model, as a cyclic neural network 173

composed of two independent LSTM networks, can obtain information not only from the 174

previous input but also from the future input state. The model design idea of Bi-LSTM is to 175

make the characteristic data obtained at moment t have the information between the past 176

and the future at the same time, and its principle structure is shown in Figure 3. 177

Figure 2. LSTM network structure.

The mathematical expression of the LSTM unit is defined as follows:

f (t) = σ(W f ht−1 + U f xt + b f ) (4)

i(t) = σ(Wiht−1 + Uixt + bi) (5)

a(t) = tanh(Waht−1 + Uaxt + ba) (6)

o(t) = σ(Woht−1 + Uoxt + bo) (7)

where xt represents the input of moment t, ht−1 represents the hidden layer state value
of moment t; W f , Wi, Wo and Wa represent the weight coefficients of ht−1 in the process
of forget gate, input gate, output gate and feature extraction, respectively; U f , Ui, Uo and
Ua represent the weight coefficient of xt in the process of forget gate, input gate, output
gate and feature extraction, respectively. b f , bi, bo and ba represent the offset values of the
forget gate, the input gate, the output gate and the feature extraction process, respectively;
tanh represents the tangent hyperbolic function, and σ represents the sigmoid activation
function. The results of the calculation of the forget gate and the input gate act on c(t− 1)
to form the cell state c(t) at time t, which is expressed by the formula as follows:

c(t) = c(t− 1)� f (t) + i(t)� a(t) (8)

where � is the Hadamard product. Finally, the hidden layer state h(t) at time t is calculated
from the output o(t) and the current cell state c(t):

h(t) = o(t)� tanh(c(t)) (9)

Generally, the LSTM network can only obtain information from the previous input,
while the bidirectional long short-term memory (Bi-LSTM) model, as a cyclic neural network
composed of two independent LSTM networks, can obtain information not only from the
previous input but also from the future input state. The model design idea of Bi-LSTM is to
make the characteristic data obtained at moment t have the information between the past
and the future at the same time, and its principle structure is shown in Figure 3.
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2.6. CNN-Bi-LSTM Model

The CNN-Bi-LSTM structure model proposed in this paper consists of one input
layer, four convolution layers, two max pooling layers, four fully connected layers and
one sigmoid output layer. At the same time, to prevent overfitting, a dropout layer is
added between each fully connected layer to improve the generalization ability of the
model. The data processed by the discrete wavelet transform are used as the input of
the model, and the abstract features of the data are extracted by a convolutional neural
network. Figure 4 shows the input of the bidirectional long short-term memory network (Bi-
LSTM). These networks can cooperate with each other, retain the previous information, and
further improve the ability to learn useful information from the EEG time-series data. After
passing through the Bi-LSTM layer, the output features will be sent to three fully connected
layers. Finally, the sigmoid output layer is added to the model for final recognition. The
specific experimental steps are as follows. The shape of the input data (76 × 1) is obtained
by discrete wavelet transform. Then, through the first convolutional layer, the abstract
features of the input signal are extracted, and the number of one-dimensional convolution
kernels in the Conv layer is 64. The shape of each convolution core is 3 × 1, and the
stride of the convolution kernel is 1. After the convolutional layer is a rectified linear
unit (ReLU) activation layer, which is added to the network to enhance the representation
ability of the network and solve problems that cannot be solved by linear models. After
the convolution and activation layers, the output will go through a max pooling layer
to reduce dimensionality, remove redundant information, compress features, simplify
network complexity, and reduce overfitting. The pooling window size is 2, and the step size
is 2. Then, the higher-level features are further extracted through a three-layer convolution.
The number of convolution kernels in Conv layer 1, Conv layer 2, and Conv layer 3 are 64,
128, and 128, respectively, all of which use the same 3 × 1 shape, and the activation function
is the same as above. After layer 3, we add a max pooling layer. Finally, the resulting
features are mapped to a fully connected layer with 256 neurons. Then, dropout is added
to the fully connected layer. As shown in Figure 5, the fully connected layer plays the role
of mapping the extracted distributed feature representation to the sample label space as
the input of the Bi-LSTM network, and dropout can alleviate the overfitting problem to a
certain extent. Both Bi-LSTM networks have 64 neurons. After the features are extracted
by the Bi-LSTM network, the output signal is sent to three fully connected layers, and the
hidden layers have 256, 128, and 64 neurons. Finally, the sigmoid output layer is added
to the model for final recognition. To make the model output reach the optimal value, we
use the Adam optimization algorithm to update and calculate the network parameters
that affect the model training and output. The learning rate is 0.001, the number of epochs
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is 100, and the batch size is 200. An abstract illustration of the proposed approach is
shown in Figure 6. First, the original signal is preprocessed, and then the discrete wavelet
transform is used to decompose layer by layer to improve the signal-to-noise ratio. Next, a
one-dimensional convolutional neural network and a bidirectional LSTM network are used
to extract spatiotemporal features, and finally, classification is performed.
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2.7. Model Performance Evaluation

In this study, four evaluation indicators are used to evaluate the performance of the
architecture: accuracy, F1-score, precision and recall. These performance metrics are briefly
described below:

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Accuracy represents the ratio of the number of correct decisions to all the decisions.

Precision =
TP

TP + FP
(11)

Precision refers to the proportion of correctly predicted positive samples to all pre-
dicted positive samples.

Recall =
TP

TP + FN
(12)

Recall, also known as sensitivity or hit rate, refers to the proportion of positive samples
that are correctly predicted.

F1-score =
2(Precision ∗ Recall)
(Precision + Recall)

(13)

The F1-score is an indicator of the comprehensive consideration of accuracy and
recall rate.

3. Experimental Results and Analysis

To improve the generalization performance of the model and avoid the overfitting
problem, dropout technology is introduced into the model, and the Adam optimizer is used
to alleviate the gradient oscillation problem. The changes in training accuracy and training
loss with the increase in epochs are shown in Figure 7. In this figure, the left vertical axis is
the training accuracy, the right vertical axis is the training loss, the red curve is the training
accuracy, and the blue curve is the training loss. Moreover, the accuracy and loss curves
converge faster, the frustration is smaller, and the curves are smoother, which proves that
our model has high robustness in this dataset.
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Table 1 shows the comparison of our model with CNN and the LSTM and Bi-LSTM
networks using performance indicators. From this table, we can see that the accuracy,
precision, recall and F1-score achieved by our model are 99.32%, 99.01%, 98.87%, 98.93%,
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respectively, which are significantly better than those of the CNN [43], LSTM [44], Bi-
LSTM [45], and CNN+Bi-LSTM models. Improvements of 2.37%, 7.71%, 11.08% and 2.03%,
respectively, are observed when using this model. Among the CNN, LSTM, and Bi-LSTM
models, CNN achieved the best classification accuracy of 96.95% because of its powerful
feature extraction ability. Compared with the LSTM network, the Bi-LSTM network has
the ability to consider the information from the front and back networks, so it has higher
classification accuracy. We also compare the machine learning methods. As shown in
Table 2, the classification accuracy of XGBoost [46] is 79.58%, the classification accuracy
of graded CatBoost [47] is 94.14%, the classification accuracy of random forest (RF) [48] is
87.98%, and the classification accuracy of the support vector machine (SVM) [24] is 95.63%.
The classification accuracy of the K-nearest neighbor (KNN) algorithm [27] is 94.23%. Our
method is more robust than traditional machine learning methods.

Table 1. Performance of different deep learning models in binary classification tasks.

Methods Accuracy Precision Recall F1-Score

CNN 96.95% 96.05% 95.70% 96.58%
Bi-LSTM 91.61% 91.60% 90.41% 91.39%

LSTM 88.24% 88.42% 87.98% 89.21%
CNN+Bi-LSTM 97.29% 96.89% 97.13% 96.93%

Our model 99.32% 99.01% 98.87% 98.93%

Table 2. Mainstream classification methods and comparison of our proposed models.

Comparison of Different Models

Model XGBoost CatBoost RF SVM KNN Our Model
Accuracy 79.58% 94.14% 87.98% 95.63% 94.23% 99.32%

Table 3 shows a comparison of our proposed DWT-CNN-Bi-LSTM architecture with
existing technologies. Most of the existing models are based on machine learning. These
machine learning models use handmade features, which require domain knowledge and are
difficult to apply. Farsi et al. proposed a deep learning method based on an LSTM network
to automatically extract time-series information from EEG data. However, there is no suit-
able mechanism for dealing with spatial information. Our proposed CNN-Bi-LSTM model
can automatically extract hidden spatiotemporal information from EEG signals, which has
more advantages than some existing machine learning and deep learning methods.

Table 3. Comparison of DWT-CNN-Bi-LSTM architecture with existing methods.

Reference Feature Extraction Classifier Accuracy

Acharya et al. [24]
Approximate Entrop

LLE
Sample Entropy

Higher Order Spectra

SVM 91.7%

Faust et al. [27] Wavelet Packet
Decomposition

K-NN 95.8%

Patidar et al. [31]
Tunable-Q Wavelet

Transform
Centered Correntropy

PCA

LS-SVM 97.02%

Farsi et al. [34]
Improved Binary

Principal Component
Analysis

ANN
LSTM

93%

Sharma et al. [49] Three-band Orthogonal
Wavelet Filter Bank

LS-SVM 97.08%

Ildar et al. [35] Wavelet transforms CNN 86%
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Table 3. Cont.

Reference Feature Extraction Classifier Accuracy

Bavkar et al. [50]
Linear

Nonlinear
Statistical Feature

K-NN 98.25%

Mukhtar H et al. [36] CNN
CNN with 3
convolution

layers, dropout
98.00%

N Kumari et al. [37] None CNN
LSTM

CNN + LSTM

92.77%
89%
91%

Our model Discrete Wavelet
Transformation

CNN
Bi-LSTM

99.32%

4. Conclusions and Prospects

In this paper, a deep learning framework integrated with the DWT, CNN and Bi-
LSTM network is proposed and used to automatically extract and classify the time-series
features of alcohol EEG signals. In this method, the data are preprocessed through standard
deviation standardization and discrete wavelet transform, and then the denoised data are
input into the CNN-Bi-LSTM network. The average classification accuracy of this method
is 99.32%, the accuracy is 99.01%, and the recall rate is 98.87%. This mechanism is superior
to the existing multichannel EEG signals in predicting alcoholism and has high accuracy
and reliability. The experimental results show that automatic feature extraction from EEG
signals by deep learning has more advantages than manual feature extraction. In recent
years, with the development of the Internet of Things and the improvement of people’s
economic level, an increasing number of people have begun to pay attention to their own
health problems. Medical wearable devices can upload the wearer’s body information in
real-time and respond in time to ensure the health of patients. The deep learning strategy
proposed by the study can provide a new and powerful diagnostic scheme for medical
wearable devices. Similarly, our proposed deep learning model can also be extended to
epilepsy diagnosis, emotion recognition and other applications through EEG classification.
It is also an effective deep learning model for signals such as ECG and EMG.
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