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The Role of Posttraumatic 
Hypothermia in Preventing 
Dendrite Degeneration and Spine 
Loss after Severe Traumatic Brain 
Injury
Chuan-fang Wang1,2,*, Cheng-cheng Zhao1,2,*, Gan Jiang3, Xiao Gu3, Jun-feng Feng1,2 &  
Ji-yao Jiang1,2

Posttraumatic hypothermia prevents cell death and promotes functional outcomes after traumatic 
brain injury (TBI). However, little is known regarding the effect of hypothermia on dendrite 
degeneration and spine loss after severe TBI. In the present study, we used thy1-GFP transgenic mice to 
investigate the effect of hypothermia on the dendrites and spines in layer V/VI of the ipsilateral cortex 
after severe TBI. We found that hypothermia (33 °C) dramatically prevented dendrite degeneration and 
spine loss 1 and 7 days after CCI. The Morris water maze test revealed that hypothermia preserved the 
learning and memory functions of mice after CCI. Hypothermia significantly increased the expression 
of the synaptic proteins GluR1 and PSD-95 at 1 and 7 days after CCI in the ipsilateral cortex and 
hippocampus compared with that of the normothermia TBI group. Hypothermia also increased cortical 
and hippocampal BDNF levels. These results suggest that posttraumatic hypothermia is an effective 
method to prevent dendrite degeneration and spine loss and preserve learning and memory function 
after severe TBI. Increasing cortical and hippocampal BDNF levels might be the mechanism through 
which hypothermia prevents dendrite degeneration and spine loss and preserves learning and memory 
function.

Traumatic brain injury (TBI) is a leading cause of mortality and disability. According to public epidemiological 
statistics, nearly 250 per 100,000 persons experience TBI each year; thus, this injury represents a serious public 
health problem worldwide1,2. TBI not only induces a primary insult but also initiates secondary damage that 
causes extensive cell death and degeneration in the whole brain3,4. TBI patients may suffer from enduring neuro-
logical deficit such as paralysis, dementia, memory loss and long-term coma.

In addition to cell death, extensive dendrite and spine degeneration as well as a significant reduction in the 
number of synapses occur after TBI5. TBI has been shown to cause structural and functional deficits of synapses, 
thereby contributing to motor disorder and memory impairment6,7. Effective dendrite protection and spine pres-
ervation strategies, such as the intraperitoneal injection of the brain-derived neurotrophic factor (BDNF) ana-
logue 7,8-dihydroxyflavone, can improve behavioural outcomes after TBI in mice8.

Posttraumatic mild hypothermia is an effective technique for reducing cerebral metabolism and oxygen con-
sumption, diminishing cytotoxic oedema, stabilizing the blood-brain barrier (BBB), and promoting the survival 
rate after TBI; furthermore, it is widely applied in clinical practice9. Several animal studies have also revealed 
that posttraumatic hypothermia can prevent cell death and axonal degeneration after TBI10,11. In previous study, 
we found that mild hypothermia significantly improved the outcomes of severe TBI compared with that of a 
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normothermia group after a one-year follow-up assessment12. However, the effects of posttraumatic hypothermia 
on TBI-induced dendrite degeneration and spine loss during the early phase of this condition remain unknown.

In the present study, we used thy1-GFP transgenic mice to establish a controlled cortical impact (CCI) injury 
model. We than applied therapeutic mild hypothermia treatment (33 °C) to investigate whether posttraumatic 
hypothermia affects dendrite protection and spine preservation at 1 and 7 days after TBI and determine the pos-
sible underlying mechanisms of this effect.

Methods
Animals. Professor Nan-jie Xu (Department of Anatomy, Histology and Embryology, Neuroscience Division, 
Shanghai Jiao Tong University School of Medicine, Shanghai, China) provided 150 adult (8- to 10-week-old) male 
thy1-GFP transgenic mice for use in this experiment. All the animals were allowed free access to water. Food was 
withheld overnight before surgery. The animals were housed under a 12-h/12-h light/dark cycle at a controlled 
temperature and humidity and were randomly divided into three groups: the TBI with normothermia group 
(TNG; n =  50, 37 °C), the TBI with hypothermia group (THG; n =  50, 33 °C) and the sham group (n =  50). The 
Animal Care and Experiment Committee of the School of Medicine, Shanghai Jiao Tong University approved all 
the animal procedures, and all experiments were performed in accordance with the guidelines of the National 
Institutes of Health regarding animal care.

Controlled cortical impact traumatic brain injury. The animal model of controlled cortical impact 
(CCI) traumatic brain injury (TBI) was prepared as previously described with some modifications8,13. In brief, 
the mice were anaesthetized with 2% isoflurane and endotracheally intubated for mechanical ventilation. A ther-
mal heating blanket was used to maintain the body temperature of the mice at 37 °C. Each mouse was placed in 
a stereotaxic frame (Stoelting, Varese, Italy) prior to TBI. Following a midline incision, a circular craniotomy 
(4-mm diameter) was performed on the left side at a central location midway between the central incision and 
the temporalis muscle and midway between the bregma and lambda. The skullcap was carefully removed without 
disrupting the underlying dura. Prior to the injury, the impacting piston was controlled at a 15°- to 20° angle to 
the vertical plane, such that the impacting tip (3-mm diameter) was perpendicular to the exposed cortical surface. 
The mice (n =  100) were subjected to a severe cortical contusion using an electromagnetically controlled impact-
ing device (PinPoint™  PCI3000 Precision Cortical Impactor™ , Hatteras Instruments, Cary, USA); the amount 
of deformation was set at 1.5 mm, and the piston velocity was set at 3 m/s. In the sham group, the mice received 
craniotomies without CCI injury.

Temperature manipulation. The temperature manipulation was initiated immediately after scalp suturing. 
Temporalis muscle and rectal temperature probes were used to measure brain and body temperatures, respec-
tively. The brain temperatures of the mice in the THG were maintained at 33 °C, and those of the TNG and sham 
group were maintained at 37 °C. Hypothermia was achieved by immersing the packed mice into ice-cold water 
and the mice were protected from direct contact with the water. The target temperature was achieved within 
30 minutes after CCI injury and maintained for 4 h; the mice were then slowly rewarmed to normothermia over 
90 minutes. Twenty mice from each group were sacrificed for western blot analysis (n =  10) and morphological 
observations (n =  10) at 1 and 7 days after CCI injury. Sixty mice were sacrificed at each time point for a total 
of 120 mice. The remaining mice (n =  30, ten mice from each group) were subjected to the Morris water maze 
(MWM) test two weeks after TBI.

Slice preparation. The mice were deeply anesthetized with 2% isoflurane and then perfused transcardially 
with 0.9% saline (4 °C), followed by PBS containing 4% paraformaldehyde (4 °C). Brain samples were collected 
and post-fixed in PBS containing 4% paraformaldehyde overnight at 4 °C. The brains were then dehydrated in 
15%, 20% and 30% gradient sucrose solutions for 24 h at 4 °C in the dark. The brain tissues were then cut into 
50-μ m coronal sections and stored at − 20 °C.

Dendrite morphology analysis and spine quantification. Pyramidal neurons 2 mm adjacent to the 
edge of the cortical cavity were collected for analysis. For each selected neuron, dendrites were taken and recon-
structed (reconstruction thickness, 0.5 μ m) at 200×  magnification using a Zeiss Axio Observer Z1 instrument 
and ZEN (blue edition) software (Zeiss, Oberkochen, Germany). The final reconstructed dendrites were obtained 
using a maximum-intensity projection strategy. The following analysis of the reconstructed dendrites was then 
performed using NeuronJ14 and NeuronStudio15,16. Ten neurons were analysed for each mouse in the three exper-
imental groups. The dendrite morphology analysis included the number of dendritic branches and their total and 
average lengths as well as a Sholl analysis. The Sholl analysis was performed at radial intervals of 30 μ m.

For spine quantification, the spines located at the main apical dendrite were analysed. Images were captured 
and reconstructed (reconstruction thickness, 0.05 μ m) at 630×  magnification (oil immersion objective). The final 
reconstructed spines were obtained using a maximum-intensity projection strategy. The spine quantification was 
assessed at 100-μ m intervals using NeuronStudio. The spines from ten apical dendrites were studied for each 
mouse from the three experimental groups.

Morris water maze. Two weeks after CCI injury, learning and memory functions were evaluated using 
the Morris water maze (MWM) test. The maze was composed of a round black pool 120 cm in diameter and 
50 cm in depth. A black platform 6 cm in diameter and 30 cm in height was placed in the southwest quadrant of 
the pool. The pool was filled with water at 22 ±  1 °C, and the platform was hidden 1 cm under the water surface. 
In each trial, mice were released from one of four directions (east, south, west and north) and allowed to swim. 
Each mouse was allowed 60 s to discover the underwater platform. When the mouse arrived at the platform, it 
was allowed to rest on the platform for 20 s. If the mouse did not find the platform within 60 s, it was guided to 
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the platform and allowed to remain for 20 s. After each trial, the mice were placed in a dry cage. Each mouse was 
tested across four trials starting from four different start positions per day for five consecutive days. On the sixth 
day, each mouse was tested in one trial to assess memory function. Mouse movement was recorded using a video 
tracking system (DigBehv, Jiliang Software Technology Company, Shanghai, China), and the results (including 
latency and swimming distance) were collected and calculated for statistical analysis.

Western blot. Mice were deeply anaesthetized with 2% isoflurane and perfused transcardially with 0.9% 
saline (4 °C). Brain samples were dissected and lysed using the RIPA lysis buffer system (Santa Cruz, California, 
USA). Sample lysates were centrifuged at 4 °C, and the protein supernatants were collected and quantified using 
the BCA protein assay kit (Beyotime, Jiangsu, China). The supernatants were then diluted in 5 ×  SDS load-
ing buffer and denatured at 100 °C for 5 minutes. Protein samples were electrophoretically separated in a 10% 
SDS-PAGE gel or 15% SDS-PAGE gel and transferred onto polyvinylidene difluoride membranes (Millipore, 
Merck KGaA, Darmstadt, Germany). The membranes were then blocked in 5% skim milk at room tempera-
ture for 1 h and incubated overnight at 4 °C with primary antibodies. After washing 3 times for 10 minutes, the 
membranes were incubated with secondary antibodies. Signals were detected using the Immobilon Western 
Chemiluminescent HRP Substrate (Millipore, Merck KGaA, Darmstadt, Germany). The following primary anti-
bodies were obtained: monoclonal rabbit anti-synaptophysin (1:80,000, Abcam, Cambridge, UK), monoclonal 
rabbit anti-glutamate receptor 1 (GluR1; 1:5,000, Abcam, Cambridge, UK), monoclonal rabbit anti-postsynaptic 
density-95 (PSD-95; 1:20,000, Abcam, Cambridge, UK), monoclonal rabbit anti-BDNF (1:1,000, Abcam, 
Cambridge, UK), polyclonal rabbit anti-TrkB (1:1,000, Abcam, Cambridge, UK) and monoclonal mouse 
anti-β -tubulin (1:1,000, Cell Signaling Technology, Beverly, MA, USA). The following secondary antibodies were 
used: goat anti-mouse IgG-HRP (1:5,000, Bioworld Technology, Minnesota, USA) and goat anti-rabbit IgG-HRP 
(1:5,000, Bioworld Technology, Minnesota, USA).

Statistical analysis. All the data are presented as the means ±  standard errors of the mean (SEMs). Statistical 
analyses were performed using SPSS 16.0. Statistical significance was determined using a one-way analysis of var-
iance (ANOVA) followed by Tukey’s post hoc test. Differences in which p <  0.05 were considered as significant.

Results
Posttraumatic hypothermia prevented dendrite degeneration after severe TBI. To determine 
whether posttraumatic hypothermia prevents dendrite branch degeneration in the pericontusion region after 
severe TBI, we assessed the morphology changes of cortical pyramidal neurons in layer V/VI within 2 mm of the 
lesion cavity (Figs 1a and 2a).

One day after severe TBI, significant reductions (p <  0.01) in the number of dendrite branches and total length 
were observed in the TNG and THG compared with the sham group (Fig. 1b). Furthermore, the number of apical 
dendrite branches in the TNG was 3.4 ±  0.2, and the total length of the dendrite branches was 289 ±  42.7 μ m; 
the THG exhibited marked increases in the number of dendrite branches (from 3.4 ±  0.2 to 8.8 ±  1.4, p <  0.01) 
and total length of dendrite branches (from 289 ±  42.7 μ m to 777.8 ±  92.3 μ m, p <  0.01) compared with TNG. 
However, the average length of apical dendrite branches did not significantly differ among the three groups 
(Fig. 1b). Posttraumatic hypothermia exerted a significant protective effect on the apical dendrites, although both 
the number and total length of the dendrite branches did not reach the normal level.

In addition, the basal dendrites of the THG exhibited a marked increase in the total length of dendrite 
branches (504 ±  106.3 μ m) compared with that of the TNG (206.8 ±  33.8 μ m, p =  0.025), whereas the number of 
dendrite branches did not significantly differ between these groups (THG vs. TNG, 7 ±  0.8 vs. 5.4 ±  0.5, respec-
tively, p =  0.4; Fig. 1b). The TNG (41.7 ±  9.9 μ m) exhibited a decrease in the average length of their basal dendrite 
branches compared with that of the sham group (85.8 ±  9.1 μ m, p =  0.035; Fig. 1b).

In addition, a Sholl analysis was performed to evaluate the changes in dendrite complexity. As Fig. 1(c,d) 
shows, the apical and basal dendrites exhibited marked decreases in complexity after severe TBI. The apical den-
drites of the THG showed more intersections than those of the TNG within 90–120 μ m of the neuron soma (90 μ m:  
p =  0.031; 120 μ m: p =  0.033; Fig. 1c). The basal dendrites of the THG exhibited similar intersections to those 
observed in the TNG (Fig. 1d).

Seven days after severe TBI, significant reductions (p <  0.01) in the number of dendrite branches and their 
total length were observed in the TNG compared with the sham group, whereas a reduction (p =  0.018) was only 
observed for the number of apical dendrite branches in the THG compared with the sham group (Fig. 2b). The 
number of basal dendrite branches and their total length did not significantly differ between the THG and sham 
group. Moreover, the number of apical dendrite branches (from 5.7 ±  0.6 to 10.7 ±  1.1, p <  0.01) and the total 
length of dendrite branches (from 600.5 ±  74.1 μ m to 1330 ±  116.1 μ m, p <  0.01) were significantly increased in 
the THG compared with the TNG. The average length of the apical dendrite branches did not significantly differ 
among the three groups (Fig. 2b).

The number of basal dendrite branches and their total length did not significantly differ between the THG 
and sham group (Fig. 2b). In addition, significant increases in the number of dendrite branches (THG vs. TNG, 
11.3 ±  0.9 vs. 5.2 ±  0.7, respectively, p <  0.01) and total length (THG vs. TNG, 870.4 ±  93.0 μ m vs. 277.3 ±  31.9 μ m,  
respectively, p <  0.01) were observed. The TNG (54.6 ±  4.4 μ m) exhibited a decreased average basal dendrite 
branch length compared with the sham group (86.0 ±  8.6 μ m, p =  0.018; Fig. 2b).

The Sholl analysis showed that the complexity of the apical and basal dendrites did not significantly differ 
between the THG and sham group (Fig. 2c,d). Moreover, the apical dendrites of the THG showed more intersec-
tions than those in the TNG 90–120, 180 and 390 μ m from the neuron soma (90 μ m, p =  0.035; 120 μ m, p =  0.047; 
180 μ m, p <  0.01; 390 μ m, p =  0.036; Fig. 2c). The basal dendrites of the THG showed more intersections than 
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those in the TNG 30–120 μ m from the neuron soma (30 μ m, p =  0.010; 60 μ m, p <  0.01; 90 μ m, p <  0.01; 120 μ m, 
p =  0.037; Fig. 2d).

These results clearly indicate that posttraumatic hypothermia significantly prevented dendrite degeneration at 
1 and 7 days after severe TBI. Moreover, the number of basal dendrite branches and the total length of apical and 
basal dendrite branches reached the normal level 7 days after severe TBI.

Posttraumatic hypothermia prevented spine loss after severe TBI. To further investigate whether 
posttraumatic hypothermia prevents spine loss after severe TBI, we evaluated the apical dendrite spines of the 

Figure 1. Posttraumatic hypothermia prevented dendrite degeneration 1 day after severe TBI. (a) Image 
data were collected using fluorescence microscope. Left panel: Cortical pyramidal neurons within 2 mm of 
the lesion cavities of the three groups. Right panel: Reconstruction of the cortical pyramidal neurons in the 
three groups. (b) Branches number, total length and average length were compared across the three groups. 
Compared with the TNG, the THG showed increased branch number and total length in apical dendrites as 
well as increased total length in basal dendrites. (c,d) A Sholl analysis was used to assess the observed changes 
in dendrite complexity. Compared with the TNG, the THG had more intersections 90–120 μ m from the neuron 
soma in the apical dendrites. The data are represented as mean ±  SEMs and analysed using one-way analysis of 
variance (ANOVA) followed by Tukey’s post hoc test, n =  10, *p <  0.05, **p <  0.01, THG or sham versus TNG. 
TNG, the traumatic brain injury with normothermia group; THG, the traumatic brain injury with hypothermia 
group.
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cortical pyramidal neurons in layer V/VI within 2 mm of the lesion cavity. As Fig. 3 shows, the mice underwent 
a marked spine loss 2 mm from the edge of lesion cavity compared with that of the sham group 1 day after severe 
TBI (0–1 mm, p <  0.01; 1–2 mm, p <  0.01). Between 0 and 1 mm, the spine density did not differ between the 
THG (37.2 ±  1.7/100 μ m) and TNG (36.6 ±  1.8/100 μ m; p =  0.97; Fig. 3a). Between 1 and 2 mm area, the spine 
density in THG was significantly increased from 37.2 ±  1.7/100 μ m to 54.6 ±  2.9/100 μ m (p <  0.01), whereas that 
in the TNG remained at a low level, from 36.6 ±  1.8/100 μ m to 41 ±  1.6/100 μ m (Fig. 3b).

Seven days after severe TBI, spine density continued to dramatically decrease in the THG and TNG compared 
with that of the sham group (p <  0.01) in the 0–1 mm area (Fig. 4c). However, the THG (54.6 ±  1.6/100 μ m)  

Figure 2. Posttraumatic hypothermia prevented dendrite degeneration 7 days after severe TBI. (a) Image 
data were collected using fluorescence microscopy. Left panel: Cortical pyramidal neurons within 2 mm of 
the lesion cavities of the three groups. Right panel: Reconstruction of cortical pyramidal neurons in the three 
groups. (b) Branch number, total length and average length were compared across the three groups. Compared 
with the TNG, the THG showed increased branch number and total length in apical and basal dendrites.  
(c,d) A Sholl analysis was used to assess the observed changes in dendrite complexity. Compared with the TNG, 
the THG had more intersections 90–120, 180 and 390 μ m from the neuron soma in the apical dendrites and  
30–120 μ m from the neuron soma in basal dendrites. The data are represented as the means ±  SEMs and 
analysed using a one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, n =  10, *p <  0.05, 
**p <  0.01, THG or sham vs. TNG. TNG, the traumatic brain injury with normothermia group; THG, the 
traumatic brain injury with hypothermia group.
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showed a higher spine density than the TNG (35.6 ±  1.7/100 μ m; p <  0.01). In the 1–2 mm area, the spine den-
sity did not significantly differ between the THG (65.4 ±  1.5/100 μ m) and the sham group (66.6 ±  1.5/100 μ m; 
p =  0.83), whereas that of the TNG (52.2 ±  1.3/100 μ m) was still maintained at a low level (Fig. 4b).

These results show that posttraumatic hypothermia prevented spine loss at both 1 and 7 days after severe TBI.

Posttraumatic hypothermia improved learning and memory function after severe TBI. The 
MWM test was performed to assess the effect of posttraumatic hypothermia on learning and memory func-
tions after severe TBI. Latency (the time taken to find the platform), swimming speed and swimming distance 
were analysed. Figure 5 compares the TNG with the sham group regarding latency (51.28 ±  4 s vs. 12.29 ±  1.47 s, 
respectively) and swimming distance (14,873 ±  943 mm vs. 3,564 ±  472 mm, respectively), showing that these 
values were significantly increased on the MWM test six days after severe TBI for the former group (p <  0.01). 
Compared with the corresponding values in the TNG, the latency and the swimming distance of the THG 
were significantly attenuated (latency, 51.28 ±  4 s vs. 27.36 ±  2.44 s, respectively, p <  0.01; swimming distance, 
14,873 ±  943 mm vs. 7,967 ±  714 mm, respectively, p <  0.01). These findings suggested that hypothermia pro-
tected learning and memory function and improved behavioural outcomes after severe TBI. However, the latency 
and swimming distance in THG remained two-fold greater than the corresponding values in the sham group, 
indicating that learning and memory functions in the THG did not reach normal levels. In addition, swimming 

Figure 3. Posttraumatic hypothermia prevented spine loss 1 day after severe TBI. (a) Representative images 
and quantitative analyses of spines (right bottom panel) in the three groups within 0–1 mm from the edge of 
the lesion cavity. (b) Representative images and quantitative analyses of the spines (right bottom panel) of 
three groups within 1–2 mm from the edge of the lesion cavity. High-resolution images were captured using 
fluorescence microscopy at a magnification of 630× . The data are represented as the means ±  SEMs and 
analysed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, n =  10, **p <  0.01, 
THG or sham versus TNG. TNG, the traumatic brain injury with normothermia group; THG, the traumatic 
brain injury with hypothermia group.
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speed did not significantly differ among the three groups. This result suggested that severe TBI did not affect the 
swimming speed of the mice, and motor function did not affect latency.

Posttraumatic hypothermia increased synaptic protein expression after severe TBI. To further 
elucidate the protective effect of posttraumatic hypothermia on cortical neuron dendrites and spines after severe 
TBI, we assessed the changes in the expression of the synaptic proteins PSD-95, synaptophysin and GluR1 at 1 
and 7 days after severe TBI in the ipsilateral cortex and hippocampus. Western blot analysis was performed to 
evaluate PSD-95, synaptophysin and GluR1 expression levels, and the data are shown in Fig. 6. Compared with 
the TNG, the THG showed significantly increased protein levels of PSD-95 and GluR1 (PSD-95 and GluR1 at 
1 day in the ipsilateral cortex and hippocampus, p <  0.01; PSD-95 at 7 days in the ipsilateral cortex and hip-
pocampus, p =  0.024 and p =  0.012; GluR1 at 7 days in the ipsilateral cortex and hippocampus, p =  0.017 and 
p <  0.01) at 1 and 7 days after severe TBI in the ipsilateral cortex and hippocampus, whereas the expression level 
of synaptophysin did not significantly differ among the three groups at any of the times tested. These results 
demonstrated that posttraumatic hypothermia increased the expression levels of PSD-95 and GluR1 in cortical 
and hippocampal pyramidal neurons after severe TBI, and this effect might be the result of dendrite and spine 
protection, leading to learning and memory function preservation.

Posttraumatic hypothermia increased BDNF expression after severe TBI. To further investi-
gate the mechanism through which induced hypothermia preserved dendrite and spine loss after severe TBI,  

Figure 4. Posttraumatic hypothermia prevented spine loss 7 days after severe TBI. (a) Representative images 
and quantitative analyses of the spines (right bottom panel) of the three groups within 0–1 mm from the edge 
of the lesion cavity. (b) Representative images and quantitative analyses of the spines (right bottom panel) in 
the three groups within 1–2 mm from the edge of the lesion cavity. High-resolution images were captured using 
fluorescence microscopy at a magnification of 630× . The data are represented as the means ±  SEMs and were 
analysed using a one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, n =  10, **p <  0.01, 
THG or sham vs. TNG. TNG, the traumatic brain injury with normothermia group; THG, the traumatic brain 
injury with hypothermia group.
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we detected the tissue levels of BDNF and TrkB (i.e., the receptor for BDNF) at 1 and 7 days after severe TBI in 
the ipsilateral cortex and hippocampus. Western blot analysis showed that the protein levels of BDNF were signif-
icantly increased in the ipsilateral cortex and hippocampus of the THG at 1 and 7 days after TBI compared with 
that of the TNG and the sham group (p <  0.01); in contrast, the protein levels did not markedly differ between 
the TNG and the sham group (Fig. 7). In contrast, no significant changes in the TrkB protein levels were detected 
in the ipsilateral cortex and hippocampus of the three groups at any of the times tested. These data suggest that 
hypothermia-induced dendrite and spine preservation is associated with increased tissue levels of BDNF that 
continue for at least 7 days in the ipsilateral cortex and hippocampus after TBI.

Discussion
Severe TBI not only causes direct brain injury but also induces secondary damage over the days immediately fol-
lowing. TBI causes dendrite degeneration and a significant decrease in the level of the dendrite-associated protein 
microtubule associated protein-2 (MAP2) at both the primary injury site and pericontused regions in vitro8,17. 
Moreover, the density of dendritic spines in the ipsilateral and contralateral cortex was dramatically reduced in 
mice after TBI5. Increasing evidence suggests that impaired dendrite and spines directly affect synaptic plasticity, 
which plays a critical role in neuronal function and behavioural modulation8,18. Therefore, protecting spared neu-
ral dendrites and spines after TBI might be a promising method that warrants additional research.

Mild hypothermia has been applied as an effective approach to prevent neuron death and promote cell survive 
after TBI10,11. Our previous research demonstrated that patients with severe TBI showed significantly improved out-
comes after mild hypothermia therapy compared with a normothermia group after 1-year follow-up assessment12.  
The present study used thy1-GFP transgenic mice to explore whether hypothermia prevents dendrite and spine 
degeneration and improves behavioural outcomes in mice with severe TBI. Our results revealed that hypothermia 
markedly prevented dendrite degeneration and preserved dendrite complexity 1 and 7 days after severe TBI. The 
number of branches and total length of the apical dendrites in the THG were significantly increased compared 
with those in the TNG, and the total length of the apical dendrites did not significantly differ between the THG 
and the sham group 7 days after severe TBI. A Sholl analysis showed that the preserved branches of the apical 
dendrites were primarily concentrated 90–120 μ m from the neuron soma 1 day after severe TBI as well as 90–120, 
180 and 390 μ m from the neuron soma 7 days after severe TBI. Posttraumatic hypothermia also protected basal 

Figure 5. Posttraumatic hypothermia improved learning and memory function recovery after severe TBI. 
(a) Typical swimming patterns of the mice in all three groups on the sixth day of the Morris water maze test. 
(b) The Morris water maze test showed that the latency and the swimming distance of the mice in the THG had 
significantly decreased compared with those in the TNG 2 weeks after severe TBI. However, swimming speed 
did not significantly differ among the three groups. The data are represented as the means ±  SEM and were 
analysed using a one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, n =  10, **p <  0.01, 
THG or sham vs. TNG. TNG, the traumatic brain injury with normothermia group; THG, the traumatic brain 
injury with hypothermia group.
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dendrites from secondary injury. The total length of the basal dendrites in the THG was dramatically longer than 
those in the TNG 1 and 7 days after severe TBI and did not significantly differ from those in the sham group 
7 days after severe TBI. However, the number of branches did not significantly differ between the THG and 
TNG 1 day after severe TBI, although a trend towards more branches in the THG compared with the TNG was 
observed. At 7 days after injury, however, the number of branches in the THG dramatically increased compared 
with the TNG and did not significantly differ from the sham group. The Sholl analysis showed that the preserved 
basal dendrite branches were concentrated primarily 30–120 μ m from the neuron soma 7 days after injury. Our 
data showed that the effect of hypothermia on dendrite protection was persistent and continued for at least 7 days.

Dendritic spines are tiny, functional protrusions on the surface of dendrites that act as postsynaptic compo-
nents to form synapses with the axonal terminal of neurons. Our study demonstrated that hypothermia affected 
spine protection after severe TBI. Interestingly, we found that this prevention of spine loss was regionally limited. 

Figure 6. Temporal profile of synaptic proteins expression after severe TBI. (a) Western blot analysis was 
performed to evaluate the PSD-95, synaptophysin and GluR1 expression levels in the cortex 1 and 7 days after 
injury. (b) Western blot analysis was performed to evaluate the PSD-95, synaptophysin and GluR1 expression 
levels in hippocampus 1 and 7 days after injury. (c,d) Quantitative analyses of the PSD-95, synaptophysin and 
GluR1 expression levels in the cortex and hippocampus were performed. The results of these analyses were 
normalized to β -tubulin levels. The data are represented as means ±  SEM and analysed using a one-way analysis 
of variance (ANOVA) followed by Tukey’s post hoc test, n =  10, **p <  0.01, THG or sham vs. TNG. TNG, the 
traumatic brain injury with normothermia group; THG, the traumatic brain injury with hypothermia group.
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Our spine analysis revealed that hypothermia significantly increased spine density 1–2 mm adjacent to the edge of 
the cavity; in contrast, no obvious difference were observed between the TNG and THG 0–1 mm from the edge of 
the CCI-induced cavity 1 day after severe TBI. Moreover, although the THG presented with a higher spine density 
than the TNG 7 days after injury, the spine density observed in the THG remained significantly lower than that 
of the sham group. The following reasons might account for this finding. After severe CCI, certain neurons in 
the nearby area suffered severe and irreversible secondary damage that hypothermia did not prevent. However, 
hypothermia limits the area of this irreversible damage and preserves more spines.

This study also found that posttraumatic hypothermia improves learning and memory function after severe 
TBI according to the MWM test. Furthermore, the sham group showed significantly better learning and memory 
than the THG. These data indicate that the protection of cognitive function via posttraumatic hypothermia is 
limited. Several modifications might be needed to optimize this treatment, such as finding the best depth and 
duration of hypothermia or combining this treatment with other therapies.

As a critical component of postsynaptic densities, PSD-95 functions as a N-methyl-D-aspartate (NMDA) 
glutamate receptor-associated protein in central synapses19,20. Several studies have reported that the NMDA gluta-
mate receptor complex plays a central role in synaptic plasticity and memory formation21,22. Abnormal decreases 
in PSD-95 protein expression contribute to memory impairment in vitro23,24. This study found that PSD-95 
expression was markedly increased in hypothermic mice after CCI compared with that measured in the TNG.

In addition to PSD-95, GluR1 is an important synaptic protein. GluR1 is a subunit of the α -amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor that mediates the most rapid excitatory synaptic 

Figure 7. Temporal profile of BDNF and TrkB protein expression levels after severe TBI. (a) Western blot 
analysis was performed to evaluate the BDNF and TrkB expression levels in the cortex 1 and 7 days after injury. 
(b) Western blot analysis was performed to evaluate the BDNF and TrkB expression levels in the hippocampus 
1 and 7 days after injury. (c,d) Quantitative analyses of the BDNF and TrkB expression levels in the cortex and 
hippocampus were performed. The results of the quantitative analyses were normalized to β -tubulin levels. The 
data are represented as the means ±  SEM and analysed using a one-way analysis of variance (ANOVA) followed 
by Tukey’s post hoc test, n =  10, **p <  0.01, THG or sham vs. TNG. TNG, the traumatic brain injury with 
normothermia group; THG, the traumatic brain injury with hypothermia group.
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transmission in the central nervous system25. Decreased GluR1 expression in pathological conditions is accom-
panied by dendritic spine loss and memory damage in rats26. Importantly, the present study showed that hypo-
thermia dramatically increased PSD-95 and GluR1 protein levels after CCI, and their expression remained at 
normal levels. These findings might account for the effects of hypothermia regarding the promotion of learning 
and memory functional recovery after CCI.

Synaptophysin, one of the primary calcium-binding proteins, is distributed on the synaptic vesicle mem-
branes. In neurons and neuroendocrine cells, synaptophysin promotes the formation of synaptic vesicles and reg-
ulates vesicular endocytosis27,28. Our results showed that the protein level of synaptophysin did not significantly 
differ among the three groups. This result suggests that TBI might have few effects on the formation of synaptic 
vesicles and biological processes that are closely related to vesicular endocytosis. Additional research is needed to 
investigate this possibility.

BDNF is a member of the neurotrophin family and mediates many activity-dependent processes in the mam-
malian brain, including axon and dendrite growth, synapse formation and plasticity, and long-term memory and 
learning functions29,30. The up-regulation of BDNF in the brain can stimulate synaptic protein expression and 
promote functional and cognitive recovery after TBI31,32. Increased levels of BDNF can also up-regulate GluR1 
protein levels in 7-day in vitro cultured hippocampal neurons33 and increase PDS-95 levels in dendritic spines 
through dynamic microtubule invasion34. Moreover, the absence of BDNF in conditional BDNF-knockout mice 
leads to the region-specific reduction of dendritic complexity and spine density35. However, the direct intravenous 
injection of BDNF has no effect on cerebral BDNF levels because BDNF cannot be transported through the BBB 
in vivo36. Previous studies have shown that the induction of hypothermia during reperfusion improves neurolog-
ical outcomes that might be associated with increased hippocampal levels of BDNF and TrkB (i.e., the receptor 
for BDNF) after asphyxia-related cardiac arrest37. Therefore, we hypothesized that posttraumatic hypothermia 
prevents dendrite degeneration and spine loss through the up-regulation of BDNF and TrkB after severe TBI. The 
data obtained here demonstrate that posttraumatic hypothermia can increase the cortical and hippocampal levels 
of BDNF at 1 and 7 days after severe TBI, whereas the expression of BDNF remained at a low level in the TNG and 
sham group. However, the tissue levels of TrkB did not differ among the three groups in the ipsilateral cortex and 
hippocampus at 1 and 7 days after injury. Increased levels of BDNF after induced hypothermia might explain the 
observed dendrite and spine preservation, learning and memory function promotion and increased protein levels 
of GluR1 and PSD-95 in the THG at 1 and 7 days after severe TBI.

In conclusion, our study demonstrated that the induction of posttraumatic hypothermia augments the tissue 
levels of BDNF in the ipsilateral cortex and hippocampus and dramatically prevents dendrite and spine degen-
eration and improves behavioural outcomes in mice after severe CCI. These findings revealed a new function of 
posttraumatic hypothermia in addition to reducing mortality, BBB disruption, cell death and axon injury10,38–40. 
Moreover, the mechanisms that underlie the effects of therapeutic hypothermia on dendrite and spine preserva-
tion as well as neuronal recovery promotion after TBI might be partially associated with increased levels of BDNF. 
However, other processes might also contribute to the beneficial effects of induced hypothermia. Additional 
investigations to explain these observations are warranted.

References
1. Brazinova, A. et al. Epidemiology of traumatic brain injury in Europe: a living systematic review. J Neurotrauma, doi: 10.1089/

neu.2015.4126 (2015).
2. Popescu, C., Anghelescu, A., Daia, C. & Onose, G. Actual data on epidemiological evolution and prevention endeavours regarding 

traumatic brain injury. J Med Life 8, 272–277 (2015).
3. Carbonell, W. S. & Grady, M. S. Regional and temporal characterization of neuronal, glial, and axonal response after traumatic brain 

injury in the mouse. Acta Neuropathol 98, 396–406 (1999).
4. Brodhun, M. et al. Immunomorphological sequelae of severe brain injury induced by fluid-percussion in juvenile pigs–effects of 

mild hypothermia. Acta Neuropathol 101, 424–434 (2001).
5. Winston, C. N. et al. Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced 

amyloid-beta accumulation. J Neurotrauma 30, 1966–1972, doi: 10.1089/neu.2013.2960 (2013).
6. Sun, M. K., Nelson, T. J. & Alkon, D. L. Towards universal therapeutics for memory disorders. Trends Pharmacol Sci 36, 384–394, 

doi: 10.1016/j.tips.2015.04.004 (2015).
7. Winston, C. N. et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head 

Trauma. Am J Pathol 186, 552–567, doi: 10.1016/j.ajpath.2015.11.006 (2016).
8. Zhao, S., Gao, X., Dong, W. & Chen, J. The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After 

Moderate Traumatic Brain Injury. Mol Neurobiol 53, 1884–1895, doi: 10.1007/s12035-015-9128-z (2016).
9. Choi, H. A., Badjatia, N. & Mayer, S. A. Hypothermia for acute brain injury–mechanisms and practical aspects. Nat Rev Neurol 8, 

214–222, doi: 10.1038/nrneurol.2012.21 (2012).
10. Jin, Y. et al. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate 

Traumatic Brain Injury. J Neurotrauma 32, 1090–1100, doi: 10.1089/neu.2014.3649 (2015).
11. Ma, M. et al. Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury. 

Exp Neurol 215, 119–127, doi: 10.1016/j.expneurol.2008.09.024 (2009).
12. Jiang, J., Yu, M. & Zhu, C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year 

follow-up review of 87 cases. J Neurosurg 93, 546–549, doi: 10.3171/jns.2000.93.4.0546 (2000).
13. Anderson, K. J. et al. The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of 

traumatic brain injury. J Neurotrauma 25, 1079–1085, doi: 10.1089/neu.2007.0488 (2008).
14. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 

58, 167–176, doi: 10.1002/cyto.a.20022 (2004).
15. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R. & Wearne, S. L. Automated three-dimensional detection and shape 

classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997, doi: 10.1371/journal.pone.0001997 
(2008).

16. Wearne, S. L. et al. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple 
scales. Neuroscience 136, 661–680, doi: 10.1016/j.neuroscience.2005.05.053 (2005).

17. Posmantur, R. M. et al. Diminished microtubule-associated protein 2 (MAP2) immunoreactivity following cortical impact brain 
injury. J Neurotrauma 13, 125–137, doi: 10.1089/neu.1996.13.125 (1996).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:37063 | DOI: 10.1038/srep37063

18. Zhang, H. et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat 
Commun 7, doi: 10.1038/ncomms11773 (2016).

19. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).
20. Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 

801–812 (1997).
21. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39, doi: 

10.1038/361031a0 (1993).
22. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in 

spatial memory. Cell 87, 1327–1338 (1996).
23. Goodfellow, M. J., Abdulla, K. A. & Lindquist, D. H. Neonatal Ethanol Exposure Impairs Trace Fear Conditioning and Alters NMDA 

Receptor Subunit Expression in Adult Male and Female Rats. Alcohol Clin Exp Res 40, 309–318, doi: 10.1111/acer.12958 (2016).
24. Kennedy, B. C. et al. Deletion of novel protein TMEM35 alters stress-related functions and impairs long-term memory in mice. Am 

J Physiol Regul Integr Comp Physiol 311, R166–R178, doi: 10.1152/ajpregu.00066.2016 (2016).
25. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu Rev Neurosci 17, 31–108, doi: 10.1146/annurev.

ne.17.030194.000335 (1994).
26. Wang, T. et al. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology 

During Juvenile Period. Mol Neurobiol 53, 3740–3752, doi: 10.1007/s12035-015-9312-1 (2016).
27. Kwon, S. E. & Chapman, E. R. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70, 

847–854, doi: 10.1016/j.neuron.2011.04.001 (2011).
28. Pyeon, H. J. & Lee, Y. I. Differential expression levels of synaptophysin through developmental stages in hippocampal region of 

mouse brain. Anat Cell Biol 45, 97–102, doi: 10.5115/acb.2012.45.2.97 (2012).
29. Minichiello, L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10, 850–860, doi: 10.1038/nrn2738 (2009).
30. Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14, 7–23, doi: 10.1038/

nrn3379 (2013).
31. Griesbach, G. S., Hovda, D. A. & Gomez-Pinilla, F. Exercise-induced improvement in cognitive performance after traumatic brain 

injury in rats is dependent on BDNF activation. Brain Res 1288, 105–115, doi: 10.1016/j.brainres.2009.06.045 (2009).
32. Ma, H., Yu, B., Kong, L., Zhang, Y. & Shi, Y. Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate 

synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. 
Neurochem Res 37, 69–83, doi: 10.1007/s11064-011-0584-1 (2012).

33. Caldeira, M. V. et al. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282, 12619–12628, doi: 10.1074/jbc.
M700607200 (2007).

34. Hu, X. et al. BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci 31, 
15597–15603, doi: 10.1523/JNEUROSCI.2445-11.2011 (2011).

35. Rauskolb, S. et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for 
dendritic growth. J Neurosci 30, 1739–1749, doi: 10.1523/JNEUROSCI.5100-09.2010 (2010).

36. Pardridge, W. M., Kang, Y. S. & Buciak, J. L. Transport of human recombinant brain-derived neurotrophic factor (BDNF) through 
the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm Res 11, 738–746 (1994).

37. D’Cruz, B. J. et al. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb 
Blood Flow Metab 22, 843–851, doi: 10.1097/00004647-200207000-00009 (2002).

38. Clark, R. S. et al. Mild posttraumatic hypothermia reduces mortality after severe controlled cortical impact in rats. J Cereb Blood 
Flow Metab 16, 253–261, doi: 10.1097/00004647-199603000-00010 (1996).

39. Jiang, J. Y., Lyeth, B. G., Kapasi, M. Z., Jenkins, L. W. & Povlishock, J. T. Moderate hypothermia reduces blood-brain barrier 
disruption following traumatic brain injury in the rat. Acta Neuropathol 84, 495–500 (1992).

40. Koizumi, H. & Povlishock, J. T. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic 
axonal injury. J Neurosurg 89, 303–309, doi: 10.3171/jns.1998.89.2.0303 (1998).

Acknowledgements
This research was supported by grants from the National Natural Science Foundation of China (30901543, 
31371406 and 81471856) and the National Key Basic Research Program (2012CB518100). JFF has also received 
funding from the Science and Technology Commission of Shanghai Municipality (13ZR1424500), Shanghai 
Municipal Health Bureau (XYQ2013094) and SMC-Star Award for Young Scholars (B).

Author Contributions
C.F.W. and C.C.Z. performed the animal CCI model, temperature manipulation, Morris water maze test, western 
blot, writing of the manuscript and participated in the design of the study. G.J. and X.G. performed dendrite 
morphology analysis, spine quantification and data analysis. J.F.F. and J.Y.J. participated in the study design, data 
analysis and manuscript writing. All authors have read and approved the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, C.-f. et al. The Role of Posttraumatic Hypothermia in Preventing Dendrite 
Degeneration and Spine Loss after Severe Traumatic Brain Injury. Sci. Rep. 6, 37063; doi: 10.1038/srep37063 
(2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	The Role of Posttraumatic Hypothermia in Preventing Dendrite Degeneration and Spine Loss after Severe Traumatic Brain Injur ...
	Methods
	Animals. 
	Controlled cortical impact traumatic brain injury. 
	Temperature manipulation. 
	Slice preparation. 
	Dendrite morphology analysis and spine quantification. 
	Morris water maze. 
	Western blot. 
	Statistical analysis. 

	Results
	Posttraumatic hypothermia prevented dendrite degeneration after severe TBI. 
	Posttraumatic hypothermia prevented spine loss after severe TBI. 
	Posttraumatic hypothermia improved learning and memory function after severe TBI. 
	Posttraumatic hypothermia increased synaptic protein expression after severe TBI. 
	Posttraumatic hypothermia increased BDNF expression after severe TBI. 

	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  Posttraumatic hypothermia prevented dendrite degeneration 1 day after severe TBI.
	Figure 2.  Posttraumatic hypothermia prevented dendrite degeneration 7 days after severe TBI.
	Figure 3.  Posttraumatic hypothermia prevented spine loss 1 day after severe TBI.
	Figure 4.  Posttraumatic hypothermia prevented spine loss 7 days after severe TBI.
	Figure 5.  Posttraumatic hypothermia improved learning and memory function recovery after severe TBI.
	Figure 6.  Temporal profile of synaptic proteins expression after severe TBI.
	Figure 7.  Temporal profile of BDNF and TrkB protein expression levels after severe TBI.



 
    
       
          application/pdf
          
             
                The Role of Posttraumatic Hypothermia in Preventing Dendrite Degeneration and Spine Loss after Severe Traumatic Brain Injury
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37063
            
         
          
             
                Chuan-fang Wang
                Cheng-cheng Zhao
                Gan Jiang
                Xiao Gu
                Jun-feng Feng
                Ji-yao Jiang
            
         
          doi:10.1038/srep37063
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep37063
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep37063
            
         
      
       
          
          
          
             
                doi:10.1038/srep37063
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37063
            
         
          
          
      
       
       
          True
      
   




