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Purpose: Bone is one of the most common sites for the spread of malignant

tumors. Patients with bone metastases whose prognosis was shorter than 3

months (early death) were considered as surgical contraindications. However,

the information currently available in the literature limits our capacity to assess

the risk likelihood of 3 month mortality. As a result, the study’s objective is to

create an accurate prediction model utilizing machine-learning techniques to

predict 3 month mortality specifically among lung cancer patients with bone

metastases according to easily available clinical data.

Methods: This study enrolled 19,887 lung cancer patients with bone

metastases between 2010 and 2018 from a large oncologic database in the

United States. According to a ratio of 8:2, the entire patient cohort was

randomly assigned to a training (n= 15881, 80%) and validation (n= 4,006, 20%)

group. In the training group, prediction models were trained and optimized

using six approaches, including logistic regression, XGBoosting machine,

random forest, neural network, gradient boosting machine, and decision

tree. There were 13 metrics, including the Brier score, calibration slope,

intercept-in-large, area under the curve (AUC), and sensitivity, used to assess

the model’s prediction performance in the validation group. In each metric,

the best prediction e�ectiveness was assigned six points, while the worst was

given one point. The model with the highest sum score of the 13 measures

was optimal. The model’s explainability was performed using the local

interpretable model-agnostic explanation (LIME) according to the optimal

model. Predictor importance was assessed using H2O automatic machine

learning. Risk stratification was also evaluated based on the optimal threshold.

Results: Among all recruited patients, the 3monthmortality was 48.5%. Twelve

variables, including age, primary site, histology, race, sex, tumor (T) stage,
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node (N) stage, brain metastasis, liver metastasis, cancer-directed surgery,

radiation, and chemotherapy, were significantly associated with 3 month

mortality based on multivariate analysis, and these variables were included

for developing prediction models. With the highest sum score of all the

measurements, the gradient boosting machine approach outperformed all

the other models (62 points), followed by the XGBooting machine approach

(59 points) and logistic regression (53). The area under the curve (AUC) was

0.820 (95% confident interval [CI]: 0.807–0.833), 0.820 (95% CI: 0.807–0.833),

and 0.815 (95% CI: 0.801–0.828), respectively, calibration slope was 0.97,

0.95, and 0.96, respectively, and accuracy was all 0.772. Explainability of

models was conducted to rank the predictors and visualize their contributions

to an individual’s mortality outcome. The top four important predictors

in the population according to H2O automatic machine learning were

chemotherapy, followed by liver metastasis, radiation, and brain metastasis.

Compared to patients in the low-risk group, patients in the high-risk group

were more than three times the odds of dying within 3 months (P < 0.001).

Conclusions: Using machine learning techniques, this study o�ers a number

of models, and the optimal model is found after thoroughly assessing and

contrasting the prediction performance of eachmodel. The optimalmodel can

be a pragmatic risk prediction tool and is capable of identifying lung cancer

patients with bone metastases who are at high risk for 3 month mortality,

informing risk counseling, and aiding clinical treatment decision-making. It is

better advised for patients in the high-risk group to have radiotherapy alone,

the best supportive care, or minimally invasive procedures like cementoplasty.

KEYWORDS

lung cancer, bone metastasis, machine learning, mortality, clinical decision-making,

model explainability

Introduction

Lung cancer is a major public health concern worldwide.

Its mortality came in first and its incidence came in second

among all cancer survivors. In 2020, 2.2 million new lung cancer

cases were diagnosed, making for 11.4% of all new cases, and in

the same year ∼1.8 million deaths were reported based on the

Global Cancer Statistics (1). Additionally, the number of lung

cancer patients was continuing to increase and was estimated to

be doubled in 2040 (1).

Metastasis in lung cancer is a multiple process involving

several isolated and overlapping steps such as angiogenesis,

hypoxia, circulation, and establishment of a metastatic cancer

focus (2, 3). Bone is one of themost typical places for lung cancer

patients to develop metastases (4). Lung cancer cells and bone-

forming cells interact in two directions, which gives malignant

cancers a selection advantage and allows them to both destroy

bone and produce new bone (4). It was estimated that bone

metastases, primarily in the form of osteolytic disease, occurred

in 13.2% (5) to 53% (6) of lung cancer patients. Bone metastases

could lead to skeletal-related events, which remarkably affected

the quality of life and shortened the survival time of lung cancer

patients by half (7, 8).

Lung cancer patients who had bone metastases had a

somewhat poor prognosis for survival, with a median survival

period of roughly 4.0 to 5.0months (9, 10). The goal of treatment

for this disease was to preserve or enhance the patient’s quality

of remaining life. As new treatment modalities such as targeted

therapy, new agents, and immunotherapy improved (11, 12),

surgical treatments to assist reduce skeletal-related problems

also increased (13). To explain, secure long-bone fixation

and decompressive spine surgery were able to maintain or

enhance ambulatory function and overall performance status,

but surgery was also a two-edged weapon since improper

surgical interventions might accelerate patients’ death.

In such a situation, determining the best therapeutic strategy

became a major concern, requiring doctors to strike a balance

between the risk associated with cancer therapies and quality

of life for the remaining life period among those patients.

Survival estimation seemed to be a critical step and was able

to guide the management of bone metastases. Broadly speaking,

it was no longer advised to perform surgery on patients with a
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life expectancy of <3 months (14–16). Consequently, accurate

survival prediction is crucial since over- or underestimating the

likelihood of survival might give rise to ineffective treatment,

such as either overly aggressive or insufficient therapies.

Machine learning is a collection of approaches that involve

exploring non-linear associations between inputs and outputs,

and further assessing the probability of the outcome in

another dataset using developed algorithms (17, 18). Machine

learning was widely and increasingly used in early cancer

detection, treatments, and the molecular processes that underlie

cancer (17, 19, 20). Notably, machine learning outperformed

conventional eligibility criteria (20) and other non-machine

learning methods (21).

The study’s objective is to develop a reliable prediction

model for predicting 3 month mortality specifically among

lung cancer patients with bone metastases. Six approaches

including logistic regression, XGBoosting machine, random

forest, neural network, gradient boosting machine, and decision

tree were introduced. There were 13 metrics used to assess and

compare the performance of models’ predictions. To accurately

predict survival prognosis among those patients, this study

hypothesized that machine learning approaches were able to

develop a series of models and the optimal model could be found

via comparisons.

Methods

Patients and study design

The study analyzed 61,036 patients with bone metastases

between 2010 and 2018 from a large oncologic database in the

United States (https://seer.cancer.gov/). This database, which

receives funding from the Surveillance Research Program at

the National Cancer Institute, serves as an authoritative source

of information on the country’s 28.0% cancer prevalence rate.

The database can be accessed publicly and provide patient data

without specific identification, so ethics approval and informed

consent were not required. We obtained approval to access the

database of the National Cancer Institute in the United States

using the reference number (23489-Nov2020). The human data

was in accordance with the Helsinki Declaration.

Patients with lung cancer and bonemetastases were included

for analysis. The following were the exclusive criteria: (1)

Patients had to be 18 years of age or older; (2) Patients died

due to missing or undetermined reasons; (3) Missing data; (4)

Patients had cancer other than lung cancer; (5) Patient were alive

with a follow-up of <3 months. Patients with bone metastases

who met the inclusive and exclusive criteria were enrolled (n =

19,887). A diagram of patients is shown in Figure 1. All patients

were randomly split 8:2 into a training group (n = 15,881, 80%)

and a validation group (n= 4,006, 20%). Patients in the training

group were used to train and optimize models, and patients in

the validation group were used to validate models.

Potential predictors

There were 13 variables from the database included for

analysis, including age, primary site [main bronchus vs.

upper lobe vs. middle lobe vs. lower lobe vs. overlapping

lesion vs. lung, not otherwise specified (NOS)], histology

(unspecified neoplasms vs. epithelial neoplasms (NOS) vs.

squamous cell neoplasms vs. adenomas and adenocarcinomas

vs. others), race (black vs. others vs. unknown vs. white),

sex (female vs. male), Tumor (T) stage (T0 vs. T1 vs. T2

vs. T3 vs. T4 vs. TX), Node (N) stage (N0 vs. N1 vs. N2

vs. N3 vs. NX), brain metastasis (no vs. unknown vs. yes),

liver metastasis (no vs. unknown vs. yes), lung metastasis

(no vs. unknown vs. yes), cancer-directed surgery (no vs.

unknown vs. yes), radiation (none/unknown vs. yes), and

chemotherapy (none/unknown vs. yes). The above variables

were common clinical data that were easily available. Based

on the American Joint Committee on Cancer (AJCC) and

Extent of Disease (EOD) classification, the tumor stage and

node stage were recorded. Patients who underwent surgery for

any cancer site, including metastasis resulting from primary

cancer, were considered to have cancer-directed surgery.

We summarized a table outlining information on cancer-

directed surgery (Supplementary Table 1). The term “Radiation”

refers to the type of radiation therapy used as part of

the initial course of treatment. It is a recode of North

American Association of Central Cancer Registries (NAACCR)

Item (Supplementary Table 2). Chemotherapy records whether

chemotherapy was given (Supplementary Table 3). Early death

was defined as patients who died within 3 months. Patients

having a follow-up of <3 months who were still alive were

excluded from the analysis. The health screening characteristics,

such as body mass index, radiographic information, and

comorbidities were not available in the database.

Model development

Significant variables were incorporated into the model

predictors after multivariate analysis. In the training group,

prediction models were trained and optimized using six

approaches, including logistic regression, XGBoosting machine,

random forest, neural network, gradient boosting machine, and

decision tree. The optimal model parameters were found using

grid-search and random hyper-parameter search. The models

were trained to employ 5-fold cross-validation and 100 iterations

of bootstrapping procedures.
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FIGURE 1

Patient’s flowchart and study design.
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Model selection

The models’ prediction performance was evaluated in the

validation group using 13 measures, including mean predicted

probability of 3 month mortality, the Brier score, intercept-in-

large, calibration slope, area under curve (AUC), discrimination

slope, specificity, sensitivity, negative predictive value (NPV),

PPV/precision, recall, Youden, and accuracy. In all approaches,

a threshold was also calculated. The best prediction effectiveness

was assigned six points and the worst prediction effectiveness

was assigned 1 point in each metric in order to comprehensively

compare the prediction performance of the six approaches

and determine the optimal one. The optimal model was the

approach with the highest sum score of the 13 measures. The

heatmap was used to visualize the data using the R “pheatmap”

package. Decision curve analysis was employed to calculate the

net benefits in a range of threshold probabilities in order to

determine the therapeutic applicability of models.

Model explainability

The local interpretable model-agnostic explanation (LIME)

in the optimal model was used to assess the model’s

explainability. LIME can explain individual prediction of

classifier and is able to interpret the output to comprehend

how predictions vary with changing observations after adding

weights to input (22). As a result, not only can outcome

prediction boost user trust in the prediction model, but also

plausible justifications and high transparency.

Importance of model predictors

In the training and validation groups, the importance of

predictors was assessed using H2O automatic machine learning

(Shapley Additive exPlanations, SHAP). H2O is an open-

source, in-memory, distributed, fast, and scalable machine

learning and predictive analytics platform that allows users to

build machine learning models on big data and provides easy

productionalization of those models (https://docs.h2o.ai/h2o/

latest-stable/h2o-docs/index.html).

Risk stratification

To individually perform therapeutic interventions, risk

stratification was achieved based on the optimal cut-off value

(the average threshold of the six algorithms). Patients with

risk probabilities of below the optimal cut-off value were

categorized into the low-risk category, while patients with risk

probabilities above the value were categorized into the high-

risk category. The study also calculated the matching actual and

anticipated probabilities.

Statistical analysis

Category variables were shown as proportions, while

continuous variables were shown as mean and standard

deviation (SD). The distribution of categorical variables was

compared using Chi-square test and adjusted continuity Chi-

square test, while the distribution of continuous variables was

compared using t-test. Subgroup analysis was employed to

analyze patients with and without cancer-directed surgery.

Significant variables linked to 3 month mortality were identified

using multivariate analysis. The survival curves for the 11

significant categorical variables were plotted by the R “survival”

and “survminer” packages, and the log-rank test was used to

compare difference in each variable. The relationship between

age and the outcome was also investigated using H2O automatic

machine learning. R programming language version 4.1.2

(https://www.r-project.org/) was used for data visualizations

and statistical analysis, while Python version 3.9.7 was used

for machine learning processes and model explainability. All

codes were available at https://github.com/Starxueshu/Code-

and-Model. A P-value of <0.05 was considered statistically

significant, and all P-values were two-tailed.

Results

Patient’s characteristics

A total of 19,887 patients with a mean age of 68.46 (SD:

11.05) years were included in the analysis (Table 1). Among

all enrolled patients, the majority of primary sites was the

upper lobe (48.0%), followed by the lower lobe (24.6%), and the

most common histology was adenomas and adenocarcinomas

(51.1%), and epithelia neoplasm (NOS) ranked the second

(30.1%). Those patients seemed in an advanced stage because

more than half of patients had T3 or T4 stage and above 65.0%

of patients had N2 or N3 stage. in addition to bone metastases,

the percentages of brain, liver, and lung metastases were 23.4,

30.5, and 25.7%, respectively. In terms of cancer therapy, the

vast majority of patients (98.8%) did not receive cancer-directed

surgery, andmore than half received radiation or chemotherapy.

The median time to death was 4.00 (95% CI: 3.88–4.12) months.

The 3 month mortality was up to 48.5%, indicating near half the

patients were dead within 3 months.

Subgroup analysis was employed to analyze patients with

and without cancer-directed surgery, and it demonstrated that

patients with cancer-directed surgery tended to be younger

(64.05 vs. 68.51 years, P < 0.001), and have more adenomas and
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TABLE 1 Patient’s demographics, clinical characteristics, and therapeutic strategies.

Characteristics Overall Training

group

Validation

group

P
a

n 19,887 15,881 4,006

Age [mean (SD)] 68.46 (11.05) 68.44 (11.06) 68.53 (11.00) 0.674

Primary site (%) 0.457

Main bronchus 1,001 (5.0) 810 (5.1) 191 (4.8)

Upper lobe 9,538 (48.0) 7,560 (47.6) 1,978 (49.4)

Middle lobe 784 (3.9) 624 (3.9) 160 (4.0)

Lower lobe 4,888 (24.6) 3,928 (24.7) 960 (24.0)

Overlapping lesion 195 (1.0) 159 (1.0) 36 (0.9)

Lung, NOS 3,481 (17.5) 2,800 (17.6) 681 (17.0)

Histology (%) 0.157

Unspecified neoplasms 760 (3.8) 596 (3.8) 164 (4.1)

Epithelial neoplasms, NOS 5,985 (30.1) 4,753 (29.9) 1,232 (30.8)

Squamous cell neoplasms 2,444 (12.3) 1,952 (12.3) 492 (12.3)

Adenomas and adenocarcinomas 10,155 (51.1) 8,126 (51.2) 2,029 (50.6)

Others 543 (2.7) 454 (2.9) 89 (2.2)

Race (%) 0.364

Black 2,287 (11.5) 1,805 (11.4) 482 (12.0)

Othersb 1,873 (9.4) 1,517 (9.6) 356 (8.9)

Unknown 21 (0.1) 18 (0.1) 3 (0.1)

White 15,706 (79.0) 12,541 (79.0) 3,165 (79.0)

Sex (%) 0.515

Female 8,756 (44.0) 7,011 (44.1) 1,745 (43.6)

Male 11,131 (56.0) 8,870 (55.9) 2,261 (56.4)

T stage (%) 0.659

T0 159 (0.8) 130 (0.8) 29 (0.7)

T1 1,979 (10.0) 1,557 (9.8) 422 (10.5)

T2 4,313 (21.7) 3,435 (21.6) 878 (21.9)

T3 4,361 (21.9) 3,508 (22.1) 853 (21.3)

T4 6,037 (30.4) 4,817 (30.3) 1,220 (30.5)

TX 3,038 (15.3) 2,434 (15.3) 604 (15.1)

N stage (%) 0.909

N0 3,686 (18.5) 2,936 (18.5) 750 (18.7)

N1 1,595 (8.0) 1,267 (8.0) 328 (8.2)

N2 8,667 (43.6) 6,941 (43.7) 1,726 (43.1)

N3 4,509 (22.7) 3,605 (22.7) 904 (22.6)

NX 1,430 (7.2) 1,132 (7.1) 298 (7.4)

Brain metastasis (%) 0.144

No 14,599 (73.4) 11,654 (73.4) 2,945 (73.5)

Unknown 635 (3.2) 489 (3.1) 146 (3.6)

Yes 4,653 (23.4) 3,738 (23.5) 915 (22.8)

Liver metastasis (%) 0.299

No 13,240 (66.6) 10,572 (66.6) 2,668 (66.6)

Unknown 589 (3.0) 456 (2.9) 133 (3.3)

Yes 6,058 (30.5) 4,853 (30.6) 1,205 (30.1)

(Continued)
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TABLE 1 (Continued)

Characteristics Overall Training

group

Validation

group

P
a

Lung metastasis (%) 0.074

No 13,880 (69.8) 11,143 (70.2) 2,737 (68.3)

Unknown 901 (4.5) 713 (4.5) 188 (4.7)

Yes 5,106 (25.7) 4,025 (25.3) 1,081 (27.0)

Cancer-directed surgery (%) 0.284

No 19,645 (98.8) 15,679 (98.7) 3,966 (99.0)

Unknown 12 (0.1) 11 (0.1) 1 (0.0)

Yes 230 (1.2) 191 (1.2) 39 (1.0)

Radiation (%) 0.791

None/unknown 9,859 (49.6) 7,881 (49.6) 1,978 (49.4)

Yes 10,028 (50.4) 8,000 (50.4) 2,028 (50.6)

Chemotherapy (%) 0.311

None/unknown 9,035 (45.4) 7,186 (45.2) 1,849 (46.2)

Yes 10,852 (54.6) 8,695 (54.8) 2,157 (53.8)

Three month mortality 0.132

No 10,232 (51.5) 8,214 (51.7) 2,018 (50.4)

Yes 9,655 (48.5) 7,667 (48.3) 1,988 (49.6)

aIndicates continuity adjusted Chi-Square; bIndicates American Indian/AK Native, Asian/Pacific Islander.

SD, standard deviation; NOS, not otherwise specified; T stage, tumor stage; N stage, node stage.

adenocarcinoma histology (61.7% vs. 50.9%, P < 0.001), earlier

T (P < 0.001) and N (P < 0.001) stages, fewer metastases (P <

0.001), and more chemotherapy (60.4% vs. 54.5%, P = 0.001).

Therefore, the earlymortality of patients who underwent cancer-

directed surgery was significantly lower than that of patients

without cancer-directed surgery (24.8% vs. 48.8%, P < 0.001).

More information is shown in Supplementary Table 4.

Model development

Patients were separated into two groups at random, and

a comparison between the two groups was done (Table 1). In

the training group, these variables were all similarly distributed,

as shown by the P-values that were all more than 0.05. The

13 variables were all significantly different between patients

with and without 3 month mortality (Table 2). Furthermore,

12 variables, including age, primary site, histology, race, sex, T

and N stage, brain metastasis, liver metastasis, cancer-directed

surgery, radiation, and chemotherapy, were also found to be

significantly associated with the 3 month mortality (Table 2)

and were included for development of prediction models. Six

approaches, including logistic regression, XGBoosting machine,

random forest, neural network, gradient boosting machine, and

decision tree, were conducted to train and optimize prediction

models. Supplementary Table 5 provides an overview of the full

parameter weights of all techniques.

Model selection

The validation group used 13 measures to assess models’

prediction performance. The AUC for the gradient boosting

machine and XGBoosting machine was both 0.820 (95%

confident interval [CI]: 0.807–0.833), for the neural network

approach it was 0.818 (95% CI: 0.805–0.832), for the logistic

regression model it was 0.815 (95% CI: 0.801–0.828), for the

random forest approach it was 0.811 (95% CI: 0.798–0.824),

and for the decision tree approach it was 0.806 (0.792–0.820)

(Supplementary Figure 1). The corresponding calibration slopes

were 0.97, 0.95, 0.88, 0.96, 1.49, and 0.88, respectively (Figure 2),

and the discrimination slopes were 0.334, 0.338, 0.349, 0.327,

0.228, and 0.349, respectively (Supplementary Figure 2). More

information about the prediction measures is summarized in

Table 3. Probability curves were plotted for each approach

(Figure 3). With the least overlap in probability curves and

the greatest separation of the two groups, these models—in

particular the gradient boosting machine, XGBoosting machine,

and logistic regression—demonstrated significant separation

of the curves. To comprehensively evaluate the predictive

performance and finally find out the optimal one, the optimal

prediction effectiveness was assigned six points and the worst

prediction effectiveness was assigned one point in each measure.

The heatmap for prediction effectiveness among the six

approaches is displayed in Figure 4. The gradient boosting

machine approach performed best with the highest sum score
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TABLE 2 Univariate and multivariate analysis of risk factors for 3 month mortality among bone metastasis patients with lung cancer in the training

group.

Characteristics Overall Three month mortality P
a Multivariate analysis

No No OR (95% CI) P

n 15,881 8,214 7,667 1.66 (0.91–3.04) 0.100

Age [mean (SD)] 68.44 (11.06) 66.43 (10.87) 70.60 (10.86) <0.001 1.01 (1.01–1.02) <0.001

Primary site (%) <0.001

Main bronchus 810 (5.1) 393 (4.8) 417 (5.4) Reference

Upper lobe 7,560 (47.6) 4,076 (49.6) 3,484 (45.4) 0.80 (0.67–0.96) 0.014

Middle lobe 624 (3.9) 352 (4.3) 272 (3.5) 0.77 (0.59–1.00) 0.047

Lower lobe 3,928 (24.7) 2,105 (25.6) 1,823 (23.8) 0.80 (0.66–0.96) 0.018

Overlapping lesion 159 (1.0) 90 (1.1) 69 (0.9) 0.84 (0.55–1.28) 0.418

Lung, NOS 2,800 (17.6) 1,198 (14.6) 1,602 (20.9) 1.07 (0.87–1.30) 0.524

Histology (%) <0.001

Unspecified neoplasms 596 (3.8) 95 (1.2) 501 (6.5) Reference

Epithelial neoplasms, NOS 4,753 (29.9) 2,337 (28.5) 2,416 (31.5) 0.77 (0.60–0.99) 0.038

Squamous cell neoplasms 1,952 (12.3) 873 (10.6) 1,079 (14.1) 0.83 (0.64–1.09) 0.180

Adenomas and adenocarcinomas 8,126 (51.2) 4,665 (56.8) 3,461 (45.1) 0.63 (0.49–0.80) <0.001

Others 454 (2.9) 244 (3.0) 210 (2.7) 0.78 (0.56–1.08) 0.135

Race (%) <0.001

Black 1,805 (11.4) 921 (11.2) 884 (11.5) Reference

Othersb 1,517 (9.6) 933 (11.4) 584 (7.6) 0.82 (0.68–0.97) 0.021

Unknown 18 (0.1) 9 (0.1) 9 (0.1) 1.08 (0.35–3.33) 0.892

White 12,541 (79.0) 6,351 (77.3) 6,190 (80.7) 1.20 (1.06–1.36) 0.005

Sex (%) <0.001

Female 7,011 (44.1) 3,836 (46.7) 3,175 (41.4) Reference

Male 8,870 (55.9) 4,378 (53.3) 4,492 (58.6) 1.34 (1.24–1.45) <0.001

T stage (%) <0.001

T0 130 (0.8) 62 (0.8) 68 (0.9) Reference

T1 1,557 (9.8) 949 (11.6) 608 (7.9) 0.63 (0.40–0.98) 0.041

T2 3,435 (21.6) 1,861 (22.7) 1,574 (20.5) 0.79 (0.51–1.22) 0.289

T3 3,508 (22.1) 1,768 (21.5) 1,740 (22.7) 0.88 (0.57–1.37) 0.578

T4 4,817 (30.3) 2,515 (30.6) 2,302 (30.0) 0.83 (0.54–1.28) 0.407

TX 2,434 (15.3) 1,059 (12.9) 1,375 (17.9) 0.89 (0.57–1.37) 0.584

N stage (%) <0.001

N0 2,936 (18.5) 1,583 (19.3) 1,353 (17.6) Reference

N1 1,267 (8.0) 681 (8.3) 586 (7.6) 1.21 (1.03–1.43) 0.024

N2 6,941 (43.7) 3,553 (43.3) 3,388 (44.2) 1.52 (1.36–1.69) <0.001

N3 3,605 (22.7) 1,969 (24.0) 1,636 (21.3) 1.55 (1.37–1.76) <0.001

NX 1,132 (7.1) 428 (5.2) 704 (9.2) 1.42 (1.18–1.71) <0.001

Brain metastasis (%) <0.001

No 11,654 (73.4) 6,174 (75.2) 5,480 (71.5) Reference

Unknown 489 (3.1) 185 (2.3) 304 (4.0) 1.05 (0.80–1.37) 0.745

Yes 3,738 (23.5) 1,855 (22.6) 1,883 (24.6) 1.58 (1.43–1.75) <0.001

Liver metastasis (%) <0.001

No 10,572 (66.6) 5,883 (71.6) 4,689 (61.2) Reference

Unknown 456 (2.9) 202 (2.5) 254 (3.3) 1.06 (0.81–1.40) 0.669

Yes 4,853 (30.6) 2,129 (25.9) 2,724 (35.5) 1.73 (1.58–1.88) <0.001

(Continued)
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TABLE 2 (Continued)

Characteristics Overall Three month mortality P
a Multivariate analysis

No No OR (95% CI) P

Lung metastasis (%) <0.001

No 11,143 (70.2) 5,958 (72.5) 5,185 (67.6) Reference

Unknown 713 (4.5) 330 (4.0) 383 (5.0) 0.83 (0.67–1.03) 0.098

Yes 4,025 (25.3) 1,926 (23.4) 2,099 (27.4) 1.10 (1.00–1.21) 0.061

Cancer-directed surgery (%) <0.001

No 15,679 (98.7) 8,062 (98.1) 7,617 (99.3) Reference

Unknown 11 (0.1) 5 (0.1) 6 (0.1) 0.32 (0.08–1.23) 0.097

Yes 191 (1.2) 147 (1.8) 44 (0.6) 0.33 (0.22–0.50) <0.001

Radiation (%) <0.001

None/unknown 7,881 (49.6) 3,422 (41.7) 4,459 (58.2) Reference

Yes 8,000 (50.4) 4,792 (58.3) 3,208 (41.8) 0.74 (0.68–0.80) <0.001

Chemotherapy (%) <0.001

None/unknown 7,186 (45.2) 1,480 (18.0) 5,706 (74.4) Reference

Yes 8,695 (54.8) 6,734 (82.0) 1,961 (25.6) 0.08 (0.07–0.08) <0.001

aIndicates continuity adjusted Chi-Square; bIndicates American Indian/AK Native, Asian/Pacific Islander.

OR, odds ratio; CI, confident interval; SD, standard deviation; NOS, not otherwise specified; T stage, tumor stage; N stage, node stage.

FIGURE 2

The calibration curves. (A) Logistic Regression; (B) XGBooting Machine; (C) Random Forest; (D) Gradient Boosting Machine; (E) Neural Network;

(F) Decision Tree.

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1019168
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cui et al. 10.3389/fpubh.2022.1019168

TABLE 3 Prediction performance of machine learning algorithms for the estimation of 3 month mortality among bone metastasis patients with lung

cancer.

Measures Approaches

Logistic regression XGBoosting machine Random forest Gradient boosting machine Neural network Decision tree

Mean predicted 0.488 0.487 0.486 0.487 0.461 0.487

Brier score 0.171 0.169 0.178 0.169 0.171 0.175

Intercept 0.05 0.06 0.05 0.06 0.23 0.05

Slope 0.96 0.95 1.49 0.97 0.88 0.88

AUC (95%CI) 0.815 (0.801–0.828) 0.820 (0.807–0.833) 0.811 (0.798–0.824) 0.820 (0.807–0.833) 0.818 (0.805–0.832) 0.806 (0.792–0.820)

Discrimination slope 0.327 0.338 0.228 0.334 0.349 0.349

Specificity 0.812 0.812 0.807 0.809 0.799 0.800

Sensitivity 0.731 0.731 0.733 0.734 0.742 0.735

NPV 0.754 0.754 0.755 0.756 0.759 0.754

PPV 0.793 0.793 0.789 0.791 0.785 0.784

Precision 0.793 0.793 0.789 0.791 0.785 0.784

Recall 0.731 0.731 0.733 0.734 0.742 0.735

Youden 1.543 1.543 1.541 1.543 1.542 1.536

Accuracy 0.772 0.772 0.771 0.772 0.771 0.768

Threshold 0.526 0.488 0.558 0.466 0.382 0.444

AUC, Are under the curve; CI, Confident interval; NPV, Negative predictive value; PPV, Positive predictive value; XGBooting, eXtreme Gradient Boosting.

of all the measures (62 points), followed by the XGBooting

machine approach (59 points) and logistic regression (53

points). Additionally, decision curve analysis revealed that

all approaches, especially the gradient boosting machine, had

favorable clinical usefulness (Supplementary Figure 3). As a

result, the model developed by the gradient boosting machine

approach was used to present model explainability.

Model’s explainability

Explainability of models was conducted to rank the

predictors and visualize their contributions to an individual’s

mortality outcome. The three individuals in Figures 5A–C that

died within 3 months had a high anticipated 3 month mortality

(True positive). The three cases in Figures 5D–F that were alive

longer than 3 months had a low anticipated probability of 3

month mortality (True negative). The top 10 variables were

sorted based on the weight of each variable that was presented

by the length of the red or green boxes. The red boxes indicated

risk factors for 3 month mortality, and the green boxes indicated

protective factors for 3 month mortality. In the first case, it

depicted a specific individual who had a 90.0% chance of dying

within 3 months. In this case, no chemotherapy, no cancer-

directed surgery, liver metastasis, an age of 82 years, radiation,

male, upper lobe, and T4 stage were all risk contributors to 3

month mortality, while no brain metastasis and epithelial (NOS)

were protective factors for the outcome. The top three important

predictors were chemotherapy, cancer-directed surgery, and

liver metastasis, and the weight of each predictor could be

obtained by referring to the X-axis.

Importance of model predictors

Predictor importance evaluation was performed using

H2O automatic machine learning in the entire cohort of

patients. The learning curve demonstrated that the H2O

automatic machine learning was neither underfit nor overfit

(Supplementary Figure 4). Chemotherapy, followed by liver

metastasis, radiation, and brain metastasis were the top four

important contributors to the outcome among all variables

in both training (Supplementary Figure 5A) and validation

(Supplementary Figure 5B) groups according to SHAP summary

plots. SHAP summary plot is able to depict the contribution

of the features for each instance (row of data). The Kaplan-

Meier survival curves showed great discrimination between

patients with and without the treatment of chemotherapy (P <

0.0001, log-rank test, Supplementary Figure 5C) or radiation

(P < 0.0001, log-rank test, Supplementary Figure 5D). When

compared to patients without liver or brain metastasis,

individuals who had either of these metastases had

significantly worse overall survival outcomes (P < 0.0001,

log-rank test, Supplementary Figures 5E,F). For primary site,

histology, race, sex, tumor (T) stage, node (N) stage, and

cancer-directed surgery, survival curves were also plotted

(Supplementary Figures 6–12). The relationship between age

and the outcome was also displayed using the H2O automatic
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FIGURE 3

The probability curves. (A) Logistic Regression; (B) XGBooting Machine; (C) Random Forest; (D) Gradient Boosting Machine; (E) Neural Network;

(F) Decision Tree. The green group indicates patients were alive for above 3 months and the red group indicates patients were died at or within 3

months.

machine learning, showing that the 3 month mortality

increased over time as age grew (Supplementary Figure 13A).

Additionally, when age was divided into deciles, two categorical

age groups could be obtained (Supplementary Figure 13B):

patients with a relatively high risk of 3 month mortality (above

the partial dependence line) and patients with a relatively low

risk of 3 month mortality (belove the dependence line).

Risk stratification

Based on the optimal cut-off value (40.00%), patients

were categorized into a low-risk group and a high-risk group

(Table 4). Patients in the low-risk group had a probability of

<40%, and patients in the high-risk group had a probability

of >40.00%. Patients in the high-risk group had more than

3 times the odds of dying within 3 months as compared to

patients in the high-risk group (P < 0.001), with regard to the

gradient boosting machine. The six algorithms are shown in

Figure 6 with the survival curves stratified by the risk group,

and all six algorithms demonstrated a significant difference in

survival outcome between the two risk groups (All P < 0.001,

log-rank test).

Discussion

This study developed models using machine learning

approaches, and the optimal model is selected after
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FIGURE 4

The heatmap of prediction metrics for the six techniques. AUC, area under curve; NPV, negative predictive value.

comprehensively assessing and comparing the prediction

performance. The gradient boosting machine approach

performed best, followed by XGBooting machine approach

and logistic regression based on the overall of the 13

prediction measures. The optimal model demonstrated

favorable discrimination and calibration, and as a result, the

models’ explainability was performed in this optimal model

to improve the models’ trust and transparency. Additionally,

the importance of variables was investigated in individuals and

among the whole population.

In the entire cohort of patients, the 3 month mortality was

up to 48.5% and the median survival time was 4.0 months, both

of which were consistent with prior studies (9, 10). Literature

reported that themedian survival period for lung cancer patients

with bone metastases was 4.0 to 5.0 months (9, 10). In the study,

we found that the 3 month mortality was significantly correlated

with age, primary site, histology, race, sex, T stage, N stage, brain

metastasis, liver metastasis, cancer-directed surgery, radiation,

and chemotherapy. These variables were easily available, and the

majority of these variables had already been proven in previous

studies (23–25). To be more specific, older age, male, advanced

T or N stage, and brain or live metastasis were risk factors,

while adenocarcinoma, cancer-directed surgery, radiation, and

chemotherapy were protective factors.

The use of surgical procedures, such as stable fixation of

long bones and spine decompressive surgery, to maintain or

improve patients’ functional outcomes and overall performance

status has increased in recent years due to the development

of therapeutic modalities (11, 12). But the major concern

was whether post-operative recovery or surgery-related

complications would be a balance between benefits and harms

for patients in their remaining survival time. To address

this issue, several survival scoring systems were proposed

to optimize the balance between surgical interventions and

survival outcomes among patients with bone metastases. In

2021, for instance, Owari et al. (26) proposed a scoring system to

predict survival outcomes among patients with bone metastases

in a cohort of 489 patients with genitourinary cancers; Katagiri

et al. (27) developed a new prognostic scoring system to predict

survival outcome in a cohort of 808 patients with skeletal

metastases; More recently, Chi et al. (28) created a nomogram to

predict survival prognosis among 326 bone metastases patients

with head and neck cancer. However, the above scoring systems

are derived from several primary cancer types which might

have different patterns of metastases, and thus the prognostic

ability might cannot appropriately work among bone metastases

in particular lung cancer patients who had a relatively very

short life expectancy. Kang et al. (29) created nomograms

for predicting overall survival, progression-free survival, and

time-to-progression at 5 years in 714 patients with early-stage

non-small cell lung cancer after stereotactic ablative radiation

therapy. The C-indexes for the nomograms of overall survival,
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FIGURE 5

Local interpretable model explainer for six individual cases. (A) The first true positive case; (B) The second true positive case; (C) The third true

positive case; (D) The first true negative case; (E) The second true negative case; (F) The third true negative case. Features with a green bar

indicates protective prognostic factors, and those with red bar represents contributing risk factors. The x-axis depicts how much each predictor

added or subtracted to the final probability for the specific patient.

progression-free survival, and time-to-progression were 0.72,

0.66, and 0.59, respectively, in the validation cohort. Pruksakorn

et al. (10) established a prognostic scoring system to predict

life expectancy in a total of 505 lung cancer patients with bone

metastases, Rades et al. (30) proposed a scoring system to

estimate survival among lung cancer patients after treating

with radiotherapy (n = 120), and Lei et al. (31) constructed

a score to predict survival time among spinal metastatic lung

cancer patients (n = 73). Although the above scoring systems

were designed specifically for lung cancer patients with or

without bone metastases, these scoring systems had very limited

samples and evaluations of prediction metrics, and thus their

generalization needed further investigations.

The present study introduced six approaches to develop

corresponding six models and used 13 metrics to assess

and compare the prediction performance of these models.

Subsequently, the optimal model was selected to present model

explainability, and six individual specific cases were illustrated

in the study. In these cases, the explainer model ranked

and displayed the top 10 predictors according to the relative

importance of each predictor individually. The explainer model

not only calculated the individually predicted probability of 3
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TABLE 4 Risk stratification based on the optimal cut-o� value in the models.

Approaches Patients

(n = 4,006)

Probability P-value

Predicted Actual

Logistic regression

Low risk (≤40.00%) 2,069 22.18% 23.88% (494/2,069) <0.001

High risk (>40.00%) 1,937 77.19% 77.13% (1,494/1,937)

XGBoosting machine

Low risk (≤40.00%) 2,103 22.16% 23.92% (503/2,103) <0.001

High risk (>40.00%) 1,903 78.06% 78.03 (1,485/1,903)

Random forest

Low risk (≤40.00%) 2,122 30.10% 24.18% (513/2,122) <0.001

High risk (>40.00%) 1,884 69.43% 78.29% (1,475/1,884)

Gradient boosting machine

Low risk (≤40.00%) 2,110 22.37% 23.93% (505/2,110) <0.001

High risk (>40.00%) 1,896 78.04% 78.22% (1,483/1,896)

Neural network

Low risk (≤40.00%) 2,144 19.01% 24.53% (526/2,144) <0.001

High risk (>40.00%) 1,862 77.36% 78.52% (1,462/1,862)

Decision tree

Low risk (≤40.00%) 2,085 22.14% 24.36% (508/2,085) <0.001

High risk (>40.00%) 1,921 77.62% 77.04% (1,480/1,921)

XGBooting, eXtreme Gradient Boosting.

month mortality in each given case, but also enabled users to

have a deep understanding of how the model arrived at the

conclusion. As a result, users’ trusts and model transparency

could be remarkably enhanced (32). Predictor importance

was also evaluated using H2O automatic machine learning in

the entire patient cohort, and it demonstrated that the top

four important predictors were chemotherapy, radiation, liver

metastasis, and brain metastasis. Therefore, taking steps to

administer chemotherapy or radiation while preventing liver

and brain metastases would significantly improve the prognosis

for survival. Additionally, this study sheds a light on the

connection between age and 3 month mortality.

Patients were categorized into a low-risk group and a high-

risk group in order to undertake therapy strategies individually.

Compared to patients in the high-risk group, those in the high-

risk group had more than three times the odds of developing

ab early death (P < 0.001). Patients in the high-risk group were

advised to receive radiotherapy alone, the best supportive care,

or minimally invasive techniques like cementoplasty, because

they might not be able to recover quickly enough to benefit from

surgery. Since patients in the low-risk group had a somewhat

longer life expectancy and were more likely to benefit frommore

invasive therapies, aggressive procedures, such as excisional

surgery for spine or bone metastases, and long-term radiations,

were better carried out on these individuals.

Limitations

Despite the fact that this study presented and validated

more accurate models, it still had some restrictions. For starters,

although there might be significant predictors of survival

such as the quantity and location of bone metastases, the

systemic immune-inflammation index (29), and the Charlson

comorbidity index (29), these variables were not available in

the SEER database. With the easily available clinical data, our

proposed model already had favorable prediction performance

based on discrimination and calibration. Furthermore, even

though internal validation of the model yielded encouraging

findings, external validation of the model was not carried

out, necessitating additional research before the model could

be generalized.

Conclusions

Using machine learning techniques, this study offers

a number of models, and the optimal model is found

after thoroughly assessing and contrasting the prediction

performance of each model. The optimal model can be a

pragmatic risk prediction tool and is capable of identifying

lung cancer patients with bone metastases who are at high
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FIGURE 6

Kaplan-Meier survival curves stratified by risk group (All P < 0.001, log-rank test). (A) Logistic Regression; (B) XGBooting Machine; (C) Random

Forest; (D) Gradient Boosting Machine; (E) Neural Network; (F) Decision Tree.

risk for 3 month mortality, informing risk counseling, and

aiding clinical treatment decision-making. It is better advised

for patients in the high-risk group to have radiotherapy alone,

the best supportive care, or minimally invasive procedures

like cementoplasty.
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SUPPLEMENTARY FIGURE 1

The receiver operating curve for the six approaches.

SUPPLEMENTARY FIGURE 2

The box plots of predicted probabilities of 3 month mortality between

patients who actually died at or within 3 months (“Yes”) and patients who

actually were alive for above 3 months (“No”). (A) Logistic Regression; (B)

XGBooting Machine; (C) Random Forest; (D) Gradient Boosting

Machine; (E) Neural Network; (F) Decision Tree.

SUPPLEMENTARY FIGURE 3

Decision curve analysis of the six approaches. The horizontal gray line

indicates treated-for-none scheme and another reference line indicates

treated-for-all scheme.

SUPPLEMENTARY FIGURE 4

The learning curve for H2O machine learning.

SUPPLEMENTARY FIGURE 5

Importance of model predictors. (A) SHAP summary plot in the training

group; (B) SHAP summary plot in the validation group; (C) Kaplan-Meier

survival curve stratified by chemotherapy (P < 0.0001, log-rank test); (D)

Kaplan-Meier survival curve stratified by radiation (P < 0.0001, log-rank

test); (E) Kaplan-Meier survival curve stratified by liver metastasis (P <

0.0001, log-rank test); (F) Kaplan-Meier survival curve stratified by brain

metastasis (P < 0.0001, log-rank test). In the SHAP summary plot, the

y-axis is the features and the x-axis is the Shapley value in each case.

Color represents the eigenvalue (red indicates high and blue indicates

low) and enables us to match how the change of eigenvalue a�ects risk.

The overlapping points jitter in the direction of y-axis, it can enable us to

understand how the Shapley value distribute in each feature, and these

features are sorted according to their importance.

SUPPLEMENTARY FIGURE 6

Kaplan-Meier survival curve stratified by histology (P < 0.0001, log-rank

test).

SUPPLEMENTARY FIGURE 7

Kaplan-Meier survival curve stratified by N stage (P < 0.0001, log-rank

test).

SUPPLEMENTARY FIGURE 8

Kaplan-Meier survival curve stratified by primary site (P < 0.0001,

log-rank test).

SUPPLEMENTARY FIGURE 9

Kaplan-Meier survival curve stratified by race (P < 0.0001, log-rank test).

SUPPLEMENTARY FIGURE 10

Kaplan-Meier survival curve stratified by sex (P < 0.0001, log-rank test).

SUPPLEMENTARY FIGURE 11

Kaplan-Meier survival curve stratified by caner-directed surgery (P <

0.0001, log-rank test).

SUPPLEMENTARY FIGURE 12

Kaplan-Meier survival curve stratified by T stage (P < 0.0001, log-rank

test).

SUPPLEMENTARY FIGURE 13

The association between age and response (3 month mortality)

evaluated using the H2O machine learning. (A) Partial dependence plot

for age; (B) Individual conditional expectation for gradient boosting

machine according to decile.

SUPPLEMENTARY TABLE 1

Code and description about cancer-directed surgery.

SUPPLEMENTARY TABLE 2

Code and description about radiation.

SUPPLEMENTARY TABLE 3

Code and description about chemotherapy.

SUPPLEMENTARY TABLE 4

A comparison of clinical characteristics among patients with and without

surgery. aIndicates continuity adjusted Chi-Square; bIndicates American

Indian/AK Native, Asian/Pacific Islander. SD, standard deviation; NOS, not

otherwise specified; T stage, tumor stage; N stage, node stage.

SUPPLEMENTARY TABLE 5

Approaches and parameters.
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