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Abstract: Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and
pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute
immunoregulatory pathways in a range of cell types and organs. This study aimed to further
elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of
male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL
PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical
and histological analyses at each time point. Under these conditions, SAA administration induced
crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of
pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration,
respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase
in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue
fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase
(iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman’s
space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at
the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also
showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this
suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK
axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.

Keywords: serum amyloid A; atherosclerosis; renal; dysfunction; pro-inflammatory

1. Introduction

The vascular endothelial monolayer serves as an interface between components of
the circulating blood and the tissues in which it supplies; as such, the endothelium plays
important roles in normal vascular homeostasis [1]. In response to various physical and
chemical stimuli, the endothelium can modulate and regulate vascular tone, thrombotic
activity, extravasation of leukocytes during infection or inflammation, and oxidative stress
through the release of appropriate mediators [2]. Thus, endothelial dysfunction represents
a systemic pathology linked to cardiovascular and renal diseases [1,3]. The early stages
of atherogenesis are associated with an inflammatory response driving the remodelling
and permeabilisation of the vascular endothelium. Monocyte adherence to the activated
endothelium and transmigration into subendothelial spaces lead to the formation of lipid-
laden foamy macrophages [4], which exacerbate the inflammatory response and promote
atheroma formation by recruiting and further stimulating macrophage formation [5]. Calci-
fication of atherosclerotic lesions can also occur, particularly amongst advanced lesions [6].
The expansion of atherosclerotic lesions can lead to lumen stenosis and acute plaque
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rupture that promotes the occlusion of smaller branching blood vessels [7]. In addition,
endothelial dysfunction, as a result of inappropriate inflammatory activity, negatively im-
pacts the highly vascularised renal system whose functionality is dependent on endothelial
integrity [8]. Renal dysfunction is believed to precede various chronic systemic inflamma-
tory diseases such as obesity, metabolic disease, atherosclerosis and cardiovascular disease
due to the highly conserved nature of the inflammatory response [9–11].

The acute phase apolipoprotein serum amyloid A (SAA) has been increasingly utilised
as a supplementary biomarker for in vivo inflammation [12]. SAA is predominantly of
hepatic origin, synthesised in response to the presence of pro-inflammatory cytokines and
becomes associated with high-density lipoproteins (HDLs) via exchange with the HDL
Apo-AI protein upon entry into circulation. Only a small unbound portion of SAA is
active; however, this portion of free SAA increases in the presence of pro-inflammatory cy-
tokines [13,14]. Extrahepatic sources of SAA synthesis can include atherosclerotic plaques,
smooth muscle cells and macrophages [15,16]. SAA can elicit pro-inflammatory activity via
two main pathways: a receptor-mediated pathway, binding formyl peptide receptor-like
1 (FPRL-1), receptor for advanced glycation end products (RAGE) and toll-like receptors
(TLR); or via an oxidative stress pathway involving increased production of reactive oxygen
species (ROS) [17,18]. These pathways converge on and lead to the production of a suite
of pro-inflammatory cytokines, which are then able to sustain the SAA response through
a positive feedback mechanism. If the SAA response is inappropriately extended, the re-
sponse becomes pathological, exacerbating chronic inflammation, which can then lead to
pathologies such as kidney injury [19], rheumatoid arthritis [20] and diabetes mellitus [21].

SAA-induced pro-inflammatory and pro-thrombotic activities are regulated by the
canonical nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) transcrip-
tion factor, onto which both the receptor-mediated and ROS pathways converge [17,18].
Attempts at SAA receptor blockade have exhibited only variable effectiveness compared to
its intrinsic association with HDL [17], and interindividual variability of HDL bioactivity
presents further problems against mitigating SAA-induced pathophysiology [22]. Blockade
of NF-κB activation was shown to be effective, though given the ubiquitous nature of
NF-κB and its centralisation within redox, inflammatory and immunological cascades,
the utilisation of such inhibitors could elicit dangerous side-effects when they act as im-
munosuppressants [10,23–26]. Therefore, greater understanding is required concerning the
cytokines and mediators induced by SAA that contribute to downstream acute inflamma-
tion and the pathogenesis of endothelial dysfunction and long-term systemic inflammation.

Linkages between the signalling pathways that underpin SAA-induced inflammation
and the induction of endothelial dysfunction remain unclear. SAA induces various inflam-
matory cellular responses through NF-κB activation [17], and one of the main downstream
effects of NF-κB signalling is T-cell activation and the secretion of immunostimulatory cy-
tokine interferon gamma (IFN-γ), which regulates both the activation of macrophages and
major histocompatibility complex (MHC) expression, thus implicating both divisions of the
immune system [27,28]. The activation of macrophages by IFN-γ elicits pro-inflammatory
responses through secretion of a suite of cytokines such as tumour necrosis factor al-
pha (TNF-α) and pro-inflammatory interleukins (IL), which feed into a positive feedback
mechanism to potentiate inflammation. Mature macrophages can also engulf and destroy
pathogenic material through ROS production, which enhances oxidative stress stimuli [29].

IFN-γ, along with other pro-inflammatory cytokines (e.g., IL-1 and TNF-α) can activate
inducible nitric oxide synthase (iNOS) that catalyses the conversion of L-arginine to nitric
oxide (NO) [30]. While constitutive levels of iNOS remain contested, elevated iNOS is
believed to be associated with high oxidative stress, with unregulated NO production
triggering apoptosis and both vascular and tissue remodelling events or is converted to
the potent oxidant peroxynitrite (ONOO−) via superoxide reaction [31–33]. The reactivity
of ONOO− with certain biomolecules can affect the integrity of endothelial cells, smooth
muscle cells, as well as myocardial tissue, which may manifest in the long term as chronic
inflammatory disease and organ fibrosis.
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NF-κB activation can also upregulate the expression of monocyte chemoattractant
protein-1 (MCP-1) in mesangial cells within renal tissue. MCP-1 is an important chemokine
that mediates the infiltration of monocytes from glomerular capillaries into Bowman’s
space. MCP-1, binding to the CCR2 chemokine receptor, has been shown to increase
arterial lipid deposition and enhance monocyte adhesion, which can lead to inflammatory
and fibrotic renal disease and accelerate atherosclerotic progression [34]. As a result of
these varied responses to oxidative stress, a better understanding of the transcription
factors and the downstream mediators implicated in SAA-induced oxidative stress can
support further study of efficacious therapeutic targets for a wide range of inflammatory
conditions. In the present study, inflammation was induced by SAA administration to
investigate the role of SAA in promoting renal and vascular dysfunction in a murine model.
Herein, we further elucidate the key players involved in renal inflammation as well as their
long-term endpoints.

2. Methods
2.1. Murine Model

All studies involving mice were conducted with appropriate ethics approval (AEC
approval 2018/1408). Male C57/BL (7 weeks old) apolipoprotein E-deficient (ApoE−/−)
mice (Animal Resource Centre, Perth, WA, Australia) were acclimated for one week at the
Charles Perkins Centre Animal Facility prior to the commencement of study. Mice were
randomly housed in groups of 6 animals per cage on a 12 h light–dark cycle at 22 ◦C with a
standard chow diet (cat#23200-12152, Specialty Feeds, Glen Forrest, WA, Australia) and
water provided ad libitum.

2.2. Experimental Groups

At 8 weeks of age, ApoE−/− mice were randomly allocated into two treatment groups:
vehicle control (n = 6) and SAA groups (n = 6). Studies for each group were conducted in
parallel as follows.

(a) Vehicle control group: Mice received 100 µL phosphate-buffered saline (PBS as
vehicle control) via intraperitoneal (i.p.) route every 3 days for 14 days.

(b) SAA group: Mice received 100 µL of filter-sterilised SAA (120 µg/mL stock)
administered via i.p. route every 3 days for a period of 14 days (equivalent to 12 µg SAA per
animal per 3-day dose). This dose of administered SAA equates to maintaining a moderate
level of this circulating acute phase protein that can rise up to 1000 µg/mL in plasma
during a severe acute phase response [35]. The experimental design together with the
planned analyses is schematically summarised in Figure 1. Separate groups of control and
SAA-treated mice were monitored for 4 or 16 weeks after cessation of SAA stimulation and
organs were harvested for biochemical and histological/immunohistochemical analyses
at these times. Notably, these time points were selected to mimic the earliest stages prior
to marked development of atherosclerotic lesions, and then at the endpoint, where more
severe atherosclerosis is noted in ApoE-deficient mice.

2.3. Live Animal Imaging

Enhanced action of matrix metalloproteinases can initiate processes linked to tis-
sue/organ remodelling. To assess whether SAA-mediated renal inflammation elicits in-
creased MMP activity, mice were administered a commercial MMPsense probe 4 weeks after
stimulation with SAA (2 nmol, 150 µL) via tail vein prior to imaging. At 24 h post treatment
with MMPsense, animals were imaged using an IVIS® SpectrumCT (PerkinElmer, Waltham,
MA, USA) as described in our previous report [36]. Accumulated in vivo MMPsense sig-
nals were quantified using standard Living Image® (PerkinElmer) standard data analysis
software.
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yielded 100–200 µL of urine for biochemical analysis. In some mice, urine was directly 
collected from the bladder during the harvesting process using a 1 mL syringe with a fine 
gauge needle. Urine collections were immediately snap frozen in liquid nitrogen and 
stored at −80 °C for subsequent biochemical analysis. 
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Figure 1. Schematic figure summarising the experimental design and analytical approach to assess
tissue isolated from control and SAA-stimulated mice.

Following imaging, mice were sacrificed using isoflurane and death confirmed via
cervical dislocation. Biological specimens, including both kidneys and urine samples, were
harvested and processed for biochemical and histological analyses. Heart, blood and the
entire aortic tree were also collected to study changes in vascular disease as previously
described [37,38]. In a parallel chronic study, mice were randomly allocated into the same
aforementioned treatment groups, vehicle control (n = 8) and SAA (n = 6), and housed in
groups of 4 mice per allocated group. At 16 weeks following SAA treatment (equivalent of
18 weeks husbandry), these mice (now all 26 weeks of age) were sacrificed as described
above, and their plasma, urine and organs harvested.

2.4. Urine Collection

Urine samples were collected from conscious mice prior to deep anaesthesia by being
neck-scuffed with a capped tube (2 mL, Eppendorf, Sigma-Aldrich, Sydney, Australia)
simultaneously placed over the penis in one motion. This method of collection generally
yielded 100–200 µL of urine for biochemical analysis. In some mice, urine was directly
collected from the bladder during the harvesting process using a 1 mL syringe with a
fine gauge needle. Urine collections were immediately snap frozen in liquid nitrogen and
stored at −80 ◦C for subsequent biochemical analysis.

2.5. Collection of Kidney Specimens

Upon excision, the left kidneys were assigned to histological analyses and were fixed
ex vivo in 4% v/v formalin and subsequently embedded in paraffin. Kidney samples
were stored as paraffin blocks at 22 ◦C until required. For biochemical analyses, kidney
samples were snap frozen in liquid nitrogen and stored at −80 ◦C for subsequent tissue
homogenisation (below).

Paraffin blocks containing kidney tissue were sectioned (5 µm) using a rotary mi-
crotome onto pre-marked Superfrost Plus™ slides (Thermo Fisher Scientific, Waltham,
MA, USA) before being dewaxed and rehydrated. Sections were subsequently immunos-
tained for immunohistochemistry (IHC) or immunofluorescence (IF) studies. For imaging
analyses, a heat-induced antigen retrieval method was employed to enable the binding
of antibodies to target proteins. Tissue sections embedded with paraffin were baked in
an oven at 60 ◦C for 1 h to ensure adherence to the slides and then dewaxed with xylene
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and rehydrated with a graded alcohol series (100, 95, 70% v/v) prior to water. rehydrated
slides were placed in pH 9 Target Retrieval buffer (Dako, Sydney, Australia) in the dark.
Heat-retrieval was performed using a Biocare Decloaking Chamber (Dako Cytomation,
Pacheco, CA, USA) and allowed to run at optimised settings. Zen 2 Lite software (Carl
Zeiss, Sydney, Australia) was utilised for microscope image capture where relevant. Image
analyses and other image measurements were performed on ImageJ software (v.2.0, NIH,
Bethesda, MD, USA).

2.6. Kidney Homogenisation

Frozen right kidney tissues were thawed then cut transversely into two equal portions.
One half was then minced with scissors, snap frozen once again in liquid nitrogen, then
pulverised with a mortar and pestle. The remaining tissue was returned to storage at
−80 ◦C. Roughly pulverised renal tissue was warmed to 22 ◦C then suspended in lysis
buffer (50 mM PBS, pH 7.4 comprising 1 mM EDTA, 10 µm butylated hydroxytoluene
and a Protease Inhibitor Cocktail tablet (Roche Diagnostics, Bern, Switzerland)). Next, the
suspended tissues were transferred into a Teflon-reinforced glass tube and homogenised
using a matching rotating Teflon-coated piston (Wheaton Specialty Glass, Millville, NJ,
USA; 500 r.p.m.) on ice. After 5 min, the renal homogenates were centrifuged (2500× g)
and the clarified supernatant was aliquoted into tubes (100 µL) for storage at −80 ◦C for
subsequent biochemical analysis.

2.7. Biochemical Assays

For all biochemical analyses, total protein concentration was assessed using bicin-
choninic acid (BCA) assays with serially diluted bovine serum albumin as protein standard
(Sigma-Aldrich, Sydney, Australia). To account for variation in tissue wet weight, to-
tal homogenate protein was used to normalise all determined quantitative biochemical
parameters.

2.8. Assessment of Renal Injury Biomarkers

Under normal conditions, expression levels of kidney injury molecule-1 (KIM-1)
are relatively low, though inflammatory states and other renal insults can cause marked
increases in KIM-1 expression within renal proximal tubule epithelial cells; as such, KIM-1
levels have been utilised as a specific biomarker for kidney injury [39]. Levels of renal KIM-
1 were determined using a single-plex sandwich enzyme-linked immunosorbent assay
(ELISA) kit according to instructions of the manufacturer (Abcam, Melbourne, Australia).
Absorbance readings were taken at 450 nm with an Infinite® M1000 Microplate reader
(Tecan, Männedorf, Germany) and analysed in Microsoft Excel using an appropriate
standard curve. All values were normalised using total protein levels obtained from the
BCA assay.

Total urinary protein was also assessed as a marker for proteinuria and impaired
glomerular function. Total urinary protein was measured using a BCA assay (above).
Absorbance readings were taken at 562 nm with an Infinite® M1000 Microplate reader
(Tecan, Männedorf, Germany) and values were analysed in Microsoft Excel and calculated
using an appropriate standard curve.

2.9. Assessment of Interferon-Gamma (IFN-γ) Content

The concentration of IFN-γ cytokine within kidney homogenates was determined
using a commercially available ELISA kit (elisakit.com (accessed on 29 October 2021)
Australia), following the instructions of the manufacturer. Briefly, kidney homogenate
samples were centrifuged to separate insoluble matter (12,000× g, 10 min, 4 ◦C) before
loading onto a 96-well plate along with relevant blank solutions and standards. Next, biotin-
labelled detection primary were added to appropriate wells and incubated (22 ◦C, 2 h).
Subsequently, streptavidin-HRP conjugates were added and further incubated (45 min,
37 ◦C). Wells were adequately washed and aspirated as recommended. Finally, TMB
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substrate was aliquoted to each well and the reaction mixture incubated at 22 ◦C in the
dark. After 15 min, absorbance readings were taken at 450 nm with an Infinite® M1000
Microplate reader (Tecan, Männedorf, Germany) and analysed in Microsoft Excel. The final
IFN-γ concentration was calculated via interpolation from an appropriate standard curve
and normalised to total homogenate protein.

2.10. SDS-PAGE and Western Blot Studies for p-p38 MAPK

Where required, levels of protein expression in kidney homogenates were validated and
semi-quantified with Western blot analysis. Raw homogenates were centrifuged (12,000× g,
10 min, 4 ◦C), and the resultant clarified supernatants (20 µg total protein/sample) were
loaded onto a 12% w/v acrylamide gel (BioRad, Sydney, Australia) and separated by
electrophoresis (150 V, 30 min). Following protein separation, gels were activated with
UV light for 5 min using a Gel Doc XR+ molecular imager (BioRad, Sydney, Australia).
Images obtained from UV activation were later used to assess total protein load. Proteins
were transferred from the gel onto a 0.2 µm Trans-Blot® Turbo™ Midi polyvinylidene
difluoride (PVDF) membrane transfer pack (BioRad, Sydney, Australia) utilising a semi-dry
transfer method in the Trans-Blot® Turbo™ Transfer System (BioRad, Sydney, Australia)
for 7 min. Membranes were blocked in 5% v/v skim milk solution at 22 ◦C for 45 min
with gentle shaking then washed with 1× TBS-T (1× TBS, 0.01% v/v Tween-20, 2 × 5 min).
Subsequently, membranes were incubated overnight, with gentle agitation at 4 ◦C with
anti-p-p38 MAPK primary antibody diluted (1:1250 v/v) in 5% BSA w/v/1× TBS-T before
washing with 1× TBS-T (3 × 5 min). Membranes were then incubated with a diluted
(1:10,000 v/v) polyclonal anti-rabbit IgG peroxidase-conjugated secondary antibody (Sigma-
Aldrich, Sydney, Australia) for 1 h at 22 ◦C with gentle agitation. Finally, membranes were
washed with 1× TBS-T (4 × 5 min) before addition of ECL Clarity (BioRad, Sydney,
Australia) and imaging. Where required, membranes were imaged using the ChemiDoc
Touch imaging system (BioRad, Sydney, Australia) as per the manufacturer’s guidelines.
Densitometric data were analysed using ImageLab™ software (v 6.0.1, 2017, BioRad,
Sydney, Australia). Protein expression levels were normalised against total protein load
and expressed as relatives compared to controls.

3. Immunofluorescence (IF) Studies

Deparaffinised and rehydrated 5 µm thick renal sections first underwent heat-induced
antigen retrieval (above). Slides were then incubated with 3% v/v H2O2/water for 10 min
to block endogenous peroxidase activity then with serum-free protein block (Dako, Sydney,
Australia) for 30 min to reduce non-specific immunostaining. Sections were subsequently
incubated with a primary antibody (selected from the following: anti-phospho-NF-κB
p65, Sigma-Aldrich, dilution 1:100 v/v; anti-Nrf2, Abcam, dilution 1:700 v/v; anti-IFN-
γ, Abcam, dilution 1:3000 v/v; anti-phospho-p38 MAPK, Cell Signalling Technologies,
dilution 1:800 v/v) for 1 h before incubating with an HRP-labelled polymer conjugated
secondary antibody (Dako, Sydney, Australia) for 30 min. Slides were then incubated with
an Opal fluorophore for 5 min in the dark (dilution 1:50 v/v; PerkinElmer, Melbourne,
Australia). To visualise individual nuclei, slides were incubated with DAPI (dilution
1:80 v/v 0; PerkinElmer, Melbourne, Australia) for 10 min. Similarly to IHC, slides were
incubated (22 ◦C, humidity chamber) and subject to appropriate washing steps after each
reaction. Slides were mounted with fluorescence mounting medium and cover slipped
for storage at 4 ◦C in moist and dark conditions where required. A ZEISS Axio Scope.A1
upright fluorescent microscope fitted with a digital camera (Zen 2 Lite software, Carl Zeiss,
Sydney, Australia) was utilised to capture JPEG formatted images. Random fields of view
were obtained from both cortical and medullary regions and fluorescence intensity was
quantified using ImageJ (public freeware, NIH, USA).



Int. J. Mol. Sci. 2021, 22, 12582 7 of 23

3.1. Immunohistochemistry (IHC) Studies

To assess and semi-quantify the spatial distribution of renal iNOS enzyme, sections
of kidney tissue were employed for immunohistochemical analysis. Heat-induced anti-
gen retrieval steps (above) were completed on 5 µm deparaffinised and rehydrated thin
renal sections. To block endogenous peroxidase activity, slides were incubated (10 min 3%
v/v H2O2/water) and then with a ready-to-use serum-free protein block (Dako, Sydney,
Australia) for 30 min to reduce non-specific immunostaining. Slides were then incubated
with polyclonal anti-iNOS primary antibody (final dilution 1:200 v/v; Abcam, Melbourne,
Australia) for 1 h. Subsequently, slides were incubated with a ready-to-use horseradish per-
oxidase (HRP)-labelled polymer conjugated secondary antibody (Dako, Sydney, Australia)
for 30 min. Slides were incubated in a humidity chamber at 22 ◦C and all sections were
washed between each reaction step. Slides were visualised using 3,3′-diaminobenzidine
(DAB; Dako, Sydney, Australia) with a Harris haematoxylin counterstain. Slides were
mounted and cover slipped before imaging on a ZEISS Axio Scope.A1 light microscope
fitted with a digital camera (Zen 2 Lite software Carl Zeiss, Sydney, Australia). For each
section, random fields of view were imaged from both cortical and medullary regions and
converted to JPEG format. For iNOS, DAB-staining was quantified using ImageJ (freeware
NIH, USA).

3.2. Assessment of Tissue Fibrosis with Picrosirius Red Staining

Renal and aortic sections were prepared from tissues isolated at 16 weeks post SAA
treatment (termed the chronic murine model) and were used to assess fibrotic renal changes
following SAA administration. Briefly, deparaffinised and rehydrated 5 µm renal sections
were first stained with Harris haematoxylin for 10 min, washed with running water, then
stained with picrosirius red solution for 1 h before washing with acidified distilled water.
Subsequently, slides were dehydrated with absolute alcohol (3 × 2 min), cleared with
xylene before being mounted and cover slipped. Slides were imaged using a ZEISS Axio
Scope.A1 light microscope fitted with a digital camera (Zen 2 Lite software, Carl Zeiss,
Sydney, Australia). Random fields of view were imaged from both cortical and medullary
regions and converted to the JPEG format. Finally, picrosirius staining intensity quantified
using ImageJ (freeware, NIH, USA).

4. Histological Assessment of Atherosclerotic Lesion Size and Composition

Hearts and the aortic arch were also collected from mice allocated to the chronic
model (that corresponds to 16 weeks post cessation of SAA treatment) to study long-term
aortic lesion formation following SAA administration. Briefly, heart tissues were dissected
halfway through the heart and perpendicular to the aorta. Dissected heart tissues were
fixed with ethanol (70% v/v ethanol/water) then dehydrated with a graded series of
ethanol and embedded in paraffin. Where required, the aortic sinus tissues were sectioned,
deparaffinised and rehydrated before undergoing picrosirius red staining as described
above. Only aortic sections which displayed a three-valve leaflet morphology (judged by
microscopic inspection) were used for further quantitative and qualitative analysis. Slides
were imaged using a ZEISS Axio Scope.A1 light microscope fitted with a digital camera
(Carl Zeiss, Sydney, Australia). Using Zen 2 Lite software, images were converted to JPEG
format for quantitative analysis in ImageJ (freeware NIH, USA). Percentage lesion area
was calculated at 5×magnification by manually outlining lesion sites for total lesion area
which was then normalised to the total area of the aortic root. Additional lesion histological
analyses at the aortic were conducted at 20×magnification.

5. Statistical Analysis

All statistical analysis was performed using GraphPad® Prism Version 8.0 (GraphPad
Software Inc., La Jolla, CA, USA). Group differences were compared using a parametric
independent samples t-test. Graphical data were expressed as relative means ± standard
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deviation (SD). Differences between relative means were taken to be statistically significant
at a 95% confidence interval (p < 0.05) and have been indicated where appropriate.

6. Results
6.1. SAA Administration Stimulate MMPsense in Mouse Kidneys

MMPs are zinc-dependant enzymes possessing proteolytic activity against extracellu-
lar matrix proteins. MMPs have been found associated with renal dysfunction particularly
by causing renal fibrosis [40]. In our studies, MMPsense administration to mice 4 weeks
after the cessation of SAA treatment showed increased bioluminescent signal intensity in
the lower thoracic region and between the hind limbs of the mice (Figure 2A), indicating
enhanced MMP activity in response in SAA treatment. This signal was largely absent in
control mice (without SAA) although MMPsense activation was noted in the tail region for
mice administered MMPsense, which is consistent with the recruitment of inflammatory
cells that release MMPs at the site of injection injury. However, it was difficult to confirm if
the in vivo bioluminescent signal detected in SAA-treated mice resulted specifically from
increased renal MMP activity. To clarify, mice were sacrificed, and the isolated kidneys
subsequently reimaged with IVIS® SpectrumCT (PerkinElmer). Consistent with the in-
crease in the MMP bioluminescence in SAA-treated mice being linked to renal remodelling
(Figure 2B), isolated kidneys from SAA-stimulated mice showed markedly enhanced biolu-
minescence, particularly in the medullary region (2–3-fold higher intensity than control).
Quantification of the in vivo bioluminescent signal (in the thoracic and lower gut regions)
using Living Image® (PerkinElmer) showed a trend towards increasing in mice adminis-
tered SAA compared to the respective control, whereas the corresponding quantification of
MMP activity in isolated kidneys showed a significant difference.
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Figure 2. SAA administration activates MMPsense activity in vivo. Male ApoE−/− mice were
randomly allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and
the SAA group (administered 12 µg SAA protein every 3 days for 2 weeks). MMPsense (2 nmol–
150 uL) was injected via tail vein 24 h prior and animals were imaged using IVIS® SpectrumCT
(PerkinElmer). (A) In vivo mouse images after MMPsense injection (n = 3/group); mouse (1) control
without MMP injection; (2) control with MMPsense injection and (3) SAA-treated with MMPsense
injection. (B) Representative images of isolated kidneys from control and SAA group. After imaging,
animals were sacrificed and organs harvested. Kidneys were isolated and imaged using IVIS®

SpectrumCT (PerkinElmer) for MMS sense activity. (C) MMPsense signal intensity in mice images
was quantified using Living Image® (PerkinElmer) data analysis software.
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6.2. SAA Administration Causes Increased Expression of KIM-1 and Increased Secretion in Total
Urinary Proteins

Under normal conditions, kidney injury molecule-1 (KIM-1) mRNA and protein are ex-
pressed at relatively low levels but can be upregulated, particularly in the proximal tubules
during acute renal injury [41]. Expression of the KIM-1 biomarker is correlated with both
renal and heart disease [41,42]. Kidney tissue homogenates from mice administered SAA
showed a ~2-fold increase in KIM-1 expression compared to the vehicle control, although
this did not reach statistical significance (Figure 3A). Consistent with the increased level
of KIM-1 signifying renal injury, total urinary protein also increased ~1.3-fold higher in
mice assigned to the SAA group than those in the corresponding vehicle control group
(Figure 3B). While group differences for KIM-1 expression and total urinary protein did not
reach statistical significance, SAA administration appeared to stimulate renal injury and a
loss in selective glomerular filtration. Taken together with the outcome from MMPsense
imaging, the collective data suggest that renal tissue is a target for SAA-mediated dam-
age/remodelling, and subsequent analyses to determine the molecular basis for this injury
is warranted.
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Figure 3. Assessment of renal function following SAA administration. (A) Male ApoE−/− mice were
randomly allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and the
SAA group (administered 12 µg SAA protein every 3 days for 2 weeks). Kidney tissue was harvested
4 weeks after cessation of treatment, and a portion of renal tissue was homogenised for biochemical
analyses. An immunoassay ELISA kit to quantify renal KIM-1 expression was utilised to assess renal
dysfunction. Reagents, standards and samples were prepared and assayed by ELISA as per the
manufacturer’s instructions (Abcam). Absorbance values were measured at 450 nm with values for
concentration calculated from the standard curve generated. (B) Total urinary protein concentration;
all data shown as relative mean ± SD.

6.3. SAA Administration Stimulates Tissue Antioxidant Response

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a nuclear transcription factor
that regulates the expression of antioxidant proteins in response to oxidative damage
elicited by injury, inflammation or other internal metabolic events [43]. To assess the
expression of Nrf2 and antioxidant activity in response to SAA-induced oxidative stress,
immunofluorescence studies were conducted to localise and quantify Nrf2 expression in the
mouse kidney (Figure 4A). Compared to control, renal cortical Nrf2+ immunostaining (red)
was significantly increased in mice administered with SAA. Nrf2 staining also appeared to
be largely localised to nuclei in the renal proximal tubule (Figure 3A; white arrows) with
some cytoplasmic staining evident. Interestingly, glomerular Nrf2+ immunostaining was
relatively low compared to tubular staining (Figure 4A; green arrows), suggesting that
endothelial cells were not involved in SAA-mediated Nrf2 regulation for oxidative stress,
and that expression and transcriptional activation of Nrf2 was focal to epithelial cells.

To examine inter-group differences for Nrf2 expression with greater detail, immunoflu-
orescence images were quantified using Fiji software (ImageJ, version 2.0). Cortical Nrf2+

immunostaining (Figure 4B) was ~8.8 fold greater in kidney sections from the SAA group
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than corresponding tissue from control (p < 0.01). This would suggest that SAA-induced
oxidative stress upregulates Nrf2 expression to further stimulate antioxidant response ele-
ments to counterbalance reactive oxygen species within the kidney, possibly by infiltrating
or resident macrophages [44]. Likewise, Nrf2 immunostaining intensity was significantly
higher (>20-fold) in the renal medulla in SAA-treated group compared to the control
(Figure S1).
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endothelial cells across all groups (Figure 4A; green arrows), suggesting that NF-kB 
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Figure 4. SAA administration stimulates Nrf2 expression in the renal cortical tissue. (A) Male
ApoE−/− mice were randomly allocated to vehicle control (administered 100 µL PBS every 3 days
for 2 weeks) and the SAA group (administered 12 µg SAA protein every 3 days for 2 weeks). Kidney
tissue was harvested 4 weeks after cessation of treatment and fixed in situ before embedding and
sectioning (5 µm). Renal sections were dewaxed and rehydrated before undergoing heat-induced
antigen retrieval. Cortical Nrf2 expression was assessed using immunofluorescence microscopy.
Slides were visualised at 40× magnification (scale bar = 20 µm); images are representative of at least
4 fields of view for each sample. Nuclei were stained with DAPI (blue) and Nrf2 with an appropriate
Opal fluorophore (red). White arrows show regions of relatively high tubular Nrf2+ immunostaining.
Green arrows show regions of relatively low glomerular Nrf2+ immunostaining. Insets show higher
magnification images (scale bar = 10 µm), Nrf2+ staining was mixed with Nrf2 colocalised to nuclei
with residual cytoplasmic staining. Representative images show cortical fields from n = 5 (Control),
n = 6 (SAA). (B) Immunostaining was quantified using a mean staining intensity for each field of
view and averaged for each sample. Data shown as relative mean ± SD. ** Relative to control group;
p < 0.05.

6.4. SAA Administration Stimulates Phospho-NF-kB p-65 Expression in the Renal Tissue

SAA-induced NF-kB signalling in pro-inflammatory activity has been previously
shown, with the SAA receptor-mediated pathways and SAA-induced ROS production both
converging on the phosphorylative activation of the canonical transcription factor [10,45].
Overall cortical p-p65 NF-kB expression in kidneys from mice in the SAA treatment
group was greater than the corresponding vehicle control group and largely localised to
the nuclei and cytoplasm of tubular epithelial cells with only some cytoplasmic NF-kB
staining evident in these same cells (Figure 5A; white arrows). Similar to Nrf2, NF-kB-p65+

immunostaining was relatively low within the glomerular endothelial cells across all groups
(Figure 4A; green arrows), suggesting that NF-kB activation predominantly occurred in
cells of the tubular network. When quantified, NF-kB-p65+ immunostaining in the cortical
region increased significantly ~3.4 times greater in the SAA group than the corresponding
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control (p < 0.01). This suggests that SAA elicited both expression and activation of Nrf2
and NF-kB were upregulated in parallel. Likewise, NF-kB immunostaining intensity was
significantly higher (5-fold) in the renal medulla in SAA-treated group compared to the
control (Figure S2).
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has been implicated in the reduction of Leydig cell testosterone production and in human 
airway myocytes as a result of chronic inflammation and oxidative stress [49,50]. Some 
studies have purported p38 MAPK as an upstream regulator of NF-kB, though both p38 
MAPK-independent and p38 MAPK-dependent NF-kB activation pathways exist in pro-
inflammatory responses. Therefore, immunofluorescence studies on p38 MAPK 
activation were also conducted. 

Cortical p-p38 MAPK expression was significantly higher in renal sections from the 
SAA group compared with vehicle controls, with immunostaining largely localised to the 
nuclei of the tubular cells with some cytoplasmic staining (Figure 6A; refer to white 
arrows). As with the other immunofluorescence studies, glomerular p-p38 MAPK 
immunostaining was relatively low (Figure 6A; green arrows), suggesting that SAA 
predominantly induced p-p38 MAPK activity within tubular epithelial cells rather than 
within endothelial cells. Quantification of p-p38 MAPK+ immunostaining (Figure 6B) 
showed that the fluorescence signal in the renal cortical region was significantly elevated 
by ~ 2.5-fold in the SAA group compared to the vehicle control (p < 0.01). Consistent with 

Figure 5. SAA administration stimulates NF-kB p-p65 in the renal cortical tissue. Male ApoE−/−

mice were randomly allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks)
and the SAA group (administered 12 µg SAA protein every 3 days for 2 weeks). Kidney tissue was
harvested 4 weeks after cessation of treatment and fixed in situ before embedding and sectioning
(5 µm). Renal sections were dewaxed then rehydrated before undergoing heat-induced antigen
retrieval. (A) NF-kB p-p65 expression was assessed using immunofluorescence microscopy. Slides
were visualised at 40× magnification (scale bar = 20 µm); images are representative of at least
4 fields of view for each sample. Nuclei were stained with DAPI (blue) and NF-kB p-p65 with an
appropriate Opal fluorophore (red). White arrows show NF-kB+ staining localised to renal epithelial
cells and not in the glomerular endothelium (glomeruli indicated by green arrow). Insets show higher
magnification (scale bar = 10 µm) images of renal tubular epithelial cells with NF-kB p-p65+ staining
largely colocalised to nuclei with some residual cytoplasmic staining. Representative images show
cortical fields from n = 5 (control), n = 6 (SAA). (B) Immunostaining was quantified using a mean
staining intensity for each field of view and averaged for each sample. Data shown as relative mean
± SD. ** Different to the control group; p < 0.001.

6.5. SAA Administration Stimulates p-38 MAPK in Renal Tissue

Activation of the p38 MAPK pathway leads to a variety of biological effects, such
as apoptosis and cellular differentiation and fibrosis of the kidney, liver and lungs [46].
Through a macrophage-mediated response, p38 MAPK activation stimulates immune
cell activation, leading to the clearance of pathogenic and foreign material [47,48]. The
functional linkage between p38 MAPK and NF-kB through COX2 signalling activation
has been implicated in the reduction of Leydig cell testosterone production and in human
airway myocytes as a result of chronic inflammation and oxidative stress [49,50]. Some
studies have purported p38 MAPK as an upstream regulator of NF-kB, though both p38
MAPK-independent and p38 MAPK-dependent NF-kB activation pathways exist in pro-
inflammatory responses. Therefore, immunofluorescence studies on p38 MAPK activation
were also conducted.

Cortical p-p38 MAPK expression was significantly higher in renal sections from the
SAA group compared with vehicle controls, with immunostaining largely localised to the
nuclei of the tubular cells with some cytoplasmic staining (Figure 6A; refer to white arrows).
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As with the other immunofluorescence studies, glomerular p-p38 MAPK immunostaining
was relatively low (Figure 6A; green arrows), suggesting that SAA predominantly induced
p-p38 MAPK activity within tubular epithelial cells rather than within endothelial cells.
Quantification of p-p38 MAPK+ immunostaining (Figure 6B) showed that the fluorescence
signal in the renal cortical region was significantly elevated by ~ 2.5-fold in the SAA group
compared to the vehicle control (p < 0.01). Consistent with the data determined in the
cortex, p-p38 MAPK immunostaining intensity was higher (~1-fold) in the renal medulla
in SAA-treated group compared to the control (Figure S3). These results suggest that SAA-
stimulation activated p38 MAPK-dependent NF-kB pro-inflammatory signalling cascades.

To validate the p-p38 MAPK immunostaining data, Western blot analyses were con-
ducted and yielded an immune-positive band identified at 38 kD (Figure 6C), consistent
with anticipated molecular weight for p-p38 MAPK. Densitometric measurements of the
protein bands at 38 kD followed by normalisation to the corresponding total protein load
in each lane indicated that the intensity of the bands from the SAA group were ~2.5-fold
greater than the vehicle controls; however, these semi-quantitative measurements did not
reach statistical significance.
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tissue (20 µg protein) from the control and SAA groups were separated by SDS-PAGE. Proteins were transferred onto a 
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6.6. SAA Administration Stimulates IFN-γ Expression in the Renal Tissue 
IFN-γ is a cytokine predominantly synthesised by natural killer cells and T cells 

[51,52]. IFN-γ limits tissue destruction for acute insults and has important functional and 
regulatory linkages with NF-kB and p38 MAPK [53,54]. Herein, we show that cortical IFN-

Figure 6. SAA administration stimulates p-p38 MAPK expression in the renal cortical tissue. (A) Male ApoE−/− mice were
randomly allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and the SAA group (administered
12 µg SAA protein every 3 days for 2 weeks). Kidneys were harvested 4 weeks after treatment cessation and fixed in situ
before embedding and sectioning (5 µm). Renal sections were dewaxed then rehydrated before undergoing heat-induced
antigen retrieval. NF-kB p-p65 expression was assessed using immunofluorescence microscopy. Slides were visualised
at 40× magnification (scale bar = 20 µm); images are representative of at least 4 fields of view for each sample. Nuclei
were stained with DAPI (blue) and p-p38 MAPK with an appropriate Opal fluorophore (red). White arrow indicates p-p38
MAPK+ staining localised to renal epithelial cells, which was absent in glomerular endothelium (glomeruli indicated by
green arrow). Insets show higher magnification (scale bar = 10 µm) images of renal tubular epithelial cells with p-p38
MAPK+ staining colocalised to nuclei with some cytoplasmic staining. Representative images show cortical fields from
n = 5 (control), n = 6 (SAA). (B) Immunostaining was quantified using a mean staining intensity for each field of view and
averaged for each sample; data shown as relative mean ± SD. ** Different to control group; p < 0.001. (C) Western blot
analyses of p-p38 MAPK were performed as described in the methods section. Homogenised renal tissue (20 µg protein)
from the control and SAA groups were separated by SDS-PAGE. Proteins were transferred onto a membrane, blocked, then
incubated with the appropriate antibodies. Membranes were imaged, and bands at 38 kD corresponding to p-p38 MAPK
were identified and quantified using densitometry (ImageLab, version 6.0.1). All density data were normalised with total
protein loading determined from corresponding stain free gel images. Data shown as relative mean ± SD.
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6.6. SAA Administration Stimulates IFN-γ Expression in the Renal Tissue

IFN-γ is a cytokine predominantly synthesised by natural killer cells and T cells [51,52].
IFN-γ limits tissue destruction for acute insults and has important functional and regu-
latory linkages with NF-kB and p38 MAPK [53,54]. Herein, we show that cortical IFN-γ
content was significantly higher in the SAA group compared to vehicle controls. IFN-γ+

immunostaining was localised mainly to tubular epithelial cell nuclei (Figure 7A; refer to
white arrows) with low-level staining detected within the glomerular parietal epithelia
(Figure 7A; green arrows). Quantification of cortical IFN-γ+ immunostaining (Figure 7B)
showed a significant ~2.7-fold increase in renal sections from the SAA group compared to
controls (p < 0.01). Independent quantification of the IFN-γ+ using a commercial ELISA
kit indicated that the concentration of this chemokine was ~1.8-fold higher in the SAA
group than in the corresponding vehicle control (Figure 7C), although this difference was
not statistically significant. Similarly, IFN-γ+ immunostaining intensity was significantly
elevated (2.5-fold) in the renal medulla in SAA-treated mice (Figure 4).
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Figure 7. SAA administration stimulates IFN-γ expression in the renal cortical tissue. (A) Male ApoE−/− mice were
randomly allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and the SAA group (administered
12 µg SAA protein every 3 days for 2 weeks). Kidney tissue was harvested 4 weeks after cessation of treatment and fixed
in situ before embedding and sectioning (5 µm). Renal sections were dewaxed then rehydrated before undergoing heat-
induced antigen retrieval. IFN-γ localisation was assessed using immunofluorescence microscopy. Slides were visualised at
40×magnification (scale bar = 20 µm); images are representative of at least 4 fields of view for each sample. Nuclei were
stained with DAPI (blue) and IFN-γ with an appropriate Opal fluorophore (red). White arrow indicates IFN-γ staining
primarily localised to renal epithelial cells and minimally in the glomerular endothelium (glomeruli indicated by green
arrow). Insets show higher magnification (scale bar = 10 µm) images of renal tubular epithelial cells with IFN-γ staining
largely colocalised to nuclei with some residual cytoplasmic staining. Representative images show cortical fields from
n = 5 (control), n = 6 (SAA). (B) Immunostaining was quantified using a mean staining intensity for each field of view and
averaged for each sample. Data shown as relative mean ± SD. ** Different to the control group; p < 0.001. (C) An ELISA kit
was utilised to quantify renal IFN-γ as described in the methods section. Results shown as relative mean ± SD.
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6.7. SAA Administration Stimulates Inducible iNOS Expression in the Renal Tissue

iNOS is part of a family of nitric oxide synthases which catalyse the formation of
nitric oxide from L-arginine; iNOS expression is linked to the chemokine IFN-γ. Renal
iNOS expression occurs in proximal tubular epithelial cells, interstitial cells, glomerular
parietal epithelial cells but can also be expressed by macrophages [55,56]. Upstream, iNOS
expression and activation can be modulated by MAPK/NF-kB signalling pathways as well
as JAK/STAT cascades stimulated by cytokines such as IFN-γ [30,57]. Furthermore, iNOS
is implicated in cytoplasmic and macrophage ROS production [58], which can exacerbate
SAA-induced inflammation.

Overall, iNOS+ DAB immunostaining was elevated in renal sections from the SAA
group (Figure 8A) compared to the vehicle controls (Figure 8B). In general, iNOS+ DAB
immunostaining was localised to the tubular epithelial cells as well as in the parietal ep-
ithelium lining the inner surface of Bowman’s capsule within glomeruli, particularly in
the SAA group (Figure 8B; refer to black arrows). The extent of iNOS+ DAB immunos-
taining (Figure 8C) showed that iNOS expression in the parietal epithelium was ~1.9-fold
greater in sections from the SAA group compared with controls (p < 0.001). Activated
glomerular parietal epithelial cells in focal segmental glomerulosclerosis can cause the
parietal epithelial cells to migrate to the glomerular tuft, producing matrix proteins, which
induces scarring, fibrosis and, possibly, renal dysfunction in the long term. These results
would suggest that SAA-induced renal inflammation may lead to the activation of the
aforementioned cascades in upregulating iNOS expression, which can lead to fibrosis and
renal dysfunction.
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Figure 8. SAA administration stimulates iNOS expression in the renal cortical tissue. Male ApoE−/− mice were randomly
allocated to (A) the vehicle control group (administered 100 µL PBS every 3 days for 2 weeks) and (B) the SAA group
(administered 12 µg SAA protein every 3 days for 2 weeks). Kidney tissue was harvested 4 weeks after cessation of treatment
and fixed in situ before embedding and sectioning (5 µm). Renal sections were dewaxed then rehydrated before undergoing
heat-induced antigen retrieval. iNOS expression was assessed using immunohistochemistry and light microscopy. Slides
were visualised using an Axio Scope.A1 light microscope at 40×magnification (scale bar = 20 µm); images are representative
of at least 4 fields of view for each sample. For all images shown, nuclei are stained with haematoxylin (appearing as blue),
and iNOS with DAB (appearing as brown). Black arrows indicate iNOS+ immunostaining (DAB positive) localised to
epithelial cell brush borders and to the parietal epithelial cells lining the inner surface of Bowman’s space in the SAA group.
Representative images show iNOS+ immunostaining in renal cortical fields from n = 5 (control), n = 6 (SAA). (C) Parietal
iNOS+ staining within the glomeruli was quantified using mean grey value and an optical density calculation for each field
of view and averaged for each sample. Data shown as relative mean ± SD. *** Different to the control group; p < 0.0001.

6.8. SAA Administration Leads to Fibrotic Changes in the Kidneys

Renal fibrosis is a progressive pathological result of extracellular matrix accumulation
and the scarring of tissue in which connective tissue structures, such as collagen, take
the place of normal parenchyma. Available evidence indicates that p38 MAPK activation
and iNOS expression is correlated with renal fibrosis [59,60]. As both these markers were
upregulated in this study, we next assessed renal fibrosis, which increased 16 weeks after
cessation of SAA treatment as judged by the extent of PSR+-collagen staining localised
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around the glomeruli in the renal cortex and interstitial cells in the medulla (Figure 9A;
refer to black arrows).

To assess group differences for PSR staining with greater detail, images were quantified
using Fiji software (ImageJ, version 2.0). In the cortical region, PSR staining (Figure 9B) was
~2.2-fold greater in renal sections from the SAA group than with vehicle controls (p < 0.05).
In the medulla, PSR staining (Figure 9C) was ~1.9-fold greater in the SAA group compared
with controls (p < 0.05). Together, an acute SAA-induced inflammatory response could
stimulate an oxidative stress pathway leading to macrophage activation, which in the long
term, leads to the deposition of collage and fibrosis in the kidney in the chronic model.
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Figure 9. SAA administration causes long-term fibrotic changes in kidneys. (A) Male ApoE−/− mice were randomly
allocated to vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and the SAA group (administered 12 µg
SAA protein every 3 days for 2 weeks). Kidney tissue was harvested 14 weeks after cessation of treatment and fixed in situ
before embedding and sectioning (5 µm). Renal sections were dewaxed then rehydrated before staining with haematoxylin
and picrosirius red (PSR) solution. Renal fibrosis was assessed using the PSR stain for collagen. Slides were visualised using
an Axio Scope.A1 light microscope at 40×magnification (scale bar = 20 µm); images are representative of at least 4 fields
of view for each sample. For all images shown, nuclei are stained with haematoxylin (brown), and collagen with PSR
(red). Black arrows indicate PSR staining localised to the parietal epithelial cells lining the outer surface of Bowman’s space
and the interstitial spaces in the SAA group. Representative images show PSR+ staining in renal cortical and medullary
fields from n = 8 (control), n = 6 (SAA). PSR staining in the (B) cortical and (C) medullary regions were quantified using
thresholding tools for each field of view and averaged for each sample. Data shown as relative mean ± SD. * Different to
the control group; p < 0.05.

6.9. SAA Administration Causes Atherosclerotic Lesions Development in the Mouse Aortae

Renal dysfunction and renal disease are a major risk factor for atherosclerosis and
cardiovascular disease [61]. Atherosclerotic lesions are common in the aortic valve in
mice, which is a tricuspid semilunar valve consisting of three leaflets situated between
the left ventricle and the aorta [62]. Aortic sections obtained 16 weeks after cessation of
SAA treatment were stained with PSR and imaged, with lesions outlined for both control
(Figure 10A; refer to black arrows) and SAA groups (Figure 10B; black arrows). When
quantified, the percentage of lesion area was ~2.2-fold greater in aortic sections from the
SAA group (Figure 10C) compared with sections from the control group (p < 0.05).
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Figure 10. SAA administration causes atherosclerotic lesion development at aortic valve leaflets. Male ApoE−/− mice were
randomly allocated to (A) the vehicle control (administered 100 µL PBS every 3 days for 2 weeks) and (B) the SAA group
(administered 12 µg SAA protein every 3 days for 2 weeks). The aortic sinus from each mouse was harvested 16 weeks after
cessation of SAA treatment and fixed in situ before embedding and sectioning (5 µm). Aortic sections were dewaxed then
rehydrated before staining with haematoxylin and picrosirius red (PSR) solution. Slides were visualised using an Axio
Scope.A1 light microscope at 5× magnification (scale bar = 200 µm). For all images shown, cardiac muscle tissue is stained
with haematoxylin (brown) and collagen with PSR (red). The black arrows and yellow outlines indicate lesion formation
localised at the root of the valve leaflets. The green polygons indicate the field of view magnified at 20×. Representative
images show atherosclerotic lesion formation from n = 5 (control), n = 7 (SAA). (C) The total lesion size for each sample
was quantified using a freehand drawing tool (ImageJ, version 2.0) and calculated as percentage of total area. Data shown
as relative mean ± SD. * Different to the control group; p < 0.05. High magnification (20×, scale bar = 40 µm) images of
atherosclerotic lesions at the aortic roots in the vehicle control (D) and SAA groups (E) were obtained at the fibrous caps
(blue arrows) where foam cells (red arrows) and cholesterol clefts (green arrows) can be visualised.

Further investigation revealed key differences in specific histological features of the
atherosclerotic lesions between the treatment groups. Sections of lesions from the control
group (refer to the green polygon were magnified; Figure 10D) indicated the presence of
foam cells (Figure 10D; red arrow) and large cholesterol clefts (Figure 10D; green arrow)
with a thick and distinctive fibrous cap (Figure 10D; blue arrow) consistent with ApoE−/−

mice being prone to atherosclerotic lesion development. In the corresponding SAA group
(Figure 10E), a similar well-defined fibrous cap was observed. However, the periphery
of the fibrous cap (Figure 10E; blue arrow) was not clearly demarcated, and the margin
showed evidence of infiltration by foam cells, which were also present over the capsular
structure (Figure 10E; red arrows). Plaque in mice from the SAA group showed foam
cells within the lesion core and as well as several sharp cholesterol clefts (Figure 10E;
green arrows). These combined histological features are characteristic of unstable plaque,
which has more severe clinical implications. These results suggest that SAA-induced
inflammation exacerbates atherosclerotic lesion pathogenesis in the long term, and the
phenotype of the lesions may also be more prone to rupture, thus increasing the risk for
long-term cardiovascular disease.

7. Discussion

While the inflammasome provides all necessary conditions to resolve tissue damage
and elicit healing processes, unresolved or overactive chronic inflammation can cause host
tissue damage [6]. This duality emphasises the “double-edged” nature of inflammatory
activity. Although the immune and inflammatory cascades are considered “conserved”
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responses, the exact signalling pathways are heterogenous and can vary depending on
the type of insult or injury and on the impacted tissue [63]. As a result, finding novel
therapeutic targets within the immune and inflammatory cascades needs to be attuned for
each response pathway rather than the targeting of the cascades as a collective [10]. The
role SAA plays in regulating these inflammatory cascades remains unclear. In this study,
acute SAA administration induced an increase in renal inflammatory markers, which led
to long-term histological alterations in renal and aortic tissue, synonymous with renal
dysfunction and atherosclerotic lesion formation. Upstream, upregulation of oxidative
stress related transcription factors Nrf2, p65 NF-kB and p38 MAPK led to downstream
activation of an immunoregulatory response with an increase in IFN-γ content and iNOS
expression, a cascade which culminated in the endpoints of accelerated renal fibrosis and
atherosclerotic lesion formation within the aortic sinus in the long term.

7.1. SAA Induced Expression of Nrf2, NF-kB and Activated p38 MAPK in the Renal Tissue

The Nrf2 protein is constitutively expressed, but under normal physiological con-
ditions, is ubiquitinated by the Keap1/Cu3 ubiquitin ligase [64]. Turnover of Nrf2 en-
ables responses to the dynamic oxidative environment. Overproduction of damaging
oxidants, particularly hydrogen peroxide, modifies the cysteine thiol substituents on
the Nrf2/Keap1/Cu3 complex, which inhibits the degradation of Nrf2 protein, enabling
translocation to the nucleus and the induction of ARE genes [43]. This is consistent with the
current study, which shows Nrf2-positive immunostaining largely localised to the nuclei of
tubular epithelial cells. The lack of Nrf2-positive immunostaining within the glomeruli
is consistent with other in vivo murine models [65]. However, the lack of glomerular
Nrf2 staining compared to the tubular cells may be attributed to the relatively high rate
of adenosine triphosphate (ATP) production required for the active transport and filtra-
tion of solutes and water across the tubular epithelium, a process that requires abundant
oxygen consumption by mitochondria, which also produces reactive oxygen species [66].
Accordingly, the results from this current study suggest that SAA administration leads
to an imbalance of oxidants, with a disproportionally greater oxidative stress induced
within tubular cells than cells of the glomeruli, where mesangial cells might provide better
protection against oxidative stress [67].

Data from this study show both positive p-p65 NF-kB and Nrf2 immunostaining
largely localised to the nuclei of the tubular epithelia, indicating transcriptional activation.
However, the molecular crosstalk between the redox sensitive Nrf2 and NF-kB transcrip-
tion factors and how this interaction may regulate oxidative responses induced by SAA is
unclear. For example, both Nrf2 and NF-kB activity require binding to the CREB-binding
protein (CBP) transcriptional coactivator. A reciprocating competition for CBP complex
formation means that overexpression of one transcription factor drives down CBP avail-
ability to form complexes with the other and, therefore, competition for CBP could limit
downstream responses [68]. However, the modulatory activity between Nrf2 and NF-kB
can vary depending on cell type [69]. Further complicating this level of competition, Keap1
(the regulator of Nrf2 in the cytoplasm) can degrade IKKs, which prevents NF-kB activa-
tion [70]. Furthermore, the production of certain mediators during inflammation, such as
cyclooxygenase-2 (COX-2), can increase Nrf2 activity while inhibiting NF-kB activation.
The results from the current study show that both Nrf2 and NF-kB transcription factors
were both upregulated, which is suggestive of a cooperative relationship between Nrf2 and
NF-kB signalling within the renal tissue of SAA-treated mice. Notably, the GTP-binding
protein RAC1 induces the effects of Nrf2 through NF-kB activation in RAC1-mediated
inflammation [71], suggesting the complexity of the functional crosstalk between Nrf2 and
NF-kB, which further supports the notion that crosstalk occurs between these activated
transcription factors.

Along with NF-kB, SAA administration has been linked to p38 MAPK activation
through binding the cluster of differentiation 36 (CD36) receptor [72]. Activation of p38
MAPK, like NF-kB, results in the production of pro-inflammatory cytokines such as TNF



Int. J. Mol. Sci. 2021, 22, 12582 18 of 23

and COX-2 [49]. In kidneys, p-p38 MAPK is largely localised to the tubular cells and
the interstitial myofibroblasts [46]. Accordingly, in SAA-treated mice, p-p38 MAPK was
detected in the nuclei of tubular epithelial cells with a similar distribution to that of Nrf2
and NF-kB. The members of the MAPK family are well-established cofactors of NF-kB
activity; Sakai et al. showed that p38 MAPK phosphorylation and NF-kB activity is closely
associated in the pathophysiology of human crescentic glomerulonephritis [73]. However,
the functional crosstalk between p38 MAPK and Nrf2 is not well established, with some
studies showing p38 MAPK activity resulting in the phosphorylation of Nrf2, which en-
hances the binding of Nrf2 and Keap1 and prevents translocation to the nucleus [64], while
others suggest that this phosphorylation only has a limited effect on Nrf2 activity [74]. In
this study, with SAA-induced inflammation was a concomitant upregulation in the activity
of renal p38 MAPK, NF-kB and Nrf2 transcription factors, indicating SAA stimulates a raft
of inflammatory and stress markers implicated in renal dysfunction.

7.2. SAA Induced Expression of IFN-γ in the Renal Tissue

The pro-inflammatory IFN-γ cytokine is predominantly synthesised by T cells and
NK cells, inducing a plethora of immunomodulatory responses. IFN-γ signalling occurs
through its binding with its cell-surface receptor (IFN-γR), resulting in its internalisation
and nuclear accumulation [75]. It is also reported that the IFN-γ/IFN-γR interaction is re-
sponsible for the translocation of the STAT1 transcription factor to induce the transcription
of IFN-γ genes [76]. In the present study, IFN-γ+ immunostaining was localised predomi-
nantly in the nuclei of renal tubular cells, with minor cytoplasmic and glomerular staining.
NF-kB stimulation upon T helper type 1 cell activation has also been shown to upregulate
IFN-γ production [77], which then amplifies NF-kB activity, forming a bidirectional positive
feedback loop [78]. Furthermore, IFN-γ can exacerbate oxidative imbalances through ROS
production and NADPH oxidase (NOX) upregulation [79], propagating oxidative stress
responses. In that sense, SAA-induced oxidative stress may induce an immunostimulatory
pathway in which oxidative imbalances are sustained. One of the major effects of IFN-γ is
the priming of the immune system, such as augmenting TLR-mediated responses, which in
turn enhance p38 MAPK/NF-kB signalling and macrophage activation [80]. Additionally,
IFN-γ expression by dendritic cells and macrophages have revealed an autoactivation
pathway for frontline acute responses, further locally enhancing SAA-induced oxidative
stress [81]. While previous studies with SAA have demonstrated the ability of SAA to
upregulate renal IFN-γ levels [19], the current study expands on this observation to indicate
that upregulation of renal IFN-γ may result from SAA-induced oxidative stress pathways
involving an immunostimulatory loop response through p38 MAPK/NF-kB signalling.

7.3. SAA Induced Fibrotic Changes in the Renal Tissue

In the present study, we have identified histopathological evidence for increased
and more diffuse fibrotic and collagen depositions within the renal tissue of the chronic
murine model. Overall, fibrosis was localised around the glomeruli and within interstitial
spaces of the kidney. Fibrotic depositions around the glomeruli may be explained through
the deposition of extracellular matrix by myofibroblasts derived from either glomerular
epithelial or macrophage transition [58,82]. It has also been suggested that ROS-induced
renal fibrosis upregulates renal NOX and superoxide radical anion formation, which
induces fibroblast activation [83]. In lung tissue, upregulated p-p38 MAPK has been
linked to fibrosis, with the implication that p-p38 MAPK activates fibrotic responses in
fibroblasts [84,85]. Furthermore, p38 MAPK activation may be associated with renal
damage through disrupting tight junctions between tubular epithelial cells [86]. Notably,
the pattern of fibrosis in the current study showed colocalised p-p38-positive cells at the
glomerular margins where fibrosis was evident, which provides evidence to link SAA-
stimulated MAPK activation with fibrosis.

In addition to the primary consequences of renal fibrosis affecting kidney function,
renal fibrosis and renal dysfunction can lead to cardiovascular disease [87]. Renal dysfunc-
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tions may contribute to endothelial dysfunction and the development of atherosclerotic
lesions [88]. Moreover, chronic kidney disease also induces systemic inflammation, poten-
tially exacerbating the process of atherosclerosis [89]. In the chronic murine model in the
current study, the atherosclerotic lesion area was significantly greater in the SAA group
compared to controls. This result is consistent with a previous study demonstrating that
SAA significantly increased aortic root lesion area in a similar model [19]. Lesion formation
was also detected in the vehicle controls due to the utilisation of the ApoE−/− model,
which is prone to atherosclerotic lesion development even in the absence of a Western
diet [90].

7.4. SAA Induced Atherosclerotic Changes in the Aorta Root of Mice

Atherosclerotic lesion advancement and complexity was shown to be a more important
prognostic feature than lesion area [91]. For example, unstable fibrous plaques in diabetics
yield poorer survival outcomes as there is a higher propensity for heart failure in these
patients [92]. Histopathologic features of lesions from the SAA group presented with
relatively higher cholesterol clefts, which damage and undermine fibrous cap integrity,
eventually leading to acute cardiac events [93]. Fibrous caps in lesions from the SAA
group lacked clear peripheral margins due to infiltrating foam cells and a lower density
of cells forming the cap, signs of a clinically advanced lesion [94]. Therefore, SAA not
only induces accelerated aortic lesion formation but, also, the lesion composition induced
by SAA may represent a worse prognosis for acute events and thus highlights a need to
prevent inappropriate chronic extension of SAA-induced oxidative stress.

8. Conclusions

Taken together, our results indicate that SAA induces inflammatory cascades po-
tentially via ROS-mediated pathways that have significant impact not only on renal but
vascular function, as summarised in Figure 11. Accordingly, the specific involved ROS and
the oxidative damage that these ROS elicit need to be carefully identified and characterised
for consideration as a therapeutic target and part of the signalling circuitry in SAA-induced
inflammation, rather than a product of the pro-inflammatory cascade. This heterogeneity
and complexity within ROS signalling, and its amplification of pathophysiological cas-
cades when inappropriately extended, may explain the lack of clinical success in previous
intervention studies with antioxidants. As such, even greater detail of SAA-induced ROS
sources is required for their therapeutic targeting, with a requirement to identify and
characterise the domains of ROS production for specific delivery and therapeutic targeting.
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