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ABSTRACT Genome-wide prediction approaches represent versatile tools for the analysis and prediction
of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which
models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-
based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-
based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest
to analyze whether and how haplotype-based models may take local epistatic effects between markers into
account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in
which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable
into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-
based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation
studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an
interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP
model to empirical data sets revealed higher prediction accuracies than for marker-based models for both
traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations
showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for
marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a
beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic
effects very much resembles the one of additive effects.
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Genome-wide regression is a powerful tool to analyze and predict
quantitative traits which are regulated by many genes (Meuwissen
et al. 2001). Various genome-wide prediction approaches have been
explored and applied for human (Yang et al. 2010, de los Campos et al.
2010, 2013b), animal (Hayes et al. 2013, de los Campos et al. 2013a),
and plant populations (Crossa et al. 2014, Heslot et al. 2015, Hickey

et al. 2017). In most genome-wide prediction models, effects of molec-
ular markers such as single nucleotide polymorphisms (SNPs) were
used as explanatory variables (Cuyabano et al. 2015a). Alternatively,
molecular markers can be combined into haplotypes, which are then
used to implement genome-wide prediction models (Calus et al. 2008).
Haplotype-based prediction approaches are favored if alleles at quan-
titative trait loci (QTL) were more closely linked to haplotype alleles
than individual SNPs (Zondervan and Cardon 2004). Moreover, it is
hypothesized that haplotypes can capture epistatic interactions between
SNPs (Clark 2004, Zhang et al. 2014). Therefore, haplotype-based ap-
proaches potentially boost prediction accuracies (Cuyabano et al. 2014,
2015a, b).

The potential to exploit local epistatic effects among markers in
haplotype-based prediction is interesting with respect to two points.
First, epistasis has been recognized as a biologically influential compo-
nent contributing to the genetic architecture of quantitative traits
(Carlborg and Haley 2004, Mackay 2014, Jiang et al. 2017). The role
of epistasis in genome-wide prediction has been extensively studied, but
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mostly in terms of marker-based approaches. Several marker-based
models either implicitly or explicitly including epistatic effects in addi-
tion to main effects were developed (Xu 2007, Gianola and van Kaam
2008, Wittenburg et al. 2011, Jiang and Reif 2015, Vitezica et al. 2017).
Taking epistasis into account can increase prediction accuracies (Wang
et al. 2012, Muñoz et al. 2014, He et al. 2016). Second, decomposing
epistasis into global and local effects is pivotal for evaluating the long-
term impact of epistasis in plant and animal breeding, as there is a
reduced chance that local epistatic effects will disappear after genera-
tions of recombination (Akdemir and Jannink 2015). First attempts in
exploiting additive and local epistatic effects for genome-wide predic-
tion were carried out with marker-based models resulting in good pre-
dictive performance and useful explanatory information (Akdemir and
Jannink 2015, Akdemir et al. 2017, He et al. 2017). Nevertheless, it has
not been clarified why and how the haplotype-based approaches take
local epistasis into account at the level of statistical models.

The aims of this study were 1) to provide a formal theoretical
explanation how haplotype-based genome-wide prediction models in-
trinsically exploit local epistatic effects amongmarkers, 2) to investigate
with simulation studies under which circumstances haplotype-based
models performbetter thanmarker-basedmodels, and 3) to explore the
potential of haplotype-based genome-wide prediction models using
three published empirical data sets.

THEORY
This section was organized as follows: First we introduced two
genome-wide prediction models. Haplotype effects were used as
explanatory variables in the haplotype-based genomic best linear
unbiased prediction (HGBLUP) model, while additive and local
epistatic effects among markers were utilized as predictors in the
locally extended genomic best linear unbiased prediction (LEGBLUP)
model. Then we proved that the haplotype-based model HGBLUP
exploits local epistatic effects among markers by establishing a link
between HGBLUP and LEGBLUP for the case in which all loci are
homozygous. At the end of section, two examples were given to
illustrate the theoretical results.

Throughout the section,wemade followingconventions: Letn be the
number of genotypes, p be the number ofmarkers. In this study we only
considered bi-allelic markers. Suppose that the whole genome is di-
vided into non-overlapping haplotype blocks; local epistasis is defined
as interaction effects among two or more markers within a defined
haplotype block. Let w be the number of blocks. For 1# k#w, let pk
be the number of markers in the k-th block. Let sk be the number of
different haplotype alleles in the k-th block. Linkage phases were as-
sumed to be known. Vectors (matrices) are always denoted by lower
(upper) case Latin or Greek letters in bold font.

The HGBLUP model
Thismodel has beenused in previous studies (e.g., Cuyabano et al. 2014,
2015a) and here we called it HGBLUP. Independent from the definition
of haplotype blocks, the HGBLUP model can be described as follows:

y ¼ 1nmþ
Xw
k¼1

Xkhk þ e; ½1�

where y is the n-dimensional vector of phenotypic records, 1n is an
n-dimensional vector of one’s,m is a common intercept term, hk is the
sk-dimensional vector of haplotype effects in the k-th haplotype block,
Xk is the corresponding n · sk design matrix of the k-th block, the
ði; jÞ-entry of Xk is the number of the j-th haplotype allele in the i-th

genotype (hence, it is 0, 1 or 2), and e is the residual term. In themodel
we assumed that m is a fixed parameter, hk � Nð0; Isks2

hÞ for any k,
and e � Nð0; Ins2

e Þ. We assumed no covariance structure among
these variables.

The formulationof thismodel is similar toridge regressionbest linear
unbiased prediction (RR-BLUP, Meuwissen et al. 2001) except that the
marker effects were replaced by haplotype effects. Note that there are in
total 1þPw

k¼1 sk unknown parameters in the model. This number can
be even larger than the number of markers, which makes the compu-
tational load very high. However, the model can be implemented in an
alternative way similar to the marker-based genomic best linear un-
biased prediction model (GBLUP, VanRaden 2008):

y ¼ 1nmþ g þ e; [2]

where y, 1n,m, and e are the same as in Equation 1; g is an n-dimensional
vector of genotypic values. We assumed that m is a fixed parameter,
e � Nð0; Ins2

e Þ, and g � Nð0;Hs2
gÞ, where H ¼ 1

p

Pw
k¼1 XkXk9. Set-

ting s2
g ¼ ps2

h, it becomes obvious that the two models are statisti-
cally equivalent, as the equivalence between GBLUP and RR-BLUP
(Habier et al. 2007).

The LEGBLUP model
This model is a local version of the extended GBLUP (EGBLUP) (Jiang
and Reif 2015). EGBLUP exploits epistasis between any pair of markers
while LEGBLUP only considers local epistasis inside each haplotype
block. Assuming only digenic epistasis, the model can be described as
follows:

y ¼ 1nmþMaþ
Xw
k¼1

Fkaak þ e; [3]

where y, 1n, m, and e are the same as in Equation 1, M is the n· p
matrix of marker profiles, the ði; jÞ-entry of M is the number of a
specific allele of the j-th marker carried by the i-th genotype (hence, it
is 0, 1 or 2), a is the p-dimensional vector of marker additive effects,
Fk is the n· pkðpk 2 1Þ

2 design matrix for additive-by-additive epistatic
effects for markers in the k-th haplotype block, aak is the
pkðpk 2 1Þ

2 -dimensional vector of epistatic effects in the k-th block. In
the model we assumed that m is a fixed parameter, a � Nð0; Ins2

aÞ,
aak � Nð0; Is2

aaÞ for any k, and e � Nð0; Ins2
e Þ. We assumed no

covariance structure among these variables.
Note that there are 1þ pþ q unknown variables in the model with

q ¼ 1
2

Pw
k¼1 pkðpk 2 1Þ, and this number can be very large. Hence, the

model can be implemented in an alternative way as:

y ¼ 1nmþ g1 þ g2 þ e; [4]

where y, 1n,m, and e are the same as in Equation 1, g1 is an n-dimensional
vector of additive genotypic values, g2 is an n-dimensional vector of
genetic values accounting for local epistasis. We assumed that m is a fixed
parameter, e � Nð0; Ins2

eÞ, g1 � Nð0;G1s
2
g1Þ and g2 � Nð0;G2s

2
g2Þ,

whereG1 ¼ 1
pMM9,G2 ¼ 1

2q

Pw
k¼1½ðMkMk9Þ#ðMkMk9Þ2 ðMk#MkÞ

ðMk#MkÞ9�, and # is the Hadamard product, i.e., entry-wise product,
of matrices. Setting s2

g1 ¼ ps2
a and s2

g2 ¼ qs2
aa, it reveals that the two

models are statistically equivalent. The reason is the same as the equiva-
lence between EGBLUP and an extended RR-BLUP model including epis-
tasis (Jiang and Reif 2015).

Note that in the above descriptions the LEGBLUP model only
includes digenic local epistasis, i.e., local epistatic effects between two
markers. In fact, the LEGBLUP model can be generalized to include all
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possible higher-order epistatic interaction effects within each haplotype
block, as the EGBLUP model. Briefly, we only need to extend Equation
4 to:

y ¼ 1nmþ g1 þ g2 þ⋯þ gr þ e; [5]

where g t is the vector of genetic values accounting for (r-1)-th order
epistasis, i.e., epistatic interactions among r markers. The kinship
matrix for g t can be derived using t-fold Hadamard product of G1

(Jiang and Reif 2015). This model is denoted as full LEGBLUP.

The link Between HGBLUP and LEGBLUP
We first concentrated on a single haplotype block, thus subscripts to
differentiate blocks can be ignored. We assumed p markers and s hap-
lotype alleles and then the HGBLUP model (Equation 1) reduces to:

y ¼ 1nmþ Xhþ e; [6]

where h is an s-dimensional vector of haplotype effects and X is an
n · s design matrix. The assumptions were thatm is a fixed parameter,
h � Nð0; Iss2

hÞ, and e � Nð0; Ins2
e Þ.

For LEGBLUP, a unified expression of Equation 3 was needed to
extend it to full LEGBLUP. We defined a to be a vector whose com-
ponents are marker main effects together with epistatic effects up to the
ðp2 1Þ-th order, i.e., all possible epistatic effects among any number of
markers in the block, not only digenic epistatic effects. Thus, the di-
mension of a is:

pþ
�
p
2

�
þ⋯þ

�
p
p

�
¼ 2p 2 1;

where

�
a
b

�
¼ aða2 1Þ⋯ða2 bþ1Þ

bðb2 1Þ⋯1 denote the Gaussian binomial coeffi-

cients. Let Z be the corresponding n· ð2p 2 1Þ design matrix. With
these notations, the full LEGBLUP model can be simply written as:

y ¼ 1nmþ Zaþ e: [7]

The assumptions were that m is a fixed parameter, a � Nð0;DÞ,
e � Nð0; Ins2

e Þ, and D is a diagonal matrix containing different un-
known variance parameters for additive effects and different orders of
epistatic effects.

Claim: If all loci under consideration are homozygous, then there exists
a ð2p 2 1Þ· s matrix V such that X ¼ ZV .

The above claimwas the key to bridgeHGBLUP andLEGBLP.As its
proof requires more techniques in linear algebra, we presented it as a
separate subsection below.

Now we assumed all loci to be homozygous. Setting b ¼ Vh,
HGBLUP (Equation 6) can be expressed as:

y ¼ 1nmþ Zbþ e: [8]

The newly defined vector b has the same design matrix as a in the
LEGBLUP model (Equation 7). Thus, b includes marker effects as
well as epistatic effects amongmarkers. Accordingly, Equation 8 is the
same as Equation 7 and hence HGBLUP has the same base equation
as LEGBLUP.

Nevertheless, there is one important difference between the two
models. In LEGBLUP, the covariance matrix for a is assumed to be a
diagonal matrix D, hence, no covariance between different variables is
assumed. But in HGBLUP, although the distribution of b is still mul-
tivariate normal, its covariance structure is:

covðbÞ ¼ VcovðhÞV9 ¼ VV9s2
h:

In general, the matrix VV9 is semi-positive definite but not diagonal.
Thus, HGBLUP implicitly assumes a non-trivial covariance structure.

Nowitisstraightforwardtogeneralizetheresults tothecaseofafullmodel
including all blocks, since no inter-block effects are modeled and the linear
transformation X ¼ ZV can be independently applied to each block.

The proof of the claim
As the loci under consideration are homozygous, there are ð2p 2 1Þ in-
dependent variables in the LEGBLUP model (Equation 7). For the
HGBLUP model, there are at most 2p different haplotype alleles, i.e.,
s# 2p. But note that if there are s haplotype alleles, the number of in-
dependent variables in themodel is s2 1 because of collinearity, similar to
the biallelic case (e.g., SNPmarkers) inwhich there is only one independent
variable. Hence, we can assume s# 2p 2 1. We shall consider two cases.

Case 1: All possible haplotype alleles occur: We assumed that all
possible haplotype alleles occur in the data, then s ¼ 2p 2 1.We started
from the HGBLUP model (Equation 6). Recall that for any 1# i# n
and 1# j# s, the ði; jÞ-entry of X, denoted by xij, is the number of the
j-th haplotype allele carried by the i-th individual. Since all marker loci
are homozygous, xij must be 0 or 2. As we assumed that all possible
haplotype alleles occur in the data, for any j (1# j# s) there exists ij
(1# ij # n) such that xijj ¼ 2 and xijk ¼ 0 for all 1# k# s and k 6¼ j.
Combining the s rows xi1; xi2;⋯; xis of the design matrix X results in
an s · s submatrix ~X. It is clear that ~X is invertible because it can be
transformed to 2Is by row permutation. Correspondingly, we took the s
rows z i1; z i2;⋯; z is of the design matrix Z in the LEGBLUP model
(Equation 7). This also yielded an s · s submatrix ~Z.We observed that ~Z
is also invertible. The proof of this fact was presented separately at the
end of this subsection. As ~Z is invertible, we can defineV ¼ ~Z

21~X and
hence ~X ¼ ~ZV with V being invertible.

We then claimed thatX ¼ ZV . In fact, for any l;fi1; i2;⋯; isg and
1# l# n, the l-th row xl of X must coincide with xit for some 1# t# s
because xi1; xi2;⋯; xis exhaust all the possibilities of row vectors for X.
Correspondingly, the l-th row z l of Z must coincide with z it . Since
~X ¼ ~ZV and xl , z l are corresponding rows in ~X and ~Z, xl ¼ z lV . As
it holds for any l, X ¼ ZV .

Case 2: Not all possible haplotype alleles occur: Now we assumed
that not all possible haplotype alleles occur in the data (s, 2p 2 1). In
contrast to the case that considers all haplotype alleles, the submatrix ~Z
in the LEGBLUP is not s · s but s · ð2p 2 1Þ. So we need to adjust our
arguments. In fact, ~Z has full row rank: using the results in the previous
case, ~Z can be viewed as a submatrix of a full rank ð2p 2 1Þ · ð2p 2 1Þ
matrix. Hence, there exists a right inverse W which is a ð2p 2 1Þ· s
matrix such that ~ZW ¼ Is. Defining V ¼ W ~X, we still obtain
~X ¼ ~ZV , and hence X ¼ ZV .

The proof of the fact that ~Z is invertible: Recall that ~Z is an s · s
matrix, where s ¼ 2p 2 1. The columns of ~Z can be naturally indexed
by the set

C ¼ �ð j1; j2;⋯; jtÞ
��1# t# p; 1# j1 , j2 ,⋯, jt # p

�
:

In fact we can denote the entries in ~Z by ~zij1 j2⋯jt . When t ¼ 1, ~zij1 is
just the number of alleles of the j1-th marker carried by the i-th ge-
notype, which serves as the coefficient for the main additive effect of
the j1-th marker. When t$ 2, ~zij1 j2⋯jt ¼ ~zij1 � ~zij2⋯ ~zijt is the coeffi-
cient of the epistatic effects among the markers j1, j2,. . . and jt for the
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i-th genotype. With the above notations, the column vectors of ~Z can
be denoted by ~z j1 j2⋯jt .

The rows of ~Z can also be labeled by the set C, which is trivial be-
cause ~Z has the same number of rows as columns. But we can introduce
the following natural labeling: If a genotype is coded as 2 in the markers
j1, j2,. . ., jt and 0 in the remaining ones, then we label the corresponding
row as ðj1; j2;⋯; jtÞ. With these notations, the entries in ~Z can
be written as ~zi1i2⋯ir

j1 j2⋯jt , where 1# t; r# p, 1# j1 , j2 ,⋯, jt # p,
1# i1 , i2 ,⋯, ir # p. By definition we have:

~zi1i2⋯ir
j1j2⋯jt ¼

�
2t ; if t# r and

�
j1j2⋯jt

�
4
�
i1i2⋯ir

�
0; otherwise:

½9�

To show that ~Z is invertible, it is sufficient to show that the column
vectors ~z j1j2⋯jt (1# t# p, 1# j1 , j2 ,⋯, jt # p) span the spaceℚs,
where ℚ denotes the set of rational numbers. The space ℚs has a
natural basis fej1j2⋯jt

��1# t# p, 1# j1 , j2 ,⋯, jt # pg, where
ej1 j2⋯jt is the vector whose ðj1; j2;⋯; jtÞ-entry is 1 and all other
entries are zeros.

We first considered t ¼ p. In this case we have only one vector
~z12⋯p, which is the coefficient of the epistatic effects among all p
markers. From Equation 9 we know that the only non-zero entry in
~z12⋯p is ~z

12⋯p
12⋯p and it equals 2p. So e12⋯p ¼ 1

2p~z12⋯p.
Next we considered the case t ¼ p2 1. In this casewe have p vectors

~z1⋯k̂⋯p, where k̂ denotes that k is absent in the sequence 1; 2; . . . ; p.
Again using Equation 9, we know that there are only two non-zero

entries in ~z1⋯k̂⋯p, namely ~z1⋯p

1⋯k̂⋯p
and ~z1⋯k̂⋯p

1⋯k̂⋯p
, both values are 2p21.

Hence, e1⋯k̂⋯p ¼ 1
2p21~z1⋯k̂⋯p 2

1
2p~z12⋯p.

Repeating the procedure for smaller t, we can see that all basis
vectors ej1 j2⋯jt can be written as linear combinations of the vectors
~z j1 j2⋯jt , which completes the proof.

The case of heterozygous loci
Recall Equation 6 for HGBLUP and Equation 7 for LEGBLUP.
Different from the case in which homozygous loci are considered,
now the elements xij in the design matrix X can take the value 1, in
addition to 0 and 2. More precisely, when the paternal and maternal
haplotypes are different, the corresponding row vector of X will
have two non-zero entries, both being 1. This essential difference
makes it impossible to find a matrix V such that X ¼ ZV holds in
general. So there does not exist any linear transformation b ¼ Vh
such that the base equations of HGBLUP and LEGBLUP become
the same. This result was proved by giving a counterexample (see
Example 2 in the next subsection).

Illustration of the theoretical results
In this section, two examples were provided illustrating the theoretical
findings for homozygous (Example 1; Table 1) and heterozygous loci
(Example 2; Table 2).

Example 1: We considered six individuals and one haplotype block with
two SNPmarkers (Table 1). As outlined above the two homozygous geno-
types were coded as 0 and 2 resulting in four different haplotype alleles.

The vector of haplotype effects is h ¼ ðh11; h10; h01; h00Þ9 and the

corresponding design matrix is X ¼

0
BBBBBB@

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
0 2 0 0
2 0 0 0

1
CCCCCCA
. As the fourth

column of X can be obtained by subtracting the sum of the other three
columns in the vector ð2; 2; 2; 2; 2; 2Þ9, the last variable can be dropped

resulting in h ¼ ðh11; h10; h01Þ9 and X ¼

0
BBBBBB@

2 0 0
0 2 0
0 0 2
0 0 0
0 2 0
2 0 0

1
CCCCCCA
. Then the

HGBLUP model has the following form:

y ¼ 1nmþ Xhþ e ¼

0
BBBBBB@

1
1
1
1
1
1

1
CCCCCCA
mþ

0
BBBBBB@

2 0 0
0 2 0
0 0 2
0 0 0
0 2 0
2 0 0

1
CCCCCCA

0
@ h11

h10
h01

1
Aþ e; [10]

with the assumptions h � Nð0; I3s2
hÞ, e � Nð0; I6s2

e Þ.
The vector of marker effects is a ¼ ða1; a2; aa12Þ9 with the design

matrix Z ¼

0
BBBBBB@

2 2 4
2 0 0
0 2 0
0 0 0
2 0 0
2 2 4

1
CCCCCCA

with the third column of Z being the ele-

ment-wise product of the first two columns; so the LEGBLUP model
has the form:

y ¼ 1nmþ Zaþ e ¼

0
BBBBBB@

1
1
1
1
1
1

1
CCCCCCA
mþ

0
BBBBBB@

2 2 4
2 0 0
0 2 0
0 0 0
2 0 0
2 2 0

1
CCCCCCA

0
@ a1

a2
aa12

1
Aþ e;

[11]

with the assumptions a ¼
0
@ a1

a2
aa12

1
A � N 0;

0
@s2

a 0 0
0 s2

a 0
0 0 s2

aa

1
A
1
A

0
@ ,

e � Nð0; I6s2
e Þ.

n Table 1 Summary of SNP marker coding and haplotype alleles
for the six individuals considered in Theory, Example 1

Individual SNP1 SNP2 Hap1 Hap2

1 2 2 11 11
2 2 0 10 10
3 0 2 01 01
4 0 0 00 00
5 2 0 10 10
6 2 2 11 11

n Table 2 Summary of SNP coding and haplotype alleles for the
6 individuals considered in Theory, Example 2

Individual SNP1 SNP2 Hap1 Hap2

1 2 2 11 11
2 2 0 10 10
3 0 2 01 01
4 2 1 11 10
5 1 0 10 00
6 1 1 10 01
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We took the first three rows in X and formed the submatrix ~X,
as each of the first three individuals carries a different haplotype
allele. So ~X ¼ 2I3. Then we accordingly took the first three rows

in Z to form the submatrix ~Z ¼
0
@ 2 2 4

2 0 0
0 2 0

1
A and defined

V ¼ ~Z
21 ~X ¼

0
BBB@

0 1 0

0 0 1
1
2

2
1
2

2
1
2

1
CCCA, thus, X ¼ ZV . Assuming b ¼ Vh

resulted in Xh ¼ ZVh ¼ Zb with

covðbÞ ¼ VvarðhÞV 9 ¼

0
BBBBBB@

1 0 2
1
2

0 1 2
1
2

2
1
2

2
1
2

3
4

1
CCCCCCA
s2
h:

Hence, the HGBLUP model (Equation 10) is equivalent to

y ¼ 1nmþ Zbþ e; [12]

with the assumptions b ¼
0
@b1

b2

b3

1
A �

N 0;

0
BBBBBB@

s2
h 0 2

1
2
s2
h

0 s2
h 2

1
2
s2
h

2
1
2
s2
h 2

1
2
s2
h

3
4
s2
h

1
CCCCCCA

1
CCCCCCA

0
BBBBBB@

, e � Nð0; I6s2
eÞ.

Since in Equation 12 the parametersb have exactly the same design
matrix as a in Equation 11, the base equations of HGBLUP and
LEGBLUP are indeed the same. Setting s2

a ¼ s2
h and s2

aa ¼ 3
4s

2
h, we

can see that the only difference between themodels is that in LEGBLUP
(Equation 11) the covariance between additive and epistatic effects was
zero while in HGBLUP (Equation 12) the covariance was 21

2s
2
h.

Example 2: We considered six genotypes and a haplotype block
with two SNP markers (Table 2). In contrast to Example 1, we
assumed presence of heterozygous loci. The vector of haplotype
effects is h ¼ ðh11; h10; h01; h00Þ9 with the design matrix

X ¼

0
BBBBBB@

2 0 0 0
0 2 0 0
0 0 2 0
1 1 0 0
0 1 0 1
0 1 1 0

1
CCCCCCA
. As outlined in the first example, we can

simply set h ¼ ðh11; h10; h01Þ9 owing to linear dependency

and X ¼

0
BBBBBB@

2 0 0
0 2 0
0 0 2
1 1 0
0 1 0
0 1 1

1
CCCCCCA
. The vector of marker effects is

a ¼ ða1; a2; aa12Þ9 with the design matrix Z ¼

0
BBBBBB@

2 2 4
2 0 0
0 2 0
2 1 2
1 0 0
1 1 1

1
CCCCCCA
.

In the following, we showed that there does not exist any matrix V
such that X ¼ ZV , i.e., the HGBLUP and LEGBLUP model have the
same base equations. For the proof, we assumed the contrary, that there
exists a matrix V such that X ¼ ZV . Then for any submatrix ~X of X
and the corresponding submatrix ~Z of Z, ~X ¼ ~ZV must hold. Let ~X be
the submatrix of X consisting of the first three rows, so ~X ¼ 2I3.

Accordingly, ~Z ¼
0
@ 2 2 4

2 0 0
0 2 0

1
A. For ~X ¼ ~ZV to be true, the only

choice for V is that V ¼ ~Z
21 ~X ¼

0
BBB@

0 1 0

0 0 1
1
2

2
1
2

2
1
2

1
CCCA. Nevertheless,

ZV ¼

0
BBBBBB@

2 2 4
2 0 0
0 2 0
2 1 2
1 0 0
1 1 1

1
CCCCCCA

0
BBB@

0 1 0

0 0 1
1
2

2
1
2

2
1
2

1
CCCA ¼

0
BBBBBBBBBBBB@

2 0 0

0 2 0

0 0 2

1 1 0

0 1 0
1
2

1
2

1
2

1
CCCCCCCCCCCCA

6¼ X;

which is a contradiction. In fact,we can clearly see that only the last row
of ZV differs from X. So the problem occurs when at least two loci are
heterozygous for some genotypes.

MATERIALS AND METHODS

Simulation study
Basedon the genomic data of a panel ofmaize lines belonging to theflint
heterotic pool (Bauer et al. 2013), simulated traits were generated. Six
scenarios were considered with different types and patterns of epistatic
QTL effects (Table 3).

Inall scenarios,100markerswere randomly sampledasQTLforeach
of the 10 chromosomes, resulting in 1,000QTLper scenario. In scenario
1, only additive effects were simulated. Hence, the genetic values
are g ¼ Ma, where a is the vector of additive QTL effects and M is
the marker design matrix. The additive effects were independently
sampled from a normal distribution of mean 0 and variance s2

a, i.e.,
a � Nð0; Is2

aÞ. In scenario 2, we simulated additive and global epistatic
effects. 1,000 pairs of markers were randomly selected to present
digenic epistatic effects. Hence, the genetic values are g ¼ Maþ Faa,
where a and M are the same as in scenario 1, and aa is the vector
of epistatic effects with design matrix F. The epistatic effects
were also independently sampled from a normal distribution, i.e.,
aa � Nð0; Is2

aaÞ.
In scenarios 3 to 6, we simulated additive effects and local epistatic

effects. For local epistasis, we first randomly divided each chromosome
into non-overlapping blocks, each consisting of 2 to 5markers. Epistatic
effectswere simulated only inside individual blocks. Thus, the simulated
genetic values g ¼ Pw

k¼1 Zkak, where w is the number of blocks, ak is
the vector of additive and epistatic effects inside the k-th block andZk is
the corresponding design matrix. In scenarios 3 and 5, only digenic
epistatic effects were simulated. In scenarios 4 and 6, all possible epi-
static effects were considered, hence, including higher-order epistasis.
In scenarios 3 and 4, all effects were assumed to be independent. In
scenarios 5 and 6, epistatic effects inside individual blocks were as-
sumed to be correlated.
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For each scenario, we considered one trait with two different
simulated heritabilities (h2 = 0.7 or 0.5) and two ratios of variances
(s2

a=s
2
aa = 4:3 or 3:1). In case of s2

a=s
2
aa = 4:3, the covariance matrices

of genetic effects in the individual haplotype blocks were directly de-
rived using the method described in the Theory section, i.e., the co-
variance matrix equals the matrix VV9, which gave the ratio 4:3 and
determined the variances for higher-order epistatic effects. To simulate
a situation in which the variance of epistatic effects was less relevant, we
considered also a 3:1 ratio. In this case, we modified the matrix VV9 as
follows; we changeds2

aa from 3s2
a=4 to s

2
a=3 and accordingly modified

all variance terms of higher-order epistasis by keeping the ratio of any
two epistatic variance terms (e.g., s2

aa=s
2
aaa). The variance of additive

effects s2
a and all correlations were not changed. When only digenic

epistatic effects were simulated, the rows and columns corresponding
to higher-order epistasis were deleted.

As the final step, the phenotypic valueswere simulated as y ¼ g þ e,
where g is the simulated genetic value as described above and e is
the environmental error term. The error terms were independently
sampled from a normal distribution, i.e., e � Nð0; Is2

e Þ, where
s2
e ¼ 12 h2

h2 s2
g and s2

g is the genetic variance calculated from the simu-
lated genetic values. For each scenario, trait heritability and variance
ratio, simulations were repeated 20 times.

Empirical data

Mouse data: The mouse data set used for this study comprised 1,940
heterogeneous stock mice genotyped with 12,545 SNP markers. The

measured traits were body weight at age of six weeks and growth slope
between six and ten weeks of age (Valdar et al. 2006).

Rice data: The rice data set comprised a diversity panel of 413 varieties
genotyped with an Affymetrix 44K SNP array (Zhao et al. 2011). In-
dividuals were highly homozygous. After quality control, 39,601 SNP
markers were used in this study. Phenotypic data of 26 traits with
contrasting genetic architectures were available.

Maize data: The maize data set comprised a large half-sib maize panel
from the flint heterotic pool generated within the European PLANT-
KBBE CornFed project (Bauer et al. 2013). The panel consisted of
11 half-sib families with 833 doubled haploid (DH) lines. After quality
control for missing rate and minor allele frequency, 29,466 SNP
markers were used for subsequent analyses. Phenotypic traits under
consideration were dry matter yield, dry matter content, plant height,
days to tasseling and days to silking (Lehermeier et al. 2014).

Genome-wide prediction
For the simulated andempirical data,we considered threemarker-based
models, GBLUP, EGBLUP and LEGBLUP, and one haplotype-based
model, HGBLUP (Figure 1). For LEGBLUP and HGBLUP, we defined
haplotype blocks using fixed lengths, varying from 2 to 5 (10) SNPs for
the simulated (empirical) data. For the mouse data set, in which the
linkage phase of the marker data are unknown, we treated each allele
of a heterozygous locus as having equal probability (i.e., 50%) to be

Figure 1 Characteristics and relationships of geno-
mic prediction models considered in this study. The
genetic effects exploited by the model were indicated
in brackets. GBLUP: genome-wide best linear unbiased
prediction; RRBLUP: ridge regression best linear un-
biased prediction; EGBLUP: extended genome-wide
best linear unbiased prediction; LEGBLUP: locally
extended genome-wide best linear unbiased predic-
tion; HGBLUP: haplotype-based genome-wide best
linear unbiased prediction. The gray arrows indicate
that the models differ with regard to the type and
number of effects that are exploited. The equivalence
of the LEGBLUP and HGBLUP models that was shown
for inbred populations is illustrated by the double
arrow.

n Table 3 Summary of the six simulation scenarios

Scenario Additive Epistasis Type of epistasis Pattern of effects

1 Yes None None Independent
2 Yes Global Digenic Independent
3 Yes Local Digenic Independent
4 Yes Local Digenic and higher-order Independent
5 Yes Local Digenic Correlated
6 Yes Local Digenic and higher-order Correlated
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maternal or paternal. The prediction accuracy (ability) was defined as
the Pearson correlation between the predicted and the simulated
(observed) genetic values for simulated (empirical) data. For each
model the mean prediction accuracy was estimated with fivefold cross
validation. All models were implemented using the statistical software
R (R Core Team 2016) with the package BGLR (Peréz and de los
Campos 2014).

Data Availability
All empirical data used in this study have been published. The mouse
data set was included in the R package SynbreedData (Wimmer
et al. 2015, https://cran.r-project.org/web/packages/synbreedData/index.
html). The rice data set was published in Zhao et al. (2011) and can be
downloaded from https://ricediversity.org/data/sets/44kgwas/. The
genomic data of the maize data set was published in Bauer et al. (2013)
and can be downloaded from http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE50558. The phenotypic data of the maize data set was
published as File S1 in Lehermeier et al. (2014) and can be downloaded
from http://www.genetics.org/content/198/1/3.supplemental. Figure S1
shows the prediction accuracies of GBLUP, EGBLUP, LEGBLUP and
HGBLUP for simulated traits with heritability 0.5 and s2

a=s
2
aa = 4:3.

Figure S2 shows the prediction accuracies of the four models for
simulated traits with heritability 0.7 and s2

a=s
2
aa = 3:1. Figure S3

shows the prediction accuracies of the fourmodels for simulated traits
with heritability 0.5 and s2

a=s
2
aa = 3:1. Table S1 provides the pre-

diction accuracies of the four models for the 26 agronomic traits in
the rice data set. File S1 contains the R code used to generate the data
for the simulation study. File S2 and File S3 contain sample genomic
and physical map data sets for running the code.

RESULTS AND DISCUSSION

Modeling haplotype effects exploit local epistasis
among markers
We compared two genome-wide prediction models to study whether
local epistatic effects amongmarkers are formally taken into account by
modeling haplotype effects. The first model utilizes haplotype effects as
predictors and has been used in previous studies (Cuyabano et al. 2014,
2015a), here we called it HGBLUP. The HGBLUP model is similar to
the well-known GBLUP model (VanRaden 2008) which exploits a
marker-derived relationship matrix among genotypes. In HGBLUP
the marker-derived relationship matrix is replaced by the haplotype-
derived relationship matrix. Note that modeling a haplotype-derived
relationship matrix is equivalent to explicitly modeling haplotype
effects (Equation 1, 2), just like the equivalence between GBLUP and
RRBLUP (Habier et al. 2007). The second model we considered takes
into account additive effects as well as additive-by-additive local epi-
static effects amongmarkers andwas termed LEGBLUP. LEGBLUP is a
modified version of EGBLUP (Jiang and Reif 2015). EGBLUP exploits
epistasis between any pair of markers while LEGBLUP only considers
local epistasis inside each haplotype block (Equation 3, 4). Note that
local higher-order epistatic effects can either be included (Equation 5)
or excluded (Equation 3, 4) in the LEGBLUP model. The relationship
between the different models was illustrated in Figure 1.

A theoretical link between HGBLUP and the full LEGBLUP in-
cluding local higher-order epistatic effects was established for the case in
which all marker loci were assumed to be homozygous. Then the
HGBLUP model was proven to be almost statistically equivalent to
the LEGBLUP model (Figure 2, and see Theory for details). More
precisely, the base equation of HGBLUP (Equation 6) is linearly trans-
formable to the one of LEGBLUP (Equation 7). After transformation,
only one difference remains; the HGBLUP model assumes non-trivial
covariance structure for the additive and local epistatic effects (Equa-
tion 8), while in the LEGBLUP model all effects are assumed to be
independent (Equation 7). This theoretical derivation provided a for-
mal explanation why and how haplotype-based genome-wide predic-
tion models exploit local epistatic effects among markers.

Note that although almost all genome-wide prediction models
assume independent marker effects, it was anticipated that some of
the effects may be spatially correlated within chromosomes (Gianola
et al. 2003). Moreover, it was reported that the prediction accuracy can
be increased by the Bayesian antedependence model considering cor-
related marker effects (Yang and Tempelman 2012). Hence, the co-
variance structure among the additive and local epistatic effects
suggested by the HGBLUP model can be beneficial and is interesting
for further study.

A counterexample showed that the base equation of HGBLUP
cannot be linearly transformed into the one of LEGBLUP in case
that heterozygous loci need to be considered (Figure 2, Example 2 in
Theory). Hence, further empirical studies are needed to compare
HGBLUP with marker-based models to provide more insight into

Figure 2 A brief outline of the theoretical relationship between
HGBLUP and LEGBLUP. The essential case of a single haplotype
block is outlined. LEGBLUP: locally extended genome-wide best linear
unbiased prediction; HGBLUP: haplotype-based genome-wide best
linear unbiased prediction. In the HGBLUP model, y denotes the vec-
tor of observed phenotypic values, 1n is the n-dimensional vector of
ones where n is the number of genotypes, m is the common intercept
term, h is the vector of haplotype allele effects inside the haplotype
block, X is the corresponding design matrix, and e is the residual term.
In the LEGBLUP model, a is the vector of main additive and local
epistatic effects of all markers inside the haplotype block, Z is the
corresponding design matrix, other terms are the same as in HGBLUP.
In both models, m is assumed to be a fixed unknown parameter, h and
a are random vectors with distributions shown in the figure, and the
residual term e � Nð0; Is2

eÞ.
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the similarities between marker- and haplotype-based prediction ap-
proaches for non-inbred populations.

Our theoretical derivations did not rely on a specific definition of the
haplotype blocks in theHGBLUPmodel. This is important to note since
the performance of haplotype-basedmodels has been shown to depend
on the method to define the haplotype blocks in experimental studies
(Calus et al. 2008, 2009, Cuyabano et al. 2014, Jónás et al. 2016).

Simulation studies showed that haplotype-based
models indeed capture local epistatic effects
Simulation studies were used to scrutinize that the HGBLUP model
exploits local epistatic effects among markers. Six scenarios which
differed with respect to the nature and pattern of epistatic effects were
utilized (Table 3) to compare the performance of HGBLUP with those
of GBLUP and EGBLUP (Figure 3). In scenarios in which no local

Figure 3 Prediction accuracies of GBLUP, EGBLUP, LEGBLUP, and HGBLUP using simulated data. The data were simulated assuming a trait with
the following features; h2 = 0.7, s2

a=s
2
aa = 4:3. (a). Scenario 1: only additive effects were simulated; (b) Scenario 2: additive and global epistatic

effects were simulated; (c) Scenario 3: additive and digenic local epistatic effects were simulated, effects were assumed to be independent; (d)
Scenario 4: additive, digenic and higher-order local epistatic effects were simulated, effects were assumed to be independent; (e) Scenario 5:
additive and digenic local epistatic effects were simulated, effects were assumed to be correlated; (f) Scenario 6: additive, digenic and higher-
order local epistatic effects were simulated, effects were assumed to be correlated; GBLUP: genome-wide best linear unbiased prediction;
EGBLUP: extended genome-wide best linear unbiased prediction; LEGBLUP: locally extended genome-wide best linear unbiased prediction;
HGBLUP: haplotype-based genome-wide best linear unbiased prediction. Standard errors of the estimated prediction accuracies are indicated by
whiskers. The LEGBLUP and HGBLUP models were implemented with different window length (i.e., number of SNPs), varying from 2 to 5.
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epistatic effects were simulated, the highest prediction accuracies were
achieved by GBLUP (Figure 3a) and EGBLUP (Figure 3b) and no
benefit was observed for HGBLUP. In the four scenarios in which local
epistasis was simulated, consideringwindow sizes from 3 to 5HGBLUP
clearly outperformed GBLUP and EGBLUP in two cases (Figure 3d, f),
but not in the scenarios in which only digenic local epistatic effects were
simulated (Figure 3c, e). According to the theoretical derivation, the
HGBLUPmodel assumes correlated local epistatic effects and considers
not only local digenic but also higher-order epistatic effects among
markers. This explains why the HGBLUP model did not perform well
in scenarios in which the latter assumption was not fulfilled.

The results shown in Figure 3 were obtained for a trait with a
simulated heritability of 0.7 and a ratio of 4:3 for the simulated variance
of additive effects to that of epistatic effects, s2

a=s
2
aa. The ratio 4:3

represents an optimized ratio for HGBLUP as it was derived in the
linear transformation from HGBLUP to LEGBLUP (seeMaterials and
Methods for details). We observed that the findings in case of a lower
heritability of 0.5 in conjunction with s2

a=s
2
aa equaling 4:3 followed the

same pattern (Figure S1), suggesting that the conclusions are valid for
traits with a range of heritabilities. If s2

a=s
2
aa was set to 3:1, the advan-

tage of HGBLUP was reduced in scenarios in which higher-order local
epistatic effects were simulated (Figure S2d, f and Figure S3d, f). These
results are expected as the relevance of epistasis was purposely weak-
ened by the applied ratio of 3:1 for s2

a=s
2
aa. In summary, the results of

the simulation studies confirm that local epistasis is indeed exploited by
the HGBLUP model.

Haplotype-based models are especially useful when
local higher-order epistasis is important
Our theoretical derivations showed that the haplotype-based model
HGBLUP is able to exploit local epistatic effects among markers, since
HGBLUP and the marker-based model LEGBLUP were shown to be
almost statistically equivalent. As a next step, we asked under which
circumstances the haplotype-based model outperforms the marker-
based model. In order to minimize the demand on computational

resources, discussed in detail in the next subsection, we implemented
the LEGBLUPmodel such that only additive and digenic local epistatic
effects were considered (Equation 3). Under these constraints, two
differences exist between HGBLUP and LEGBLUP. First, higher-order
local epistasis is considered in HGBLUP but not in LEGBLUP. Second,
HGBLUP assumes correlated local epistatic effects, while LEGBLUP
assumes independent effects. The relative impact of these factors was
assessed by comparing the performances ofHGBLUPandLEGBLUP in
our simulation study. In scenarios in which higher-order local epistasis
was simulated, HGBLUP outperformed LEGBLUP regardless whether
correlated or independent local epistatic effects were simulated (Figure
3d, f). In contrast, in scenarios in which only digenic local epistasis was
simulated, the prediction accuracies of LEGBLUP were higher than
those of HGBLUP (Figure 3c, e). In scenario 4 (Figure 3d), the assump-
tion that local epistatic effects were independent should have favored
LEGBLUP, nonetheless HGBLUP outperformed LEGBLUP suggesting
that the influence of the effect pattern was masked by the inclusion of
higher-order local epistasis. In scenario 5 (Figure 3e), local epistatic
effects were assumed to be correlated, this should have favored
HGBLUP, yet LEGBLUP yielded higher prediction accuracies than
HGBLUP, indicating that the exclusion of higher-order epistasis had
a stronger effect than the effect pattern. Thus, among the assumptions
favoring HGBLUP, the presence of higher-order local epistasis was
found to be the most important. This conclusion holds for a range of
simulated heritabilities (Figure S1). However, when the ratio of the
simulated variance of additive effects to that of epistatic effects
s2
a=s

2
aa increased the advantage of HGBLUP decreased (Figure S2d, f)

and/or even disappeared at certain window sizes (Figure S3d, f).
The contribution of higher-order epistasis to the phenotypic vari-

ation of complex traits is poorly understood because higher-order
epistasis is difficult to detect in genetic mapping studies (Taylor and
Ehrenreich 2015). Nevertheless, evidences for higher-order gene inter-
actions from model organisms were reported (Pettersson et al. 2011,
Taylor and Ehrenreich 2014) and new approaches were developed to
detect them (Sailer and Harms 2017). The comparisons of the

Figure 4 Prediction abilities of GBLUP, EGBLUP, LEGBLUP and HGBLUP for the mouse data set. GBLUP: genomic best linear unbiased
prediction; EGBLUP: extended genomic best linear unbiased prediction; LEGBLUP: locally extended genomic best linear unbiased prediction;
HGBLUP: haplotype-based genomic best linear unbiased prediction. Standard errors of the estimated prediction abilities are indicated by
whiskers. The LEGBLUP and HGBLUP models were implemented with different window length (i.e., number of SNPs), varying from 2 to 10.
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prediction accuracies of HGBLUP vs. single marker-based approaches
pave the way for a new approach to provide insights into the relevance
of higher-order epistasis for complex traits.

Haplotype-based models are computationally efficient
in exploiting local epistasis
In the analyses of the experimental data, the LEGBLUP model was
implemented in a way that only additive and digenic epistatic effects
were included (Equation 3). Thus, twokinshipmatriceswere considered
in theLEGBLUPmodel, theadditivekinshipmatrix and thedigenic local
epistatic kinship matrix. In contrast, the HGBLUP model is based on a
single kinship matrix. We compared the speed of HGBLUP and
LEGBLUP with 100 cross validations using a maize data set with
833 individuals and 29,466 SNPmarkers (seeMaterials andMethods).
The computer used for the test was equipped with Intel(R) Core(TM)
i7-6700 CPU (3.40 GHz) and 32.0 GB RAM. The computational time
was with 51 min for the LEGBLUP model nearly twice as long com-
pared to the HGBLUP model which took only 28 min. Although the
full LEGBLUP model potentially may yield comparable prediction

accuracies asHGBLUPwhen higher-order epistasis is relevant, it would
be far less efficient than HGBLUP, therefore we did not implement the
full LEGBLUPmodel which includes local higher-order epistasis in our
data analyses. In summary, the haplotype-based model HGBLUP is
computationally much more efficient in exploiting local epistasis com-
pared to marker-based models. This point may be of particular rele-
vance for future studies since ultra-high density SNP data sets are
emerging for plant and animal populations owing to the rapid progress
with regard to genotyping-by-sequencing approaches (Scheben et al.
2017).

The performance of haplotype-based genome-wide
prediction models in empirical data sets
Our theoretical and simulation results have shown that the HGBLUP
model increases the prediction accuracy for inbred populations when
local epistasis is abundant. To explore the potential of HGBLUP, we
compared the performance of HGBLUP with the three marker-based
modelsGBLUP,EGBLUP, andLEGBLUPusingoneanimal data set and
two crop data sets.

Figure 5 Prediction abilities of GBLUP, EGBLUP, LEGBLUP and HGBLUP for the rice data set. GBLUP: genomic best linear unbiased prediction;
EGBLUP: extended genomic best linear unbiased prediction; LEGBLUP: locally extended genomic best linear unbiased prediction; HGBLUP:
haplotype-based genomic best linear unbiased prediction. Whiskers indicate standard errors of the estimated prediction abilities. The LEGBLUP
and HGBLUP models were implemented with different window length (i.e., number of SNPs), varying from 2 to 10.
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The mouse data set comprised non-inbred genotypes. For both
analyzed traits (Figure 4), the HGBLUP model clearly outperformed
the other three models, suggesting that the HGBLUP model also ex-
ploits local epistasis in case heterozygous loci need to be considered.
This result is of particular relevance since it was not possible to prove
theoretically that the HGBLUP model is able to exploit local epistatic
effects in case of non-inbred populations (Figure 2). Given that haplo-
type-based genome-wide prediction models have been successfully ap-
plied in non-inbred cattle populations and outperformed alternative
marker-based models (Boichard et al. 2012, Cuyabano et al. 2014,
2015a, b, Jónás et al. 2016), the haplotype-based genome-wide predic-
tion model is an attractive tool for non-inbred populations.

For the rice data set, 26 agronomic traits (Zhao et al. 2011) with
different genetic architectures were evaluated (Table S1). We observed
that for three traits, such as protein content, HGBLUP outperformed all
other models (Figure 5a). For two traits, including flowering time,
HGBLUP gave slightly higher prediction accuracies than GBLUP and
LEGBLUP, but lower ones than EGBLUP (Figure 5b). There were six

traits for which only EGBLUP outperformed the other models, as
shown for panicle fertility (Figure 5c). For the remaining fifteen traits,
including plant height, GBLUP yielded the best prediction accuracies
(Figure 5d).

For themaizedataset,HGBLUPprovidednobenefit for thefive traits
under consideration. In fact, in all cases the best prediction accuracywas
observed for the GBLUP model which only takes additive effects into
account (Figure 6).

The contrasting results we observed for different traits in the crop
data sets indicated that the haplotype-based model will not generally
boost prediction accuracies in crop populations. Instead, the effective-
ness ofHGBLUPmay depend on the complexity of the trait. Analysis of
the trait flowering time in rice and maize revealed that HGBLUP
increased prediction accuracies in rice (Figure 5b), but not in maize
(Figure 6d, e). As amatter of fact, HGBLUP failed to increase prediction
accuracies regardless which trait was analyzed for the maize data set, in
contrast to the results for the rice data set. These findings are in accor-
dance with those obtained in a recent study (Akdemir and Jannink

Figure 6 Prediction abilities of GBLUP, EGBLUP, LEGBLUP and HGBLUP for the maize data set. GBLUP: genomic best linear unbiased prediction;
EGBLUP: extended genomic best linear unbiased prediction; LEGBLUP: locally extended genomic best linear unbiased prediction; HGBLUP:
haplotype-based genomic best linear unbiased prediction. Standard errors of the estimated prediction abilities are indicated by whiskers. The
LEGBLUP and HGBLUP models were implemented with different window length (i.e., number of SNPs), varying from 2 to 10.
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2015) where a semiparametric mixed model with multiple marker-de-
rived local epistatic genomic relationship matrices was applied to
wheat, barley, and maize data. It was observed that the local epistatic
model performed well in the wheat and barley data sets but not in the
maize data set, possibly indicating the different relevance of epistasis in
selfing and outcrossing species (Garcia et al. 2008).

As the models GBLUP, EGBLUP and HGBLUP capitalize on
different genetic effects in prediction, comparing the prediction accu-
raciesof thesemodelsprovides afirst insight into the genetic architecture
of a particular trait in a given organism. There is however a risk of
misinterpreting local epistatic effects due to “apparent epistasis” (Wood
et al. 2014), a phenomenon which refers to the fact that multi-locus
genotype tags may mimic tight linkage disequilibrium with an unob-
served functional variant in the genome for a single marker. In such a
case, the HGBLUP model would actually exploit the hidden additive
effects of the unobserved variants, instead of the local epistatic effects.
The fact that HGBLUP incorporates both additive and local epistatic
effects for prediction is of particular relevance for breeders; in cases in
which HGBLUP outperforms GBLUP, local epistatic effects or effects
that are due to apparent epistasis are expected to be passed on for
several generations, very much like additive effects.

CONCLUSIONS
In this study, we investigated the relationship between haplotype-based
and marker-based genome-wide prediction models. We provided a
mathematical proof that modeling haplotype effects is equivalent to
modelingmain and local epistatic effects ofmarkers, but with a different
covariance matrix. Our simulation study confirmed the theoretical
results and revealed that haplotype-based models are superior to
marker-based models when there is abundant higher-order local epis-
tasis. The fact that haplotype-basedmodels exploit local epistasis among
markers is especially relevant for applied breeding as the local additive-
by-additive epistatic effects can last for generations like the additive
effects. Thus, haplotype-basedmodels have the potential to increase the
accuracy of genomic selection. This hypothesis was partly supported by
our empirical data analyses asweobserved in certain cases thatmodeling
local epistasis is indeed better than only modeling main effects. Further
studies are needed to find out for which traits and in which species the
haplotype-based models can be beneficial in genomic selection.
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