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Developing a deeper understanding of biological components of sperm is essential to

improving cryopreservation techniques and reproductive technologies. To fully ascertain

the functional determinants of fertility, lipidomic methods have come to the forefront.

Lipidomics is the study of the lipid profile (lipidome) within a cell, tissue, or organism

and provides a quantitative analysis of the lipid content in that sample. Sperm cells are

composed of various lipids, each with their unique contribution to the overall function

of the cell. Lipidomics has already been used to find new and exciting information

regarding the fatty acid content of sperm cells from different species. While the

applications of lipidomics are rapidly evolving, gaps in the knowledge base remain

unresolved. Current limitations of lipidomics studies include the number of available

samples to analyze and the total amount of cells within those samples needed to

detect changes in the lipid profiles across different subjects. The information obtained

through lipidomics research is essential to systems and cellular biology. This review

provides a concise analysis of the most recent developments in lipidomic research. This

scientific resource is important because these developments can be used to not only

combat the reproductive challenges faced when using cryopreserved semen and artificial

reproductive technologies in livestock such as cattle, but also other mammals, such as

humans or endangered species.
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INTRODUCTION

Fertility—An Economically Vital Trait
Male fertility may be defined as the ability of a sperm cell to fertilize an oocyte and support
development to produce viable offspring. There are numerous factors that contribute to the overall
fertility of a given male. The variation within these factors makes it challenging to determine what
makes one male more fertile than another. Previous research in humans has demonstrated that
aspects of the ejaculate, such as sperm volume, presence of abnormal components (i.e., urine
or blood), and seminal plasma volume, along with more specific spermatozoan characteristics
including morphology, motility, DNA integrity, acrosome integrity, and membrane integrity can
further illustrate differences of fertility and performance (1, 2). However, these characteristics
alone may not be enough to ascertain the true fertility of an individual male. With technological
advancements in animal management toward highly efficient and productive livestock, this
industry has shifted toward the utilization of sperm cryopreservation techniques to allow for the
broader distribution of top-quality genetics, while preserving their impact for future generations.
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Cryopreservation is the freezing of biological samples with the
intent of preserving the integrity of the sample for later use (3).
In the case of spermatozoa, the frozen sample would later be used
for artificial insemination (AI) of an open female. Freezing and
thawing semen samples can be extremely detrimental to sperm
due to cellular damage, membrane breakage, acrosome damage,
and cell death that is caused by ice crystal formation, reactive
oxygen species (ROS), lipid peroxidation, and other factors (4).
However, an individual male that maintains and produces high-
quality, fresh sperm could perform at critically lower levels
after cryopreservation due to damages incurred during the
process of cryopreservation. Cryopreserved sperm still suffer
from structural damage that affect sperm physiology including
low motility and viability that results in the considerable
extent of fertility loss (5, 6), and yet, advances in knowledge
concerning semen cryopreservation protocols have led to the
commercialization of this process to market genetically superior
livestock on a worldwide basis with tremendous positive
economic impact.

Spermatogenesis
Spermatogenesis is the continuous generation of sperm cells in
the male, which ensures the replenishment of spermatozoa. In
bulls for instance, the process of spermatogenesis takes ∼61
days to complete with new cells being added to the process
every 13.5 days (7)). Spermatozoa, along with various hormones,
proteins, and seminal fluids, are produced in the testicles, which
contribute to normal reproductive physiological processes in
males. Testicles are the site of testosterone production. Inhibin is
produced by Sertoli cells within the testicles and elicits negative
feedback on sperm production and estrogen release, aiding in
spermatogenesis, the modulation of male libido, and the male
erection (8).

Spermatogenesis is compartmentalized in the seminiferous
tubules of the testicles. In the basal compartment, mitosis
takes place to allow for the proliferation of spermatogonia
to obtain the primary spermatocytes. Primary spermatocytes
undergo two cycles of meiosis to further mature to become
secondary spermatocytes, and then, spermatids. Spermiogenesis,
the final stage of spermatogenesis, completes the cellular
transformation of spermatids into mature, motile spermatozoa.
Finally, spermiation allows formature spermatozoa to be released
from the Sertoli, or sustentacular, cells and into the lumen
of the seminiferous tubules. Spermatozoa are stored in the
caput (head) of the epididymis. While in the caput of the
epididymis, sperm are immotile and have a low membrane
fluidity due to the high cholesterol to phospholipid ratio (9).
When sperm reach maturity, they are pushed into the corpus
(body) of the epididymis. On a molecular basis, mature sperm
will have a higher degree of membrane fluidity, contain disulfide
bonds, and have lower cholesterol to phospholipid ratio than
immature sperm cells (9). From the corpus of the epididymis,
mature spermatozoa are moved into the caudal (tail) of the
epididymis for storage and transport to the vas deferens to
await ejaculation. Sperm are altered as they move through the
epididymis, including the modification of lipids and sugars found
on the sperm cell’s plasma membrane (10). This allows for

the development of cellular motility and changes in membrane
fluidity in preparation for fertilization.

Sperm Structure
Sperm cells have several structures that allow for the fertilization
of the female oocyte. The head piece of the bovine sperm cell is
shaped like a round kernel of corn. In other models such as the
rooster, the sperm head is slender and elongated (11). If the head
of the sperm cell, regardless of species, is not properly shaped,
its ability to maneuver with forwarding, progressive motility to
fertilize an oocyte can be compromised. Abnormalities have been
associated with immaturity of sperm and reduced fertility (12).

The sperm head is encapsulated by several membrane
layers which include theplasma membrane, the outer acrosomal
membrane, the acrosome, and the inner acrosomal membrane.
The acrosome, which deteriorates once the acrosome reaction
occurs, allows for penetration of the zona pellucida (13). Through
capacitation, the acrosomal matrix proteins are exposed and
allow for interaction with the zona pellucida of the oocyte
(14). Proteins such as sp56 and zonadhesin have been identified
as key sperm-zona binding agents (15, 16). The nucleus of
sperm cells is held within these layers to prevent damage to
the genetic material needed to fertilize an oocyte for successful
fetal development. On the front portion of the sperm cell, the
acrosome bends posteriorly to create the apical ridge, which is
responsible for the recognition and binding of the cell to the
zona pellucida of the oocyte (17). Toward the center of the sperm
head, the acrosome ends and forms the equatorial segment. The
structures of the head that lie between the apical segment and the
equatorial segment are grouped into the principal segment of the
sperm head.

The midpiece (neck) of the spermatozoa connects to the
implantation socket at the caudal end of the sperm head via
the capitulum. Mitochondrial adenosine triphosphate (ATP)
production occurs in the midpiece and fuels the movement
of sperm cells. The midpiece is composed of mitochondrial
helices and inner tubules that are responsible for the bending
of the sperm tail. There are coarse outer fibers that form a
fibrous sheath surrounding the sperm tail. The endpoint of the
midpiece is the annulus. The axial filament complex originating
from the distal centriole is a matrix of the microtubules. The
sliding motion of these tubules allows for the lateral movement
of the sperm tail and is driven by ATPases (18). This is of
great importance because ATP production is dependent upon
environmental temperature, which allows for greater mobility.
Mitochondria are biomarkers of sperm cell fertility and are
necessary for motility (19). They have two sets of membranes,
the inner and outer mitochondrial membranes. This creates an
environment for energy-transduction and allows for oxidative
phosphorylation to occur (20).

LIPIDS OF THE SPERM MEMBRANE

Lipid Classes
Lipids are biological components that are broadly defined as
naturally occurring substances that are not soluble in water.
From storing energy to providing structure or flexibility to
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cellular components, lipids have variable functions in a biological
system. There are many ways to classify lipids which range
from simple to complex categorization. For this discussion,
the Lipid Metabolites and Pathways Strategy (LIPID MAPS R©)
classification system will be utilized (LIPID Metabolites and
Pathways Strategy; http://www.lipidmaps.org). LIPID MAPS
classify lipids into eight different categories: fatty acyls (FAc),
glycerolipids (GL), glycerophospholipids (GP), sphingolipids
(SP), sterol lipids (ST), prenol lipids (PR), saccharolipids
(SL), and polyketides (PK) (21). Of the listed lipid classes,
they can be further separated based on their basic subunits.
Ketoacyl subunits are found in polyketides, saccharolipids, fatty
acyls, glycerolipids, glycerophospholipids, and sphingolipids
(22). Ketoacyl subunits are acetyl compounds and propionyl
compounds (21). The remaining lipid classes of sterols and
prenol lipids contain organic isoprene subunits, which are
unsaturated hydrocarbon compounds.

Lipids classified within the fatty acyl (FAc) group are
synthesized via chain elongation by acetyl-CoA with malyonyl-
CoA. The FAc group is composed of diverse lipids that are further
classified into subgroups. The FAc group can be thought of as
one of the most fundamental building blocks in biological lipids
because they are the foothold, if you will, for the formation of
larger, more complex lipids. Glycerolipids typically function as
an energy storage system in mammalian tissue. Mono-, di-, or
tri-substituted glycerols comprise glycerolipids (GL). However,
GLs are also play a major role in both cell signaling and act as
structural components of cell membranes. These molecules are
composed of neutral lipids and have a glycerol backbone (23).
One of the most widely recognized GLs are triglycerides, which
store energy in the body in the form of glycerol unit and three
long-chain fatty acid units. These units are broken down via β-
oxidation to help fuel the body with energy when sugars are not
available or when exercise is prolonged.

Glycerophospholipids (GP), or phospholipids, are long-chain
fatty acids that perform as both structural and functional
components of cells. In the most basic of forms, GPs are
composed of a negatively charged phosphate head, two fatty
acids, which can vary, and a glycerol molecule. They are readily
observed in the membranes of cells, including lipid bilayers, in
addition to serving as secondary messengers and binding sites.
This is because the fatty acid chains, or tails, are uncharged
and hydrophobic, whereas the phosphate group is hydrophilic.
These lipids assist with cellular signaling and metabolism in
both animal and plant cells (24, 25). Lipids with a backbone of
sphingoid bases are grouped into the SP category. These lipids
also contain aliphatic amino alcohols like sphingosine, which is
an important phospholipid. These lipids are pivotal to the vitality
and protection of cellular membrane protection. This is due in
part to the formation of outer leaflets of the plasma membrane
lipid that are not only stable structurally, but also resistant to
chemical changes (26).

Cholesterol and its derivatives are components of the sterol
lipids (ST) category. Cholesterol is commonly discussed in
human medicine due to its role in cardiovascular disease
development and control. This wax-like lipid is necessary for
normal bodily functions, but it can become harmful in copious

amounts. On a cellular level, cholesterol and other ST lipids
give structure to membranes. Cholesterol efflux in the plasma
membrane of sperm can alter acrosomal responsiveness, and
thus, negatively impact fertilization success due to changes in
stability (27, 28). In rodent models, high-fat diets decreased
spermmotility, increased serum lipid concentrations, and altered
hormone levels to include heightened estradiol levels and
decreased testosterone levels (29). In addition to structural
functions, sterol lipids also act as signaling molecules and
hormones. General groups of these include progesterone,
estrogen, and androgen.

Prenol lipids include classes of vital compounds such as
vitamins K and E, which act as antioxidant agents, preventing
cell membrane oxidation and controlling the production of
free radicals. They are synthesized from 5-carbon precursors,
which include compounds like isopentenyl diphosphate and
dimethylallyl diphosphate (30). These products are a result of the
mevalonic acid pathway (30). Additional functions include cell
signaling and anabolism.

Lipids that have a sugar backbone where fatty acids attach
are grouped into the saccharolipids (SL) category. Saccharolipids
have a similar structure to that of glycerolipids because the
glycerol is replaced with monosaccharides. The structure of SLs
is compatible with lipid bilayers. Polyketides are considered
to be secondary metabolites. They are synthesized by the
polymerization of acetyl and propionyl subunits. This is made
possible by classic, iterative, and multimodular enzymes, which
share features from a mechanical standpoint with fatty acid
synthases. This group of molecules may contain methylene
groups or varying carbonyl groups. Polyketides are important
from a pharmaceutical standpoint in that PKs are often
components of anticancer, antifungal, anticholesteremic agents,
antibiotics, immunomodulators, and parasiticides due to their
antimicrobial and immunosuppressive qualities (21). Within the
simple category are STs, such as cholesterol and FAc (including
all derivatives), compared to the complex category, which would
include SPs, GLs, and GPs (31). While new technology is
being applied to the study of lipidomics, commonly used tools
include, but are not limited to, GC, MS, LC-MS, thin layer
chromatography, and NMR.

As FAs are structural compounds of cell membranes, the
composition of the fatty acids may play a critical role in
sperm function through regulation of membrane structure
(32). Dietz et al. (33) suggested lipid concentration of bovine
semen to be 4.10 mg/ml and were able to identify a total
of nine fatty acids: SFA 12:0, 14:0, 15:0, 16:0, 16:1, 17:0,
18:0, MUFA 18:1, and PUFA 18:2. Of those, 16:0 (palmitic
acid) was the most abundant lipid group with a relative
percentage of 40.9% followed by palmitic acid 14:0, 18:0, and
18:1 as the most predominant FA with relative concentrations
of 26.4, 12.9, and 10.5%, respectively. Komarek et al. (34)
analyzed the lipid composition of bull sperm and seminal
plasma samples separately using thin-layer chromatography
and reported that total lipid content of bovine spermatozoa
and seminal plasma accounts for 12.0 and 1.35% of the total
dry weight, respectively. Fractions of lipids were detected,
including phospholipids, cholesterol, diglycerides, triglycerides,
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and wax esters (34). The most abundant lipid groups were
phospholipids and cholesterol with 73 and 14.5% of the total lipid
composition, respectively.

Cholesterol and Precursors of Steroid

Hormones
Cholesterol is a steroid hormone found in all mammals.
Cholesterol serves as the precursor molecule for all other steroid
hormones, as well as, to vitamin D and bile acids/salts. There are
five major classes of sterol hormones: androgens, estrogens,
progestogens, glucocorticoids, and mineralocorticoids.
Androgens are especially important in males due to their
role in fertility and reproduction. Testosterone is a cholesterol
derivative responsible for the development of the male’s sexual
behavior, maintenance of the testes, the onset of puberty,
and development of muscle mass (35). While cholesterol
serves as a building block for sterol hormones, cholesterol
also performs an important structural function in cellular
membranes and contributes to the fluidity of plasma membranes
and their functionality (36). Cholesterol is key for the process of
capacitation of sperm cells. Amounts of the cholesterol in sperm
membranes may determine cryotolerance of the cell because
higher levels of cholesterol result in more rigid and cohesive
sperm membranes. Bull sperm (0.89 µM/109 sperm) and ram
sperm (0.722 µM/109 sperm) contain lower levels of cholesterol
compared to human sperm (1.438 µM/109 sperm) (37). In
addition, the ratio of the polyunsaturated FAs to saturated FAs
in bull sperm (3.5) are greater than human (1.0) and ram sperm
(2.5) (38). Researchers have also studied comparative cholesterol
content in neutral lipids of sperm and seminal plasma from bulls
and water buffalos. While the cholesterol content of the sperm
cells and seminal plasma from the bull were 23.3 and 18.8%,
respectively, these values in water buffalo were 22.2 and 24.7%,
respectively (39).

The loss of cholesterol from the sperm membrane leads to
an imbalance that affects its permeability (40). This membrane
alteration allows for calcium, bicarbonate, and potassium ions
to cross freely through the membrane, thus, increasing the
internal ion concentration. As the intracellular ion concentration
increases, the acrosome reaction is induced. A method has been
developed for total lipid extraction and purification that is still
widely used with modifications for cholesterol analysis (41).
The method developed employs methanol and chloroform as
analytical reagents. When using the Bligh and Dyer method,
the volumes of cholorform:methanol: water, both before and
after dilution, should be kept in the proportions of 3:2:0.8 and
2:2:1.8, respectively. The ratios presented account for water
present within a given sample. For samples with higher water
volume, methanol, and chloroform volumes should be adjusted.
Samples lacking water volumes can de diluted with water.
Samples are prepared using a vortex and centrifugation to
establish distinct layers, a chloroform layer and an organic layer
which contains the lipids. The organic layer containing the
lipids is then separated and evaporated under liquid nitrogen.
Samples can then be analyzed using the preferred method of
the researcher, such as microscopy or LC-MS (42, 43). Previous

studies have focused on manipulating cholesterol levels to
determine the effect on post-thaw viability (44). In a rodent
based study, it was determined that rabbits that were fed
high-fat diets had significantly lower semen quality, motility,
capacitation, and acrosome reaction (45). This could be a result
of increased cholesterol incorporation to the plasma membrane,
which increases membrane rigidity and resistant to alteration
by reducing the fluidity. The ability to quantify cholesterol
within the sperm membrane allows for the ratio comparison of
cholesterol to other lipids as well as proteins in both high and
low freezability and fertility sperm, allowing for a clearer picture
of the dynamics.

Fat-Soluble Vitamins
Lipids are also transporters of vitamins A, D, E, and K,
which contribute to functions and metabolism in the body.
Vitamin E, which is found in the cell membrane, has been
demonstrated to have important antioxidant properties. It
destroys free hydroxyl radicals and superoxide anion, reducing
lipid peroxidation of the plasma membrane (46). In study
completed by Hu et al. (47) vitamin E was used as a
supplementation at various concentrations to bull sperm
subjected to cryopreservation.When samples were supplemented
with 1.5 mg/ml concentrations of vitamin E, there was a
significantly improved level in sperm motility, straight-line
velocity, and straightness (P < 0.05). In addition, the percentage
of acrosome-intact and membrane-intact sperm was significantly
improved (P < 0.05). While vitamin E supplementation has
demonstrated the ability to reduce the potential of lipid
peroxidation, allowing for improved semen quality post-thaw,
this is still an area of research interest to further evaluate the role
of vitamin E in reproduction.

Vitamin A is required for normal mammalian
spermatogenesis and has antioxidant properties. This vitamin
breaks chains by attaching to peroxyl radicals, thus preventing
lipid peroxidation (48). Zervos et al. (49) examined the effects of
vitamin A on acrosin activity. Fifteen rams were split into three
groups and received different concentrations of vitamin A, given
as retinyl acetate. The three groups included a control group, the
12,500 IU/animal per day group, and the 50,000 IU/animal per
day. Acrosin activity was measured using spectrophotometry.
There was no statistical difference found between the control
group and 12,500 IU group, but a significant decrease in acrosin
activity was found in the 50,000 IU groups in comparison to
the control group (P < 0.05). It was concluded that excessive
vitamin A intake does not affect acrosin activity, but deprivation
of vitamin A can reduce acrosin activity.

Vitamin D is thought to function in regulating intracellular Ca
and Ca-binding proteins in the testis. Jueraitetibaike et al. (50)
investigated the associations between seminal plasma vitamin
D levels and semen quality. Vitamin D levels were detected
using electrochemiluminescence in 220 fertile men. Seminal
plasma 25(OH)D levels were positively correlated with semen
volume and kinetic values of the sperm cells. Research suggests
that vitamin D in seminal plasma could be linked to the
regulation of sperm motility by promoting ATP synthesis via the
cAMP/PKA pathway.
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Vitamin K is a key modulator of extracellular calcium
homeostasis within sperm cells and the epididymis, facilitates
energy production within the mitochondria, and contains
antioxidant properties. The intracellular compartmentalization
of the vitamin K cycle may contain a more localized defense
system against ROS attack (51). In addition, the reduced form
of vitamin K, KH2, has been demonstrated to protect plasma
membranes from peroxidation by ROS uptake in humans (52).

Oxidation of Membrane Lipids—Primary

Oxidation, Secondary Oxidation
Sperm cells are highly susceptible to oxidative stress (OS)
due to the concentration of PUFAs found within the plasma
membranes. Antioxidant concentrations are low in the cytoplasm
of sperm cells as compared to that of somatic cells, which have
larger quantities that contribute to defending against oxidative
damage. Oxidative stress is the imbalance between reactive
oxidative species (ROS) and antioxidants (4). Several types of
ROS exist, including oxygen free radicals, non-radical species,
and reactive nitrogen species. Oxygen free radicals are highly
reactive compounds that can affect any cellular component (53).
Examples of oxygen free radicals include compounds such as
hydroxyl radicals and superoxide anions. Non-radical species
are moderately reactive and are formed after both protonation
and univalent reduction occur. Some examples of these would
include hydrogen peroxide and hypochlorous radicals (54).
These compounds react with proteins and form other ROS-like
hydroxyl radicals.

Both the oxygen free radicals and the non-radical species
are created by the partial reduction of oxygen within a given
compound (55). Reactive nitrogen species are a little different
from the other two categories because they are produced by
enzymatic activity of nitric oxide synthase 2 and NADPH
oxidase. Additionally, these compounds are derived from nitric
oxide compounds (56). Two examples of these antimicrobial
molecules include superoxide and nitric oxide. There are several
potential consequences to an overabundance of ROS. One major
consequence of OS is lipid peroxidation, which compromises
the integrity of cell membranes (57). However, many laboratory
techniques have been developed to measure lipid peroxidation
in spermatozoa and to combat ROS from harming spermatozoa
(57, 58).

Sperm lipids are abundant in the membranes and they are
largely in the form of PUFAs, which contain unconjugated
double bonds between methylene bridges (59). The double
bond adjacent to methylene group weakens the methyl carbon–
hydrogen bond, thus, making hydrogen excessively vulnerable
to oxidative damage. Because the intracellular levels of ROS
elevate excessively, ROS establishes a cascade of reactions, which
eventually culminate in lipid peroxidation (LPO) (60–62). Then,
a great amount of membrane fatty acids is demolished, and
fluidity decreases with the loss of function of sperm cell (63). The
functions of membrane receptors and enzymes are suppressed
(64). Therefore, LPO initiates an autocatalytic self-propagating
chemical reaction, which causes unsuccessful fertilization due to
impairment of sperm function (59, 60, 65).

The machinery of lipid peroxidation can occur in three
main stages: initiation, propagation, and termination. Initiation
mainly comprises abstraction of hydrogen from the carbon–
carbon double bonds, therefore, leading to free radicals, which
then, produces lipid radicals, and subsequently, interacts with
oxygen, generating the peroxyl radicals (60, 66). The chain of
autocatalytic reactions is preceded with abstraction of hydrogen
atoms from the PUFA by peroxyl radicals, leading to formation
of organic hydroperoxides, one of the possible limiting factors
of the lifespan of mammalian sperm (67). With interaction
of the formed radicals with successive lipids, the propagation
stage progresses with the formed radicals that then produce
cytotoxic aldehydes due to decay of hydroperoxide (68, 69).
Subsequently, the development of alkyl and peroxyl radicals
maintained in a repeated cycle until the end product is produced
as malondialdehyde (MDA) and 4-hydroxynonenal (HNE), and
the chain reaction ceases. The physiological levels of lipid
peroxidation indicate the functional effects of ROS on sperm
metabolism improving the ability of sperm to contact with
oocyte (70). Nevertheless, the lipid peroxidation is regarded
as the primary molecular mechanism (71) implicated in the
oxidative damage to the cell that induces death. The two major
consequences of this are structural damage to cell membrane and
production of secondary products (72).

PUFAs with the presence of double bonds are susceptible
to free radical attack and induction of LPO, which results
in morphological and membrane abnormalities, in addition to
impaired motility (57, 73). In this regard, due to free radical
attack on PUFA in sperm, the lipid peroxidation cascade
through mitochondrial generation of ROS propels cytotoxic
lipid aldehydes such as 4-hydroxynonenal (4HNE) (74). Hence,
mammalian sperm has been reported to be susceptible to
loss of motility (75, 76) and acrosome integrity (77) due to
the exogenous oxidant as a result of LPO. This may arise
from the set of complexes of acrosome reaction which causes
changes in membrane phospholipid/cholesterol ratio, membrane
fluidity, and net charge of sperm cellular surface because the
lipid composition and metabolism play a significant role in
mammalian acrosome reaction (78).

Moreover, excessive production of ROS in cryopreservation
causes alterations in the levels of carbohydrate, protein, and
lipid in the sperm membrane, owing to the reduction of
disulfide bonds between membrane proteins (79) and the
increase in the peroxidation of membrane phospholipids, along
with changes of sperm glycocalyx. As a result of peroxidative
damage, phosphatidylcholine, phosphatidylethanolamine,
and cholesterol molecules are released along with loss of
phosphatidylcholine and phosphatidylethanolamine (67, 80).
This leads to ultrastructural alterations of sperm plasma
membrane in which cryopreservation influences membrane
integrity severely (6, 81).

Although fresh sperm had slight lipid peroxidation,
cryopreserved sperm suffer from higher lipid peroxidation
(82, 83). This may result from the reason that cryopreserved
sperm cells can be more susceptible to peroxidases than fresh
sperm cells (84) and endogenous phosphatidylcholine is subject
to excessive peroxidation, which is detected particularly in the
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mitochondrial midpiece and tail (85). Ram sperm, due to its
high sensitivity to lipid peroxidation, demonstrated greater
vulnerability to chromatin damage (86), owing to changes in
expression of genes regulating the protamination process, and
in bulls, it is sperm positively correlated with DNA integrity
(87, 88). Also, this is consistent with results that cryopreserved
bovine sperm suffered from low chromatin damage when low
levels of lipid peroxidation were experienced (89).

Roles of Lipid Components in

Cryopreservation
Cryopreservation and the shipment of frozen semen are
necessary for the advancement of the livestock industry as
it allows for customized breeding of females to genetically
superior sires, thereby, increasing the progeny from these males.
Nevertheless, sperm from certain sires are more resilient to
cryopreservation than others due to differences among lipid
compositions of the sperm cell membranes (72, 90). There
are differences in the composition of spermatozoa within an
ejaculate, in addition to the quantity and quality of components
among sperm cells, but the ability of the sperm cell to migrate
through the reproductive tract of the female to fertilize an oocyte
is dependent upon the form and function of the anatomical piece
being evaluated.

The protein to phospholipid components, as well as the ratios
of proteins to phospholipids and cholesterol to phospholipids,
vary greatly when comparing the component constituents of the
plasma membrane to the outer acrosomal membrane (91). The
protein to phospholipid ratio is the greatest in whole sperm,
followed by the outer acrosomal membrane and then the plasma
membrane, due in part to their form and function (91). The
cholesterol to phospholipid ratio is lower in the whole sperm and
the outer acrosomal membrane, but the plasma membrane has
a greater ratio of those components (91). While much is already
understood with regards to their responsibilities and functions
as energy sources and structural components to cells, the role of
fatty acids in fertility and cryopreservation has not been well-
elucidated (92). Docosahexaenoic acid (DHA, 22:6), has been
positively correlated with sperm motility and improved semen
parameters under heat-stress conditions, but the mechanism
of how DHA affects motility is not well-understood (92, 93).
Additionally, DHA and stearic acid (18:0) are involved in
motility parameters before and after freezing sperm and having
high quantities of these fatty acids generally means that sperm
will have better post-cryopreservation motility than those with
lower quantities (94). In a study performed by Maldjian et al.
(95), the introduction of 3% fish oil to the diet of boars
increased DHA content in sperm from 33 to 45% and increased
ejaculate concentrations but did not improve or preserve sperm
parameters upon post-thaw.

Fertility and functionality of sperm cells are impacted by the
structural characteristics of the spermatozoon itself. Membrane
layers surrounding the nucleus and cytoplasm, as well as the
tail, all contain critical lipids and fatty acids that are vital to
cellular integrity and overall functionality (96). For example,
the head and tail of bull sperm contain large quantities of very

long-chain fatty acids followed by saturated fatty acids with
choline being a predominant portion in both the head and the
tail (97). Saturated fatty acids (SFA), monounsaturated fatty acids
(MUFA), and polyunsaturated fatty acids (PUFA) make up the
composition of lipid membranes in addition to other materials
such as sugars and proteins. These components are vital to
successful fertilization. This membrane matrix varies from male
to male and from cell to cell within an ejaculate. Compositional
characteristics of the plasma membrane give way to fluidity
and freezability of sperm cells, and sperm cells with more fluid
membranes display improved responses after cryopreservation
procedures (98). Destabilization of the membrane is caused
by temperature-induced stress in addition to osmotic stressors
like water or cryoprotectants, causing damage or swelling of
the membrane (99). However, detailed mechanisms behind the
functionality of fatty acids in these fluid membrane roles are
not well understood. Sperm with greater proportions of PUFA
compared to SFA tend to demonstrate higher fertility due to
the degree of fluidity and strength of the cell membrane that is
provided by PUFA having multiple double bonds (94). Saturated
fatty acids do not contain double bonds and are less structurally
stable when encountered by stressors or challenges such as
freezing temperatures from cryopreservation.

The plasma membrane of the sperm cell can be destroyed by
osmotic stressors, ice crystal formation, and dehydration of the
membrane from cooling rates (100, 101). These factors disrupt
the integrity of the cell and hinder the ability of the membrane
to be selectively permeable to important molecules, leaving
them incapable of delivering genetic material to the oocyte and
prevents pregnancy. In addition to this damage, sperm cells with
smaller acrosomes could be at greater risk for damage or attack by
these factors (102). Specie differences exist in lipid compositions
of the sperm plasma membrane, as well as variations among sires
within a given species, thereby, making lipid profiling a vital
component to sperm evaluation.

Lipidomics—Study of Lipid Composition

and Functions
Lipidomics is the study of the lipid profile (lipidome) within
a cell, tissue, or organism and provides a quantitative analysis
of the lipid content in the sample being studied. This can
also be thought of as a branch of metabolomics, which is
the characterization and quantification of the major classes of
metabolites in a given sample. Lipidomics has already been used
to find new and exciting information regarding the fatty acid
content of sperm cells from different species. In the stallion, mass
spectrometry revealed the presence of (O-acyl)-ω-hydroxy-fatty
acids, specifically in the sperm head and tail, which had not been
previously detected (103). While the exact functions of these
compounds are unclear, complex fatty acids, such as (O-acyl)-
ω-hydroxy-fatty acids, which contain carbon chains of up to 52
carbons, are important to sperm cell membrane functionality
(103). In canine species, changes in the fatty acid composition
of sperm cells throughout the process of sperm maturation have
been documented. The concentrations of SFA, MUFA, and PUFA
were high in those sperm cells that were collected from the cauda
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epididymis. In addition, sperm collected from the cauda portion
of the epididymis had significantly greater amounts of 8:0, 18:0,
and 15:0 as compared to that found in sperm from the caput and
corpus of the epididymis. Differences were also present in the
epididymal fluids of samples, with the caput having significantly
less 18:0, 15:0, and 18:2 than that of the cauda fluid (104). In
boars, the supplementation of both n-3 and n-6 fatty acids to the
diet was shown to alter the composition of sperm cell fatty acids
and had a positive correlation of DHA content with viability and
progressive motility of sperm cells (105).

Mendeluk et al. (106) reported that several fatty acid
concentrations, including 16:1 cis9, 18:2 (ω-6, LA), 20:5
(ω-3, EPA), and 22:6 (ω-3, DHA), increased significantly
in erythrocytes after dietary supplementation was provided.
Recently, research efforts have explored the relationship between
season and lipid profiles of bull semen (107) identified and
quantified the lipid profile of semen samples from five Holstein–
Friesian bulls during the summer (August to September) and
winter (December to January) months. While the average volume
of ejaculates and the total sperm numbers per ejaculate did
not differ between seasons, sperm concentration was lower in
winter than in summer. Despite lower sperm concentration in
the winter months, the proportion of spermatozoa defined as
morphologically normal was higher in addition to the motility,
progressive motility, and velocity of spermatozoa collected in the
summer months (107). Further studies could use these initial
results to develop predictors of sperm fertilization competence.

Lipidomic Techniques and Applications
The fatty acid composition of sperm cells has been a topic of
investigation for several years. Previous research has elucidated
groups or classes of fatty acids in spermatozoa from bulls, boars,
roosters, stallions, and human males. However, quantifying the
levels or amounts of these fatty acids has proven to be more
difficult than qualifying the fatty acids and detecting their
presence. This is a rather difficult task because of the number
of cells may be limited and the calibration of the technologies
used to identify and quantify the fatty acids could be set to
higher threshold levels than what is present. Recent efforts have
been made to design a streamlined method to fractionate then
quantify the fatty acids in sperm cells via GC-MS methods
(108). Lipidomics has also been utilized to identify lipid profile
differences between healthy and diseased human patients. For
example, blood plasma from patients with diseases, such as acute
lung infections, pulmonary embolism, or acute exacerbation of
the chronic pulmonary disease, had a more than 2-fold increase
in various lipids compared to healthy patients (109). Lipidomics
and liquid chromatography-mass spectrometry may be used to
diagnose subclinical coronary artery disease (110) determined
that patients with severe coronary calcification tended to have
greater levels of monounsaturated triacylglycerols and saturated
triacylglycerols. This led to the suggestion that calcification could
be associated with cellular autophagy dysfunction.

Researchers have started to explore the possibility of using
sperm as an indicator of health and risk of cancer in male
subjects. For example, post-thaw semen quality of cancer patients
is of lower quality as compared to samples before being frozen

(111). Furthermore, men with testicular cancer have significantly
lower sperm cell concentrations, but patients with other cancer
types have been shown to have no differences in normal sperm
(112). It has also been noted that diet affects the quality of fatty
acids and stability of the sperm plasma membrane. In a study
performed by Marchiani et al. (2015), rabbits were fed high-fat
diets to determine if sperm quality changed due to metabolic
status. The sperm cells from these rabbits showed marked
decreases in motility measurement of both progressive and total
motility, in addition to reduced normal morphology. The authors
noted that hypertension could be a potential indicator of sperm
quality in humans. These structures and their composition help
determine the fertility of a given sire, but there are still many
unknowns that need exploring.

A variety of microscopy tools are readily available to
ascertain and evaluate the sperm membrane structure and
integrity. Advances in electron microscopy has allowed for
the development of a clearer, more accurate depiction of the
landscape of the sperm cell. Using staining techniques in
conjunction with microscopy, the composition of membrane
regions has become more apparent (113). Scanning electron
microscopy is commonly used to evaluate semen samples, such
as in the study completed by Khalil et al. (6), which assessed the
structural damage of cryopreservation by examining sperm cells
for detached and cracked heads as well as damaged tails. The
researchers also used transmission electron microcopy to assess
the plasma membrane, acrosome, and nucleus by recording
the appearance of swelling in the membrane, the typicalness
of the acrosome, and the damage to the mitochondria and
chromatin. In the study by Dobranić et al. (114), functional
membrane integrity of canine spermatozoa was evaluated using
hyper-osmotic swelling test (HOST). With HOST, sperm cells are
incubated in a hypoosmotic solution such as fructose solution
with Na-citrate to determine intactness of membranes in the
sperm cells. Sperm with curled or more flaccid tail appearance
indicate intact or damaged tails, respectively (115).

Lipidomics involve characterization of lipid content and
their biological roles in each biological sample using analytical
methods. Currently, there are two strategies for the lipid analyses:
targeted and non-targeted lipid analysis. Targeted lipidomics is
applied when researchers focus on known and specific lipids.
Since the selected reaction monitoring (SRM) method is utilized
in targeted lipidomics, it provides high sensitivity for quantitative
lipid analyses 44, 80 [(116); 101]. Lipid classes that show unique
fragmentation patterns and low abundant lipids are suitable for
targeted lipid analyses. Non-targeted lipid analysis helps detect
all lipids simultaneously in a single run. Although this method
provides an overall profile of lipids that are detectable, it is not
a sensitive analysis. Combining targeted and non-targeted lipid
strategies may help to produce more powerful data.

Since lipidomic techniques are relatively new, several
challenges exist. The use of gas chromatography-mass
spectrometry (GC-MS) to elucidate lipid profiles has proven
to be a promising avenue for determination of bull fertility,
but this machinery and use of the technology are not widely
available and it requires trained personnel to produce reliable
data. One of the major limitations often encountered is the lack
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of subjects or samples utilized for analysis. Having a greater
number of cells to analyze could provide more comprehensive
results or lead to the discovery of other compounds. In our
recent study, a GC-MS method was used to evaluate the
differences in Holstein bull sperm freezability and to compare
the quality and quantity of fatty acids (108). When compared
to similar studies, we noted that the calibration and detection
techniques can vary which will yield different results, thereby
making the use of GC-MS beneficial because you can collect
a breadth of spectral data while also challenging due to the
number of variables and settings that can alter specificity of
the analysis.

With gas chromatography, modifications and adjustments
can be made to the gas flow rate, column specifications,
and temperature which can prove beneficial when quantifying
lipids. Gas chromatography is an analytical tool that allows
for the separation of compounds via vaporization. The carrier
gas transports the injected liquid sample. Carrier gases are
typically inert gases, such as helium. The sample is carried
from the injector to the column that is located within the
oven (117). Columns vary in length, ranging from a couple
of meters to 100 meters, and type, such as polarized vs. non-
polarized. Common detectors used with GC are MS or flame
ionization (FID). Compounds assessed using GC should be
compared against a standard for validation (118). Internal
standards can be obtained for the various lipids, but not with
the same ease of access. Approximately 80 analytical standards
are commercially available for GP of the complex category,
limiting the ability to perform absolute quantification (118).
Sample preparation is another drawback of GC in that it typically
requires using large sample volumes in addition to samples
requiring derivatization (119).

Much like GC, a standard is needed for absolute
quantification, and for simple lipids these are available
commercially. Mass spectrometry (MS) is another analytical
technique. By using the masses of atoms and molecules, the
identities of the various components that make up a sample is
revealed. The data gathered can also be used to quantify the
components of the sample as well. The MS works by converting
molecules to ions, sorting the ions based on their mass and
charge, and then, detection. The electron ionizer is an electron
beam that molecules pass through that strips the electrons,
thus, producing a positive ion that travels to the mass analyzer
component, which is an electric field that accelerates the ions
into a magnetic field where they are then deflected based on
the mass of the ions. Lastly, the ions impact a charged plate
that generates a signal that can be used for analysis (120).
The MS is useful in quantifying a substance when it is known
and determining the composition of an unknown sample, in
addition to, allowing researchers to conclude the structure and
properties of various molecules (118). The MS determines the
abundance of ions according to their mass to charge ration
or m/z (119). When compared to nuclear magnetic resonance
(NMR), MS often offers heightened sensitivity and selectivity
between various lipids (121).

Recent advances in analytical technologies, such as MS,
NMR, and high-performance liquid chromatography (HPLC),
have helped researchers to improve lipidomics (121). Among

these technologies, MS-based methods are commonly used in
lipid analyses due to the higher sensitivity, throughput, and
specificity (122). In addition, a great number of ionization
technologies, such as electron ionization (EI), Matrix-Assisted
Laser Desorption Ionization (MALDI), Electrospray Ionization
(ESI), and Fast Atom Bombardment (FAB) in MS, have been
developed as well. Each of these ionization methods can be used
for the analyses of different lipid groups, such as FAB commonly
being applied to identify fatty acids, monoacylglycerols, and
glycerophospholipids (123, 124).

Although the NMR is not as sensitive as MS, NMR is the
only method of analysis that allows for lipid analysis of cells and
tissues when they are intact (119). Nuclear magnetic resonance
spectroscopy is composed of a coiled wire surrounded by a
magnet. One of the coils generates electromagnetic radiation at a
constant frequency, whereas the relative strength of the magnetic
field increases. The growing magnetic field strength splits the
nuclei in the samples until the nuclei reach a point of resonance,
after which, the nuclei fall back to a lower energy level remitting
a radiation signal that the second coil records. The signals
recorded by the various nuclei in the sample are then analyzed
and processed producing the NMR spectrum (125). Typically,
1H and 31P NMR spectroscopy are used for analysis due to
their sensitivity. Proton NMR is commonly used to investigate
diseases, poisons, and disorders that induce changes in the lipid
composition; 31PNMR is commonly used to quantify GPs. In the
past, one-dimensional NMR has been the most prevalent tool,
however, two-dimensional NMR is becoming a useful tool. The
rise in popularity for two-dimensional NMR is centered around
the ability of better resolution (118).

The thiobarbituric acid (TBARS) assay is used to assess
changes in Malonaldehyde (MDA), a reactive compound formed
when lipids undergo oxidation (126). In conjunction with
Thiobarbituric acid (TBA), MDA reacts to form the MDA-TBA
adduct and can be measured colorimetrically or fluorometrically
to determine the levels of lipid peroxidation in each sample
(126). The TBARS assay needs to be carried out under high
temperatures and in an acidic environment. To run this assay,
semen samples are thawed and diluted in PBS (127). Then, 100
µL of spermatozoa are mixed with 200 µL of 5% trichloroacetic
acid, 0.375% TBA and 0.25N HCl reagent. The mixture is then
heated to 90◦C for 15min to stimulate the reaction. Following
the incubation period, samples are transferred to an ice-water
bath for 5min. After cooling, the samples are centrifuged at
1,500 × g for 15min. The supernatant is then collected and
transferred into a well-plate so the absorbance can be measured
by a microplate reader to calculate MDA concentration. This
method has the benefit of being well-recognized and can utilize
a variety of sample types such as tissue homogenates, urine
samples, cell lysates, serum, and plasma. However, it is necessary
to standardize TBARS by usingmultiple fatty acid concentrations
rather than selecting an arbitrary fatty acid to use as a standard
or reference (128). This method lacks specificity, but it can help
determine the amount of lipid peroxidation present if the sample
is uncomplicated (127, 128).

The BODIPY C11 probe colorimetric assay measures lipid
peroxidation of cell membranes via flow cytometry. BODIPY
(581/591) C11 easily incorporates into sperm cells and undergoes
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a spectral emission shift when attacked by ROS that can be
measured to determine change (129). To conduct this assay,
semen samples are collected, and then, allowed to sit for 30min
to liquify from its gel-like stage post-ejaculation (129). Following
the waiting period, sperm cells are separated via a Percoll
gradient, and then, the BODIPY (581/591) C11 probe is added
to 5µM of cells for 30min. Sperm cells are washed twice by
centrifuging at 650 g for 5min. An 80µM ferrous sulphate
promoter is incubated for 15min. The sample is then evaluated
using a flow cytometer. The BODIPY probe colorimetric assay
has been demonstrated to have good repeatability and sensitivity
when evaluating deer sperm (127).

The TBA-TCA Reagent Colorimetric Method Assay is used to
measure lipid peroxidation by determining MDA levels through
the TBA assay, which produces a red absorbance. This assay is
run by thawing and centrifuging sperm cells in Tris buffer (130).
The sperm pellet is then resuspended in PBS. A 2mL of TBA-
TCA reagent is added to 1mL of sperm cell suspension and
incubated in boiling water for 40min. The sample is cooled and
centrifuged at 500 × g for 10min. The supernatant is aspirated,
and absorbance is read at 535 nmunder a UV spectrophotometer.
Final MDA levels are determined by the absorbance coefficient of
1.56 × 105/mol/cm3. The TBA can react with a wide assortment
of oxidized lipids, both saturated and unsaturated varieties, but
it does lack sensitivity and specificity (131). To combat these
weaknesses, researchers have incorporated high-performance
liquid chromatography to increase specificity and sensitivity of
the assay (132).

The 4-Hydroxynonenal (HNE)-His Adduct ELISA/HNE
Adduct Competitive ELISA is an immunoassay that helps detect
HNE-His protein adducts, which are formed when 4-HNE reacts
with lysine, histidine, or cysteine residues in sperm cells (133).
This assay is run with a 96-well titer ELISA plate where sperm
cell samples and bovine serum albumin (BSA) standards are
added to wells (134). The HNE-protein adducts present in the
samples are probed with an anti-HNE-His antibody, followed
by an HRP secondary antibody. Using a microplate reader,
the absorbance of each well is read at 450 nm to quantify the
HNE-protein adducts. This method has proven to be accurate
and repeatable; however, care must be taken when selecting
antibodies for the sample specimen (133, 135).

In the Glutathione peroxidase test, glutathione peroxidase
(GSH) reacts with hydrogen peroxide to form glutathione
disulfide (GSSG). Adding glutathione reductase and NADPH
reduces GSSG to GSH and results in consumption of NADPH,
which is related to the peroxide content of the sample (136).
Sperm cell samples are centrifuged at 12,000 g for 5min (137).
Fifty µL of sperm cells are added to a 930 µL solution of
EDTA 1mM, sodium azide, and potassium phosphate buffer
(137). Then, a 10 µL secondary solution, composed of 0.02 g
of 1-chloro-2,4-dinitrobenzene (CDNB) in ethanol, is placed
into the cuvette of the spectrophotometer with the aliquots
of the first solution. Finally, 20 µL of 500 IU/mL of GSH-
S transferase in phosphate buffer is added to initiate reaction
(137). The absorbance is monitored at 340 nm until it reached
the plateau. Calculations are then performed using the volume
of the sample, light path length, corresponding dilution factors,

absorbance decrease, and molar extinction coefficient. This
test has been applied to human seminal plasma samples to
quantify the presence of glutathione peroxidase (138). It was
found that glutathione peroxidase activity was significantly lower
in those samples with oligozoospermia, asthenozoospermia, or
teratozoospermia conditions in which Crisol et al. (138) speculate
is related to overall sperm quality. When utilizing this test, it is
vital to consider other avenues of assessment because this test
only evaluates one fraction of the antioxidant system that is in
place to protect the spermatozoa.

CONCLUSIONS

The knowledge base of lipids and their composition in livestock
sperm and the difficulty of data accuracy and interpretation
of results have been documented. There is a need for more
detailed lipidomics studies utilizing sperm from livestock with
distinct phenotypes of economically important traits such as
sperm freezability and male fertility. Growing interests and
platforms with various techniques such as GC-MS, MS-MS, and
LC-MS enable researchers to profile comprehensive metabolomic
signatures of diverse tissues in livestock, including sperm. This
is important because lipids play critical roles in molecular
morphology and function in the cells. Combined with other
methods in cell and molecular biology, such as bioinformatics,
lipidomics can be applied to harness the power of integrated
studies to decipher sperm markers for freezability and male
fertility. Potential markers uncovered through discovery research
can be further studied through mechanistic experiments to
determine the molecular and cellular underpinnings of male
fertility. However, there is a need for more comprehensive studies
involving different stages of animal development, nutrition,
environment, and season using single cell analyses. Because of the
significant similarities between livestock and other organisms,
including human and endangered species, results generated using
various livestock models can be applied to advance basic and
applied reproduction of other mammals.
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