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SUMMARY

We propose a Bayesian approach to Mendelian randomization (MR), where instruments are allowed to
exert pleiotropic (i.e. not mediated by the exposure) effects on the outcome. By having these effects
represented in the model by unknown parameters, and by imposing a shrinkage prior distribution that
assumes an unspecified subset of the effects to be zero, we obtain a proper posterior distribution for
the causal effect of interest. This posterior can be sampled via Markov chain Monte Carlo methods of
inference to obtain point and interval estimates. The model priors require a minimal input from the user.
We explore the performance of our method by means of a simulation experiment. Our results show that the
method is reasonably robust to the presence of directional pleiotropy and moderate correlation between
the instruments. One section of the article elaborates the model to deal with two exposures, and illustrates
the possibility of using MR to estimate direct and indirect effects in this situation. A main objective of the
article is to create a basis for developments in MR that exploit the potential offered by a Bayesian approach
to the problem, in relation with the possibility of incorporating external information in the prior, handling
multiple sources of uncertainty, and flexibly elaborating the basic model.

Keywords: Correlated instruments; Egger regression; Instrumental variable; Mediation; Median estimator;
Metabolomics; Shrinkage; Sparsity prior.

1. INTRODUCTION

Many statistical studies aim to assess the causal effect of a phenotype or exposure (X ) on an outcome
(Y ). In many such studies, an experimental design is unfeasible, and the only remaining option is to work
on the basis of observational data. Unfortunately in this case, no matter how impeccable is the study
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design, how accurate are the observations and smart the inference algorithm, there is no guarantee that
the result will not be biased due to unobserved confounding or reverse causation. A useful approach to
this situation is Mendelian randomization (MR) (Katan, 1986; Davey Smith and Ebrahim, 2003; Lawlor
and others, 2008). The bare bones of the idea are that, under certain assumptions, for a phenotype X to
be a causal influence on an outcome Y , we expect a genetic variant Z that modulates X to likewise affect
Y . Information about Z can then be used as an instrument to assess the causal effect of X on Y , despite
confounding.

The potential impact of MR on science cannot be underestimated (Robinson and others, 2017). In
various occasions, an MR study based on observational data has predicted the outcome of a clinical
trial, thereby supporting or casting doubt on the motivating causal hypothesis (Voight and others, 2012).
Furthermore, MR can help biologists reconstruct a disease process from its molecular causes to its pheno-
typic manifestations, and unravel causal relationships of pharmacological relevance through the analysis
of biobank data.

Early implementations of MR used a single or a handful of instrumental variants, under the untestable
assumption that these variants are not pleiotropic, i.e. that they affect the outcome only through the changes
they induce in the exposure. Recent developments, mostly in the frequentist realm, have focused on meth-
ods that use multiple instruments, while allowing for “cryptic” pleiotropy, i.e. allowing an unspecified
subset of the instruments to affect the outcome directly. Examples of multi-instrument Mendelian random-
ization (MIMR) methods that allow for cryptic pleiotropy are the Egger regression (ER) and the weighted
median estimator (WME) method of Bowden and others (2016).

The existing frequentist approaches to MR do not coherently account for important sources of uncer-
tainty, such as the uncertainty arising from the estimation of the instrument-exposure (i-e) associations.
Hence our concern that these methods may yield over-optimistic results. We attempt to remedy this by
proposing a Bayesian approach to MR (see Didelez and Sheehan, 2007, 2008; Burgess and Thomp-
son, 2010, 2012; Jones and others, 2012), which deals with cryptic pleiotropy and can in principle
acknowledge uncertainty at all levels of the model. Our method allows the user to shape the prior
on the basis of external information, for stronger and more accurate inferences, although it will work
with vague prior specifications, too. It combines the power of Bayesian analysis with that of Markov
chain Monte Carlo (MCMC) inference, for an exceptional freedom in elaborating the basic model.
Extensions of our method to deal with non-linear dependencies and model uncertainty are under inves-
tigation, but remain outside the scope of this article. We restrict our attention to continuous X and Y
variables.

In Section 2, we review past related work, and place our method in that context. In Section 3, we
introduce our MIMR framework in a simple setting. The idea here is that the pleiotropic effects are
represented in the model by unknown parameters, with an independence sparsity prior that assumes an
unspecified subset of these parameters to be zero. Incorporating this prior yields a proper posterior for the
causal effect, which we MCMC-sample to obtain point and interval estimates.Also discussed in this section
is the use of external information to shape an informative prior. In Section 4, we assess the performance
of our method in relation to the number of instruments, the amount and direction of pleiotropy, and the
degree of linkage disequilibrium (LD) between the instrumental variants, taking the performance of the
WME method as a reference. Thanks to the explicit modeling of the direct instrument-outcome (i-o)
effects, our approach bears relationships with mediation analysis. This connection is explored in depth in
Section 5, where we consider a problem involving two exposures (instead of one), and use our method
to estimate direct and indirect effects. This is further illustrated in Section 6 with the aid of a study in
metabolomics. This article is based on the decision-theoretic causality framework proposed by Dawid
(2000) and described in Chapter 4 of Berzuini and others (2012).
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Fig. 1. Conditional independence graph representations of a Mendelian randomization problem. In (a) the graph
represents a set of conditional independence assumptions that do not violate Conditions 1–3 of Section 2. In (b), the
arrow from Z to Y violates Condition 3. In (c) the graph represents a class of problems with multiple instruments,
where Conditions 1 and 2 are not violated.

2. BACKGROUND

Let U denote a set of imperfectly observed exposure-outcome (e-o) confounders, responsible for the
correlation between X and Y being not totally attributable to a causal relationship. In order for a scalar
variable Z to qualify as an instrument for estimating the causal effect of X on Y , we generally require it
to satisfy the following three conditions, where we use the notation A⊥⊥B | C for “A is independent of B
given C” (Dawid, 1979), and A �⊥⊥B | C for the negation of the same sentence:

Condition 1 (marginal relevance) Z is associated with the exposure, formally Z �⊥⊥X .

Condition 2 (confounder independence) Z is independent of the e-o confounders, formally Z ⊥⊥U .

Condition 3 (exclusion restriction) Z is independent of Y , given U and X , formally Z ⊥⊥Y | (U , X ).

The last two conditions are not testable on the basis of the usually available (X , Y , Z) data. Three examples
of MR problem are graphically represented in Figure 1, where the X → Y arrow represents the causal
effect of inferential interest, the Z → Y arrow a pleiotropic effect, and a Z → X arrow an i-e association,
which none of the methods discussed assumes to be causal. We regard the graphs of Figure 1 as expressing
sets of conditional independence relationships, which can be read off them with the aid of the d-separation
criterion of Geiger and others (1990). Conditions 1–3 are satisfied in Figure 1a. Condition 3 is violated
in Figure 1b by the presence of the Z → Y arrow.

With reference to Figure 1a, if we assume linear additive dependencies between the variables in the
graph, and let β̂Y and β̂X denote the estimated slopes in the regressions of Y on Z and X on Z , respectively,
then the instrumental variable (IV) estimator of the causal effect of X on Y is β̂Y /β̂X . A small sample size
and/or weak i-e associations may cause the data to deviate from Condition 2 (Nelson and Startz, 1990),
and consequently the IV estimate to be affected by the so-called weak instruments bias.

Existing frequentist methods admit a collection of independent instruments, Z1, . . . , ZJ , and they require
Conditions 1 and 2 to hold for all instruments, formally Zj �⊥⊥X and Zj ⊥⊥U , for j = 1, . . . , J , as in Figure
1c. In these methods, each jth instrument contributes a separate IV estimate β̂Yj/β̂Xj of the causal effect of
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X on Y . When the IV estimates of several instruments show reasonable concordance, it would appear that
a causal conclusion is defensible, pleiotropy notwithstanding. This idea is developed by Egger and others
(1997), who suggest that concordance can be tested by regressing β̂Yj on β̂Xj. Under the assumption that the
i-e associations (or instrument strengths) are independent of the direct effects (pleiotropic associations),
usually referred to as the INSIDE assumption (Kolesar and others, 2014), evidence of a linear relationship
between β̂Yj and β̂Xj will support (and provide an estimate of) the causal effect of interest, whether or not
the instruments satisfy Condition 3. For finite numbers of instruments, the frequentist interpretation of
the INSIDE is that the correlation between pleiotropic and i-e associations is zero. This is an untestable
property, although some indirect empirical evidence (Pickrell and others, 2015) can be summoned in its
support. The Egger method requires the instrumental SNPs to be recoded to ensure that the i-e associations
have the same sign, although, unfortunately, INSIDE is sensitive to changes such. Moreover, by treating
the {β̂Xj} as fixed quantities, the Egger method ignores the imprecision introduced by their estimation.

Another popular approach to MIMR is the median estimator. If Conditions 1 and 2 are valid, the instru-
ments are independent and at least half of them satisfy Condition 3, then the median of their corresponding
IV estimates will be a consistent estimate of the causal effect (Han, 2008). Bowden and others (2016)
proposed a widely used weighted version of this estimator—the WME of the causal effect.

In this article, we propose a Bayesian approach to MR that allows an unspecified subset of the instru-
ments to be pleiotropic, provided that Condition 2 and a Bayesian version of the INSIDE assumption (see
Condition 4 in the next section) are satisfied. The proposed approach has the following distinguishing
features. It allows for (moderate) instrument–instrument correlation, and does not require the signs of the
instrument effects to be manipulated. It treats the i-e associations as random quantities, which we can
learn about via prior-to-posterior updating. Once the posterior distributions (e.g. for the i-e associations
and for the causal effect, etc.) have been calculated, they can be used as priors in future studies, in what
can be regarded as a sequential learning process. Finally, while the aforementioned frequentist methods
emphasize the construction of estimators for specific situations, our combined use of Bayesian inference
and MCMC computation allows the researcher to focus on model choice, to better explore the possibility
of tackling elaborated versions of the basic model.

We conclude this section with a note on the decision-theoretic formulation of causality proposed by
Dawid (2000), and on the corresponding definition of causal effect, which we adopt in the present work.
In accord with this formulation, we define the causal effect of X on Y as the difference between the
expected values of Y under a (hypothetical) intervention that imposes on X a reference value x0 and
another intervention that imposes a generic value x. To express this, let the symbol FX label the regime
under which the value of X is generated, with FX = a indicating that X is fixed to value a by an intervention
of the relevant type, and FX = ∅ denoting the observational regime under which the data have actually
been obtained. Then the average causal effect (ACE) of X on the continuous outcome Y is defined by
ACE = E(Y | FX = x) − E(Y | FX = x0). Based on our observational data (obtained exclusively under
regime FX = ∅) we can estimate ACE under the (bold) assumption Y ⊥⊥FX | (X , U ), that the conditional
distribution of Y given X = x in the generic individual characterized by a specific value of U , depends
on x, but not further on whether the value x has arisen by passive observation or through the intervention
of interest. The implications of this condition in a MR context, and, more in general, in the context of IV
analysis, are examined in Chapter 4 of Berzuini and others (2012)

3. METHODS

We shall now introduce our approach to MR with reference to a one-sample setting, where each individual
is characterized by a complete set of observed values for X , Y and Z1, . . . , ZJ . We assume linear additive
dependencies and write

P(U ) = N (0, 1), (3.1)
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P(X | Z1, . . . , ZJ , U ) = N (ωX +
J∑

j=1

αjZj + δX U , σ 2
X ), (3.2)

P(Y | X , Z1, . . . , ZJ , U ) = N (ωY + θX +
J∑

j=1

βjZj + δY U , σ 2
Y ), (3.3)

where N (a, b) stands for a normal distribution with mean a and variance b, the symbol α ≡ (α1, . . . ,αJ )

denotes the i-e associations and β ≡ (β1, . . . ,βJ ) are the pleiotropic effects. The causal effect of interest,
denoted as θ , represents the change in Y caused by an interventional unit change in X . We may equivalently
write

P(X | Z1, . . . , ZJ ) = ωX +
J∑

j=1

αjZj + A, (3.4)

P(Y | X , Z1, . . . , ZJ ) = ωY + θX +
J∑

j=1

βjZj + B, (3.5)

with A ∼ N (0, δ2
X + σ 2

X ), B ∼ N (0, δ2
Y + σ 2

Y ) and cov(A, B) = δX δY . Equations (3.4– 3.5) involve a vector
of parameters � ∈ R(2J+6), with � ≡ (ωX ,ωY , τX ≡ √(δ2

X + σ 2
X ), τY ≡ √(δ2

Y + σ 2
Y ), λ ≡ δX δY ,β,α, θ).

The model is not completely identifiable, in the sense that the information contained in the observed
covariances does not lead to a unique solution for � or any subset of � containing the parameter of
inferential interest, θ . In fact, parameters (ωX ,α, τX ) are identified by the J + 2 conditions provided
by equalities E(X | Z1, . . . , ZJ ) = ωX +∑J

j=1 αjZj and var(X | Z1, . . . , ZJ ) = τ 2
X . Unfortunately, the

remaining J +4 parameters, including the causal effect of interest, θ , remain unidentified. This is because
the equality E(Y | X , Z1, . . . , ZJ ) = ω′Y + θ ′X +

∑J
j=1 β

′
j Zj (with ω

′
Y = ωY − ωX

λ

τ2
X

, θ
′ = θ + λ

τ2
X

and

β
′ = β−α λ

τ2
X

) provides additional J +2 conditions, and a further condition is obtained from the equation

var(Y | X , Z1, . . . , ZJ ) = τ 2
Y − λ2

τ2
X

, for a total of additional J + 3 conditions, which are not sufficient to

identify J + 4 parameters.
From a Bayesian point of view, non-identifiability can be negotiated by using a scientifically plausible

prior that induces a proper posterior on θ . Formally, if D denotes data, the posterior can always be written
in the product form:

P(ω, τ , λ, θ ,α,β | D) = P(ωX ,α, τX | D) P(ωY , θ , τY , λ | β,ωX ,α, τX , D) P(β | ωX ,α, τX , D).

Because the last term above is the conditional posterior of an unidentifiable parameter, it reduces to the
conditional prior: P(β | ωX ,α, τX , D) = P(β | ωX ,α, τX ), which leads to

P(ω, τ , λ, θ ,α,β | D) = P(ωX ,α, τX | D) P(ωY , θ , τY , λ | β,ωX ,α, τX , D) P(β | ωX ,α, τX ),

from which it follows that we may make the full posterior distribution proper by allowing the last term
of the above product to take the form of a proper distribution. To proceed, we introduce the following
Bayesian interpretation and generalization of INSIDE:

Condition 4 (instrument effects orthogonality (IEO)) Each component of β is a priori independent of the
parameters of the exposure model, P(β | ωX ,α, τX ) = P(β),
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and we specify a proper and scientifically plausible prior P(β). One option is to impose β = 0, as in
a standard IV analysis, which however will often be unrealistic. A second option is to impose that the
effect exerted by each instrument on the outcome through the mediation of X is greater in magnitude than
the corresponding pleiotropic (unmediated) effect. We use none of these. In the following section, we
construct P(β) from our belief that some of the components of β are zero.

3.1. The prior

We shall now discuss the prior specifications for model (3.1–3.3). In many applications, it will be reasonable
to assume that some components of vectorβ are zero, i.e. that an unspecified subset of the set of instruments
have no pleiotropic effect. This justifies imposing onβ a shrinkage prior, e.g. by taking eachβj to be a priori
independently drawn from a Laplace (double exponential) distribution with mean 0 and unknown variance
2τ 2, with τ distributed a priori as Cauchy+(0, 1), where Cauchy+(0, a) denotes the half-Cauchy density
on the positive reals, with scale parameter a. An alternative choice is to impose on each jth component
of β the horseshoe shrinkage prior proposed by Carvalho and others (2010), which has the hierarchical
structure p(βj | φj) = N (0,φ2

j ), p(φj | γ ) = Cauchy+(0, γ ), p(γ ) = Cauchy+(0, 1), where the degree
of shrinking of each jth component of β is controlled by an unknown parameter φj. A high value of
φj corresponds to a near-zero value of the shrinkage weight, κj = 1/(1 + φ2

j ), in which case this prior
leaves the magnitude of βj almost unaffected. In contrast, a near-zero value of φj corresponds to a near-
unit shrinkage weight, which will result in the estimate of βj being heavily shrunk towards zero. Under
the horseshoe prior, each βj is mixed over its own φj, with φj drawn from a Cauchy+(0, γ ) distribution
governed by an unknown parameter γ . Both the φj parameters, which are in charge of controlling the
local degrees of shrinking, and parameter γ , which controls the global degree of shrinking, are inferred
from the data, with minimal input from the user. With γ = 1, the horseshoe specifications induce on κj a
horseshoe-shaped Beta(.5, .5) distribution with one peak at κj = 0 and another at κj = 1. The two peaks
may be interpreted in terms of the horseshoe prior inducing sparsity in a selective fashion. The lower peak
of the distribution of κj accounts for the small components of β, which our model recognizes as noise and
heavily shrinks towards zero. The upper peak of the distribution accounts for the large components of β,
which our model recognizes as pleiotropic, and leaves almost unaffected, thereby reducing the influence
of the pleiotropic instruments on the estimate of θ .

In our experience, assigning the remaining parameters uniform priors does not cause numerical prob-
lems, thanks to the ability of the Stan toolbox (STAN Development Team, 2014) to determine a sensible
bounding of the search space via variational algorithms. However, we shall often wish to make our pri-
ors informative, for stronger inferences. In future studies, we speculate that it will be possible to shape
informative priors on the basis of data collected in previous studies (provided these satisfy the necessary
conditions). For example, (X , Z) data from past studies can be used to construct a prior for (α,ωx, τx), in
such a way to reduce the weak instruments bias.

Consider also that mathematical relationships between parameters may be used to derive sensible local
priors. For example, parameters δX and σX are not identifiable, but the model links them to τX through
the identity τ 2

X = δ2
X + σ 2

X , which justifies the inequalities δX ≤ τX and σX ≤ τX . Because we are
able to learn about τX from external data, we can use this information, in conjunction with the above
inequalities, to derive joint prior bounds for δX and σX (not illustrated in this article). Alternatively, we
may establish an upper bound for τ 2

X , denoted by uτ2
X

, and impose the prior bound δ2
X +σ 2

X ≤ uτ2
X

. In some
situations, a posterior distribution for the causal effect might become available from previous studies, and
be used, under assumptions, as our prior for θ . Prior information about β might become available with the
development of web repositories containing lists of instruments for specific exposures. Finally, in certain
situations it might be reasonable to assume a priori that each direct effect βj is smaller in magnitude than
the corresponding indirect effect, αjθ .
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In our analyses of real and simulated data, we assigned σX and σY uniform prior distributions with
positive support. We assigned θ , δX , δY , ωX and ωY independent uniform priors, and we took each αj, for
j = 1, . . . , J , to be independently drawn from a normal N (μα , σ 2

α ) prior, with hyperparameters μα and σα
subject to uniform priors.

4. SIMULATION EXPERIMENT

We performed a simulation experiment to evaluate our model’s performance in relation to the number of
instruments and individuals, the direction and amount of pleiotropy, and the degree of correlation between
the instruments. Although performance comparisons are not a primary objective of this article, we shall
compare our method’s performance with the WME in terms of bias, coverage and power.
Our simulations were based on sequences of SNPs of real individuals, with each SNP expressed on an
interval scale as an allele dose (0,1,2). We considered the 21 simulation scenarios described in Table 1. In
each of these, we simulated 800 datasets with the causal effect θ set to zero, and further 800 datasets with θ
set to 0.35, which allowed us to assess each method’s performance under the null and under the alternative
hypothesis. The SNP sequences changed from one individual to the next, but they were kept fixed across
scenarios and simulations, except for scenarios 14 to 21, where they changed from one scenario to the
next to represent different degrees of LD between the SNPs.

Each of Scenarios 1 to 13 uses independent SNPs, and is characterized by (i) the sample size reported
in column 2 of Table 1, (ii) the value of μβ , the mean pleiotropic effect, reported in column 3, and (iii) the
value of σα reported in column 4, which controls the variability of the strength, α, from one instrument to
the next. Note that by varying μβ , we explore different types of pleiotropy: balanced (μβ = 0), negative
(μβ < 0) and positive (μβ > 0). In particular, by allowing μβ to take values ±0.012, we have included
situations where the pleiotropic component of the effect of the instrument on the outcome is on average
stronger than the component mediated by the exposure (indirect component). At each new simulation, new
values for the model parameters were generated. In particular, in Scenarios 1 to 13, each component of α
was independently drawn from N (−0.07, σ 2

α ). A randomly selected subset (40%) of the components of β
were independently drawn from N (μβ , 0.052), the remaining components being set to 0. The proportion
of instruments with a significant (P < 0.05) marginal association with the exposure varied between
70% and 100% across the simulations. Also, parameters ωX and ωY were drawn from N (3.3, 0.22) and
N (0.9, 0.22), respectively, and δX and δY were independently drawn from N (−0.1, 0.022), so as to have
a positive average correlation between X -errors and Y -errors. Parameters σX and σY were sampled from
sharp inverse-gamma distributions with means 0.1 and 0.3, respectively. Conditional on the generated
parameter values, at each new simulation we generated values for variables U , X , Y , for each individual,
on the basis of Equations (3.1–3.3) and in conformity with the IEO condition.

Scenarios 14 to 21 involve instrumental SNPs with increasing degrees of mutual correlation (average
R2 reported in column 6). These scenarios were generated in the same way as the previous ones, except
for vector α. After the elements of this vector were simulated, the majority of them were set to zero, so
as to mimic the situation where only a small number of instruments have a non-null causal or conditional
effect on the exposure. Also, the components of β were independently drawn from N (φ, 0.052), with
φ uniformly distributed between ±0.012, so as to embrace situations where the pleiotropic effect is on
average stronger than the i-o indirect effect.

Each simulated dataset was analyzed via WME to obtain a point and a bootstrapped 95% confidence
interval for θ , and then via our model (with a horseshoe prior for β) to obtain a posterior mean and a
95% credible interval for θ . On the basis of these results, we assessed performance in terms of bias,
coverage and power. The analysis with our model was performed by using the Hamiltonian MCMC
methods (Metropolis and others, 1953; Neal, 2011) provided by the program Stan (STAN Development
Team, 2014). Stan employs a combination of variational (Wainwright and Jordan, 2008) and MCMC



Ta
bl

e
1.

C
om

pa
ra

tiv
e

as
se

ss
m

en
t

of
th

e
pr

op
os

ed
m

et
ho

d
(w

ith
a

ho
rs

es
ho

e
pr

io
r

fo
r
β

)
an

d
of

th
e

W
M

E
,

in
re

la
tio

n
to

th
e

m
ea

n
pl

ei
ot

ro
py

,t
he

nu
m

be
r

of
in

st
ru

m
en

ts
,t

he
de

gr
ee

of
lin

ka
ge

di
se

qu
ili

br
iu

m
(R

2
)

be
tw

ee
n

in
st

ru
m

en
ts

an
d

th
e

di
sp

er
si

on
of

th
e
α

in
st

ru
m

en
t-

ex
po

su
re

as
so

ci
at

io
ns

(c
ol

um
n

4)

Sc
en

ar
io

N
um

be
r

of
in

di
-

vi
du

al
s

M
ea

n
pl

ei
ot

ro
py

St
an

da
rd

de
vi

a-
tio

n
α

N
o.

of
in

st
ru

-
m

en
ts

L
in

ka
ge

di
se

qu
i-

lib
ri

um
(R

2
)

C
ov

er
ag

e
un

de
r

th
e

nu
ll

C
ov

er
ag

e
un

de
r

th
e

al
te

r-
na

tiv
e

Po
w

er
B

ia
s

un
de

r
th

e
nu

ll

B
ia

s
un

de
r

th
e

al
te

r-
na

tiv
e

C
ov

er
ag

e
un

de
r

th
e

nu
ll

C
ov

er
ag

e
un

de
r

th
e

al
te

r-
na

tiv
e

Po
w

er
B

ia
s

un
de

r
th

e
nu

ll

B
ia

s
un

de
r

th
e

al
te

r-
na

tiv
e

O
ur

m
et

ho
d

W
ei

gh
te

d
m

ed
ia

n
es

tim
at

or

1
50

0
0.

01
2

0.
02

60
0

79
86

93
−0

.0
4
−0

.0
6

70
78

88
−0

.0
4
−0

.0
4

2
50

0
0.

00
6

0.
02

60
0

89
86

95
−0

.0
2
−0

.0
3

78
79

92
0.

01
−0

.0
3

3
50

0
0

0.
02

60
0

91
94

99
−0

.0
03

0.
02

80
81

94
0.

01
0.

01
4

50
0

−0
.0

06
0.

02
60

0
90

88
99

0.
03

0.
03

75
80

98
0.

04
0.

06
5

50
0

−0
.0

12
0.

02
60

0
85

81
99

0.
06

0.
06

73
73

98
0.

07
0.

08
6

50
0

0.
01

2
0.

02
20

0
90

88
62

−0
.0

3
0.

02
82

80
60

−0
.0

2
0.

08
7

50
0

0
0.

02
20

0
90

93
73

0.
01

0.
01

80
87

71
0.

03
0.

01
8

50
0

−0
.0

12
0.

02
20

0
86

89
80

0.
06

0.
09

81
82

78
0.

07
0.

12
9

50
0

0.
01

2
1.

0
60

0
95

94
99

0.
00

0.
00

83
97

99
0.

00
0.

00
10

50
0

0.
00

6
1.

0
60

0
96

94
99

0.
00

0.
00

89
98

99
0.

00
0.

00
11

50
0

0
1.

0
60

0
96

95
99

0.
00

0.
00

90
99

99
0.

00
0.

00
12

50
0

−0
.0

06
1.

0
60

0
95

94
99

0.
00

0.
00

88
99

99
0.

00
0.

00
13

50
0

−0
.0

12
1.

0
60

0
95

93
99

0.
00

0.
00

85
99

99
0.

00
0.

00
14

50
0

(−
0.

01
2

to
0.

01
2)

0.
02

60
0.

33
96

96
97

0.
05

0.
04

12
11

98
0.

09
0.

08
15

50
0

(−
0.

01
2

to
0.

01
2)

0.
02

60
0.

54
96

95
94

−0
.0

5
−0

.0
6

12
12

98
0.

07
0.

1
16

50
0

(−
0.

01
2

to
0.

01
2)

0.
02

60
0.

63
81

70
95

0.
09

0.
09

8
10

97
0.

13
0.

11
17

50
0

(−
0.

01
2

to
0.

01
2)

0.
02

60
0.

70
82

72
94

0.
07

0.
08

2
3

96
0.

08
0.

09
18

30
0

(−
0.

01
2

to
0.

01
2)

0.
02

60
0.

33
98

96
72

−0
.0

5
−0

.0
5

19
24

93
−0

.1
4
−0

.1
3

19
30

0
(−

0.
01

2
to

0.
01

2)
0.

02
60

0.
53

98
96

66
−0

.0
4
−0

.0
4

11
12

85
−0

.1
7
−0

.1
6

20
30

0
(−

0.
01

2
to

0.
01

2)
0.

02
60

0.
62

96
95

48
0.

06
0.

07
8

10
84

−0
.1

8
−0

.1
7

21
30

0
(−

0.
01

2
to

0.
01

2)
0.

02
60

0.
70

85
90

12
−0

.1
5
−0

.1
8

4
9

83
−0

.1
9
−0

.1
7

C
ov

er
ag

e
an

d
po

w
er

ar
e

ex
pr

es
se

d
as

pe
rc

en
ta

ge
s.

93



94 C. BERZUINI AND OTHERS

methods. The former are used to generate an approximation of the posterior distribution of the model
parameters. The approximation is then used to guide the MCMC exploration of the posterior. No major
Markov chain mixing problems were encountered.

We shall now briefly discuss the results of the simulations. Scenarios 1 to 8 were based on independent
instruments. Table 1 tells us that, in these scenarios, (i) in both methods an increase in the number
of instruments corresponds to an increase in power, (ii) in both methods an increase in the number of
instruments corresponds to a drop in coverage under the null, the drop being modulated by the amount of
directional pleiotropy, and (iii) in both methods, positive pleiotropy reduces power. In our case, a positive
pleiotropy corresponds to the direct and indirect effects of the instruments’ effects on the outcome having
on average the opposite sign.

A comparison between the results of Scenarios 1–5 and Scenarios 9–13, all of which involve independent
instruments, suggests that in both methods a higher value of σα , which means a higher number of strong
instruments, improves power and coverage under the null. In our method, this was sufficient to bring
coverage under the null into the nominal range. This did not happen with WME, although in Scenarios
9–13 WME slightly outperforms our method in terms of coverage under the alternative.

In Scenarios 14 to 17, and in both methods, the progressively increasing degree of LD between SNPs
causes a marked drop in coverage and a slight drop in power. In the presence of LD, the gap in performance
between the two methods is dramatic. This is unsurprising, because WME was developed with independent
instruments in mind. This pattern is confirmed in Scenarios 18 to 21, where, in addition, we observe the
effect of reducing the number of individuals from 500 to 300. The reduction makes power more vulnerable
to presence of LD between the instruments.

Our method appears to outperform WME in terms of coverage under the null (in all scenarios), and in
terms of power (in all scenarios with independent instruments).

5. INCORPORATING MEDIATION

This section extends our approach to deal with two (instead of one) exposures or intermediate phenotypes,
X1 and X2. Within this more general setting, we shall use our method to estimate direct and indirect
effects, and to combine, albeit under strong parametric assumptions, the capabilities of MR and mediation
analysis.

Figure 2a portrays a problem where X1 is a putative cause of X2. Suppose, we accept the assumptions
represented in the figure. Suppose, we are interested in the direct causal effect of X1 on Y (controlling for
X2), and in the indirect effect of X1 on Y (via X2). Suppose, we are also interested in the causal effects of
X1 on X2 and of X2 on Y . Let the set of instruments, Z1, . . . , ZJ , consist of two non-overlapping subsets, I1

and I2, with I1 ≡ (Z1, . . . , ZJ1) and I2 ≡ (ZJ1+1, . . . , ZJ1+J2), with J = J1 + J2. Assume for simplicity that
I1⊥⊥ I2. Let Z−j ≡ (Z1, . . . , Zj−1, Zj+1, . . . , ZJ ). We elaborate (3.1–3.3) into:

P(X1 | I1, I2, U ) = N (ω1 +
J1∑

j=1

α1jZj +
J2∑

j=1

α3jZJ1+j + δ1U , σ 2
1 ), (5.1)

P(X2 | X1, I1, I2, U ) = N (ω2 + θ2X1 +
J1∑

j=1

β3jZj +
J2∑

j=1

α2jZJ1+j + δ2U , σ 2
2 ),

P(Y | X1, X2, I1, I2, U ) = N (ωY + θ1X1 + θ3X2 +
J1∑

j=1

β1jZj +
J2∑

j=1

β2jZJ1+j + δ3U , σ 2
Y ),
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(a) (b)

Fig. 2. (a) Graphical model for the class of problems discussed in Section 5, (b) Application of the graphical model
to our study in Section 6.

with U ∼ N (0, 1), α1 ≡ (α1j, . . . ,α1J1), α2 ≡ (α2j, . . . ,α2J2), α3 ≡ (α3j, . . . ,α3J2), β3 ≡ (β3j, . . . ,β3J1).
The causal effect of X1 on X2 is represented by parameter θ2, whereas the direct causal effect of X1 on Y
(controlling for X2) is represented by parameter θ1, and the indirect causal effect of X1 on Y is represented
by θ2θ3. The model equations satisfy Condition 2. When all components of α1 and α2 differ from zero,
they satisfy also:

Condition 5 (sequential relevance) Each component of I1 is associated with X1, conditional on the
remaining instruments, and each component of I2 is associated with X2, conditional on X1 and the
remaining instruments. This condition is formally expressed by Zj �⊥⊥X1 | Z−j for j = 1, . . . , J1, and
Zj �⊥⊥X2 | (Z−j, X1), for j = J1 + 1, . . . , J .

In the following, we show that, under the above conditions, and in the special case whereβ1 = β2 = β3 = 0,
all the parameters of model (5.1) and, in particular, the causal effects (θ1, θ2, θ3), are identified.

First, we need to introduce the concept of “unblocked” path of a causal diagram. A path (= sequence of
adjacent edges) in a causal diagram is said to be unblocked if it involves one or more colliders (Geiger and
others, 1990), i.e., if at least one pair of arrows point to a common node,→ ◦ ← (not the most general
definition, but sufficient for our purposes).

We are now ready to show that (θ1, θ2, θ3) are identifiable, provided (i) α1 �= 0, (ii) α2 �= 0 and (iii)
β1 = β2 = β3 = 0. To see this, consider Figure 2a in the simple case where I1 and I2 are scalar. Assume
all variables represented in the graph have zero mean. Then the correlation ρAB between two nodes of the
graph, A and B say, is given by a sum of terms over all the unblocked paths that connect A and B, with each
term of the sum consisting of the product of the effects along the path (Wright, 1934). By using Figure 2a
and Condition (iii), we obtain ρX1I1 = α1 and ρX1I2 = α3. The two equalities uniquely identify parameters
α1 and α3, conditional on which we may then consider the system formed by equations ρI1X2 = α1θ2 and
ρI2X2 = α2 + α3θ2, which can be solved for (α2, θ2) by virtue of Condition (i), as its determinant does not
vanish. This means that causal parameter θ2 is identified. Next, note that, under Condition (iii), nodes Y
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and I1 are connected via two unblocked paths, and Y and I2 via further three unblocked paths, which leads
to the two equations ρI1Y = α1 θ1 + α1θ2θ3 and ρI2Y = α3θ1 + (α3θ2 + α2) θ3. These can be solved for θ1

and θ3, conditional on the identifiable parameters (α1,α2,α3, θ2), because Conditions (i) and (ii) prevent
the determinant of the system, α1α2, from vanishing, which completes the proof.

We deal with the more general situation where the β-vectors depart from zero in the same way as in
Section 3.1, i.e. by imposing on each of these vectors a sparsity prior that makes the posterior distribution
of the causal effects proper. Simple averages of the MCMC samples generated from this posterior will give
simulation-consistent point and interval estimates for any function of interest of parameters (θ1, θ2, θ3),
such as, for example, the indirect effect θ2θ3 exerted by X1 on Y . This is illustrated in the next section.

6. ILLUSTRATIVE APPLICATION

Past decades have witnessed an unprecedented worldwide rise in obesity. Excess body fat, as measured
by body mass index (BMI= weight in kilograms divided by the square of the height in meters) is a major
risk factor for cardiovascular disease (CVD), among other disorders. The increased incidence of CVD
associated with adiposity is believed to be mediated both by abnormalities in carbohydrate metabolism
and by an increase in blood pressure. As far as the latter is concerned, various authors have found evidence
of BMI being a causal factor for hypertension, and in this section, we shall corroborate this hypothesis by
applying our MR approach to data from the general population, by using a recently proposed measure of
blood pressure burden defined as the sum of the diastolic and systolic arterial pressures, hereafter, denoted
as PRES (Nair, 2016). Part of our analysis is motivated by recent metabolite profiling studies, that have
highlighted deviations in molecular signatures of BMI. Many of these studies compared small groups
of individuals with large differences in adiposity, and it remains unclear whether those deviations are
also observed in the general population. One putative molecular signature of obesity is the α-aminoacid
phenylalanine (PHE) (Jones, 1996; Droyvold and others, 2005; Shah and others, 2012; Moore and others,
2014; Wuertz and others, 2015; Hao and others, 2016). Recent research also highlights PHE as a putative
mediator of the causal effect of body fat on blood pressure.

In the following analysis, we shall put these hypotheses under scrutiny by using our MR approach.
We shall first use MR to assess the putative causal effect of BMI on PHE. In a subsequent stage of the
analysis, we shall assess the causal effect of BMI on PRES, in terms of a direct causal effect, and of an
indirect causal effect mediated by PHE.

We analyzed a dataset of 520 unrelated individuals (aged 25–74) from a population-based Finnish
cohort—the DILGOM (Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic Syndrome)
study (Inouye and others, 2010). Each individual in this study had serum metabonome information, a
genome-wide genetic profile and measures of BMI, blood pressure and sex. The eighty instruments used
in the analysis, Z1, . . . , Z80, were SNPs with a significant (P ≤ 10−5) BMI marginal association, and in
negligible LD (R2 < 0.05). These SNPs we treated as counts (0, 1, 2) of minor alleles at the corresponding
locus. Let X (the exposure) represent the logarithm of BMI. Let Y represent the log-concentration of PHE,
and W take value 0 for female and 1 for male.

WME gave an estimated causal effect of log BMI on log PHE of 0.25, with a 95% confidence interval
of 0.18–0.31. Our analysis based on model (3.1–3.3) gave a posterior mean of 0.3, with a 95% credible
interval of 0.19–0.42, representing a higher degree of uncertainty about the causal effect with respect to
the WME estimate.

A number of studies (Kaplan and others, 2014, see) stress the differential prognostic significance of
BMI across genders. This motivated our interest in incorporating an interaction between the effects of sex
and BMI on the outcome. Recall that sex is denoted as W , with W = 0 indicating female, and W = 1
male. For purposes of illustration, we made the following simplifying assumptions. First, we assumed that
sex is independent of the confounders U . Second, we assumed the effect of sex on either BMI or PHE



Bayesian Mendelian randomization 97

Fig. 3. With reference to our analysis of Section 6, each jth instrument is represented in each of these plots by a
black dot with co-ordinates (β̂Xj , β̂Yj) (see Section 2 for a definition of these symbols), as obtained from an analysis
of the male (left plot) and female (right plot) individuals in the sample. The slope of the regression line is the Egger
regression estimate of the causal effect.

not to interact with the effect of the instrumental variants on the same variable. The latter assumption is
delicate, which invites caution in the interpretation of the results. To include the interaction, we extended
model (3.1–3.3) as follows:

P(X | Z1, . . . , Z80, U , W ) = N (ωX +
80∑

j=1

αjZj + ψXW W + δX U , σ 2
X ), (6.1)

P(Y | X , Z1, . . . , Z80, U , W ) = N (ωY + (θ + ψYXW W ) X +
80∑

j=1

βjZj + ψYW W + δY U , σ 2
Y ),

with U ∼ N (0, 1). The causal effects of log BMI on log PHE are represented in the model equations by
θ (in the females) and θ + ψYXW (in the males), with ψYXW representing the interaction between sex and
BMI. We used a horseshoe prior for β, and uniform priors for the remaining parameters. We ran 10 000
iterations of a Markov chain, and used the values generated during the second half of the chain to compute
the estimates. Parameter ψYXW had a posterior mean of −0.14 and a 95% credible interval of −0.28 to
−0.0062, representing fair evidence of an interaction between BMI and sex in their causal effects on PHE.
The causal effect of log BMI on log PHE had a posterior mean of 0.34 with a 95% credible interval of
0.21–0.47 in the females, and a posterior mean of 0.2 with a 95% credible interval of 0.098–0.3 in the
males.

In the scatter diagrams of Figure 3, each instrumental SNP is represented by a black dot with x-
coordinate (respectively, y-coordinate) given by the coefficient of the least-squares regression of log BMI
(respectively, log PHE) on that SNP, as obtained from an analysis of the male (left plot) and female (right
plot) subsamples. The linearity of the relationship in both plots provides visual evidence of a causal effect
of BMI on PHE, whereas the difference between the two slopes provides evidence of that causal effect
interacting with sex.

The second stage of our analysis embraced variables BMI, PHE, and PRES. Our assumptions in this
analysis are depicted in Figure 2b, where the effect of BMI on PRES has two putative components: a
direct one and an indirect component mediated by PHE. We analyzed the data by using model (5.1), with
X1, X2 and Y representing log BMI, log PHE, and PRES, respectively. We used a set of 98 instruments,
Z1, . . . , Z98, partitioned into a subset I1 ≡ (Z1, . . . , Z80) consisting of 80 BMI-associated instrumental
SNPs (the same as in the preceding part of the analysis), and a subset I2 ≡ (Z81, . . . , Z98), consisting of
18 instruments associated with PHE but not BMI. We assumed almost all the parameters to be a priori
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Fig. 4. This figure summarizes results from our analysis of the illustrative problem of Section 6. Shown in this figure are
the posterior distributions for key parameters of model (5.1), as obtained by applying the model to the DILGOM data,
under the assumptions of Figure 2b. Parameter θ1 represents the controlled direct effect of BMI on PRES, controlling
for PHE. Parameter θ2 represents the direct effect of BMI on PHE, and θ3 represents the causal effect of PHE on
PRES. Also included are the posterior distributions for two nonlinear functions of the above parameters, namely θ2θ3,
which represents the indirect component of the effect of BMI on PRES, mediated by PHE, and θTOT ≡ θ1 + θ2θ3,
which represents the total effect of BMI on PRES. From a substantive point of view, these results can be interpreted
to provide evidence of a causal effect of the body mass index on blood pressure and phenylalanine concentration, but
no evidence that this latter influences blood pressure.

uniformly distributed. We sampled the model posterior distribution by running six Markov chains, of
100 000 iterations each, with initial values spanning the approximate 95% confidence intervals for θ2 and
for the quantity θ1 + θ2θ3, as obtained by a traditional MR analysis. We checked convergence of the six
chains to the same posterior. The second half of each chain was used to approximate the posterior means
and credible intervals for the parameters of interest. Figure 4 shows the marginal posterior distributions
for the main quantities of interest. One of the plots shows the posterior distribution for the total causal
effect of log BMI on PRES, θTOT ≡ θ1 + θ2θ3. Figure 4 suggests that BMI might exert a causal effect on
both PHE and PRES, although there appears to be little evidence of an effect of PHE on PRES. These
results discredit the hypothesis of PHE acting as a mediator of the deleterious effect of body mass on
blood pressure. The total effect of log BMI on PRES, represented by parameter θTOT , was re-estimated
in the traditional way, by using the instruments contained in I1. This yielded an estimated total effect of
32.3, and a 95% confidence interval of 19.1–46.6, which corresponds to a lower uncertainty relative to
the estimate obtained by our method.

In consideration of the relatively small size of the sample, and of the cross-sectional nature of the study,
the results of our analysis deserve future independent validation.

7. DISCUSSION

Thanks to its holistic approach to uncertainty, a Bayesian approach to MR may represent a safeguard from
over-optimistic conclusions. The results of our simulation study are consistent with this expectation, while
also suggesting that our method behaves well in the presence of moderate LD between the variants—a
welcome feature when the choice of the instruments is confined to a narrow region of DNA.
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Much work remains to be done. It might be interesting to assess the extent to which our approach
can mimic existing frequentist methods, such as the one proposed by Kang and others (2016) and further
elaborated by Windmeijer and others (2016), where LASSO-type procedures are used to identify the valid
instruments from within a set of candidate variables.

A variety of future developments of the approach are envisaged. One of these is to incorporate advances
in Bayesian sparsity modeling, for example, in relation to the design of shrinkage priors that deal with
high-dimensional vectors of possibly correlated instruments. Of equal importance is to extend the method
to deal with nonlinearities and selection effects, and perhaps to incorporate principles of Bayesian model
averaging. Such efforts will encounter theoretical difficulties, such as problems of collapsibility of the
causal effect parameters. Finally, we may use our framework in a simulation mode, for generating extended
datasets from limited data, for purposes of power calculation.

SOFTWARE

R software to implement analyses by means of the proposed method is available from Github
(https://github.com/carloberzuini/BMR).
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