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The kinematical implications of a dielectric analog of Robertson-Walker spacetime is discussed within a covariant 
postulation of transformation optics. It is found that the results thoroughly coincide with what we expect from 
standard model. Moreover, a moving cloaked region in the spacetime is also considered as a physically valid 
proposal.
1. Introduction

The connection between theory of transformation optics (TO) and 
engineered metamaterials [1, 2, 3] stems from the capability of these 
materials to be designed flexibly, to have variety of applications which 
are proposed by the theory. These may include cloaking devices [4], 
invisibility devices [5, 6] and perfect lenses [7]. It may also become 
important to develop a joint between general theory of relativity and 
man-made metamaterials. The importance of general relativistic mod-

ifications has been noted in engineering [8], for example in Global 
Positioning System (GPS). However, when fabrication of an optical de-

vice is desired which has to undergo general relativistic effects (for 
example, an orbiting telescope containing a superlens [9], or a satel-

lite antenna based on TO [10]), these modifications have to be applied 
in interpreting the behavior of electromagnetic fields in materials, when 
for instance it is considered in curved spacetime [11]. Here it should be 
noted that despite the fact that general relativity and TO basically share 
a same mathematical language, it is a crucial task to fully understand an 
optical device in the context of general relativity, since TO is discussed 
on a fixed background, whereas general relativity is a dynamic theory 
of spacetime. For a recollection motivated by the recently celebrated 
centenary and for an overview of the challenges it currently faces, see 
[12, 13, 14].

This is the original idea of transformation optics. The underlying 
physics of TO, firstly proposed by Eddington [15], is that the trajectory 
of light in an arbitrary vacuum curved spacetime, could be regenerated 
in an appropriate dielectric media, residing in Minkowski spacetime. 
Later, Gordon [16] discussed the way of finding the analog curved vac-

uum spacetime, out of a definite dielectric, using an effective optical 
metric. However it was Plebanski [17] who found out that the con-
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stitutive equations for electromagnetic fields in an arbitrary vacuum 
curved spacetime, are equivalent to those in an appropriate dielectric 
media in Minkowski spacetime. Further, De Felice [18] and afterwards 
Reznik [19], used this equivalence in studying gravitational systems 
and De Felice generalized it to Friedmann-Robertson-walker spacetime 
in a universe with no spatial curvature. Note that, TO is based on trans-

formation media performing coordinate transformations, which were 
initially considered to be purely spatial transformations [6, 20, 21, 22]. 
However since De Felice’s approach is linked to differential geometry, 
one can perform both space and time transformations [9].

As stated above, the most important feature of the Plebanski’s equiv-

alence, is providing the possibility of studying an analog system in 
Minkowski spacetime that mimics some aspects of gravitational sys-

tems, like trajectories of light. Because of complexity of such systems 
and also lack of a unified theory of gravitation, some remarkably dis-

tinguishable phenomena are not still completely understood, even if 
they have been observationally approved. For example, there are some 
experimental evidences for stimulated emissions from an analog system 
[see for example [23]], that may provide some kind of Hawking-like ra-

diation [24]. However since this appears to be a quantum phenomenon,

we have yet not been able to properly explain it within available gravi-

tational theories. Therefore it seems that if we could resemble spacetime 
properties using a definite dielectric with certain configuration, it might 
be possible to facilitate the investigation of gravitational systems, expe-

riencing that spacetime.

In this paper as well, we consider such simplification to study the 
kinematical features of standard cosmology, by identifying Robertson-

Walker (RW) geometry and a dielectric in Minkowski spacetime. How-

ever the method we exploit is not the Plebanski-De Felice approach, 
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because of its limitations, specially lack of covariance which prompts 
us to take only a certain class of transformations.

Note that, the isotropy of RW geometry is in accordance with what 
Plebanski-De Felice TO relies on, and therefore the appearance of mag-

netoelectric coupling can be regarded as the velocity of an isotropic 
media at low speeds. However instead, we will apply a covariant theory 
of TO, introduced in [25], developed in [26] and studied in the context 
of vacuum solutions of general relativity in [27] and [11]. This method, 
because of its covariance, provides a greater freedom in considering di-

versified types of motions and transformations (even for time-varying 
dielectric [28]), while designing materials. Note that, the applications 
of this covariant theory in the FRW spacetime has been elaborated be-

fore. A thorough discussion of spherical cloaks has been given in [29], 
whereas the analog FRW model has been taken care, in [30]. Here, the 
approaches mentioned above, are discussed once more and the whole 
discussions, are brought in a single article.

The paper is organized as follows: in section 2, a general survey 
on classical electrodynamics is made. In section 3, we provide a back-

ground for Plebanski-based TO, followed by a constructive introduction 
to the mentioned covariant approach and the concept of the dielectric 
analog of a spacetime. In section 4, this method will be used to form a 
dielectric analog for RW spacetime, in order to reobtain the kinemati-

cal relations which are derived from standard cosmology. In section 5, 
we assume a peculiar transformation to a certain region in RW space-

time, which has been electromagnetically cloaked and the configuration 
of this functioning dielectric is calculated. The concluding remarks are 
given in section 6.

2. Background

2.1. Covariant electromagnetic theory

Here we bring a formulation of electrodynamics which manifests 
itself in terms of tensorial objects and spacetime metric, and therefore 
it is covariant. Our introduction is brief, containing only remarkable 
notions which we will use in this paper; further detailed notes on the 
covariant theory of electromagnetism could be found in classical text 
books like [31, 32, 33].

Taking the differential forms representation, we introduce the poten-

tial 1-form by the covector 𝐀 = 𝐴𝜇 [25] and the field strength 2-form 
by 𝐅 = 𝐹𝜇𝜈 , defined by the following exterior derivative:

𝐅 = d𝐀, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇.

For Minkowski spacetime (in (− + ++) sing convention with 𝑐 = 1), the 
Cartesian components of 𝐅 are

⎛⎜⎜⎜⎜⎝
0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧

𝐸𝑥 0 𝐵𝑧 −𝐵𝑦

𝐸𝑦 −𝐵𝑧 0 𝐵𝑥

𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

⎞⎟⎟⎟⎟⎠
,

in terms of the electric and magnetic vector field components 𝐸𝑖 and 𝐵𝑖. 
These fields could also be included in the excitation 2-form 𝐆, which in 
its component form for Cartesian coordinates in Minkowski spacetime 
is

⎛⎜⎜⎜⎜⎝
0 𝐻𝑥 𝐻𝑦 𝐻𝑧

−𝐻𝑥 0 𝐷𝑧 −𝐷𝑦

−𝐻𝑦 −𝐷𝑧 0 𝐷𝑥

−𝐻𝑧 𝐷𝑦 −𝐷𝑥 0

⎞⎟⎟⎟⎟⎠
. (1)

Defining the Hodge dual operator as [26]

⋆ ∶ ∧𝑘𝑇 ∗
𝑝 (𝑀)⟶ ∧(𝑚−𝑘)𝑇 ∗

𝑝 (𝑀),

one can provide a bijection between the spaces of 𝑘-forms and (𝑚 − 𝑘)-
forms, on manifold 𝑀 . In other words, a bijection between tensors of 
2

rank 𝑘 and (𝑚 −𝑘), where 𝑚 is the dimension of 𝑀 . Also the component 
form of a Hodge dual, which is applied to 2-forms reads as

⋆𝛼𝛽
𝜇𝜈 = 1

2
√|𝑔| 𝜖𝛼𝛽𝜎𝜌𝑔𝜎𝜇𝑔𝜌𝜈 . (2)

Hence, the components of ⋆𝐅 will be

(⋆𝐅)𝛼𝛽 =
1
2
√|𝑔| 𝜖𝛼𝛽𝜎𝜌𝑔𝜎𝜇𝑔𝜌𝜈𝐹𝛾𝛿 =

⎛⎜⎜⎜⎜⎝
0 𝐵𝑥 𝐵𝑦 𝐵𝑧

−𝐵𝑥 0 𝐸𝑧 −𝐸𝑦

−𝐵𝑦 −𝐸𝑧 0 𝐸𝑥

−𝐵𝑧 𝐸𝑦 −𝐸𝑥 0

⎞⎟⎟⎟⎟⎠
. (3)

Regarding (1) and (3), it turns out that

𝐆 = 𝝌(⋆𝐅), (4)

or in component form

𝐺𝜇𝜈 = 𝜒𝜇𝜈
𝛼𝛽 (⋆𝐅)𝛼𝛽

Where 𝜒𝜇𝜈 𝛼𝛽 is also independently antisymmetric with respect to ex-

changes in 𝜇𝜈 and 𝛼𝛽. The parameter 𝝌 in (4), contains information 
about the material properties, whereas ⋆ exhibits spacetime geometry. 
Note that, the usual vacuum constitutive relation is G = ⋆F, so if we 
are concerning with a vacuum, then 𝝌vac(⋆𝐅) = ⋆𝐅, therefore 𝝌vac is 
independent of coordinate system (see relation (8)).

In terms of these parameters, the homogeneous and inhomogeneous 
Maxwell’s equations are respectively

d𝐅 = 0,

d𝐆 = 𝐉,

in which the charge current 3-form 𝐉, in its tensorial form would be

𝐽𝛼𝛽𝛾 =
√|𝑔| 𝜖𝛼𝛽𝛾𝜌 𝑗𝜇,

where 𝑗𝜇 is the four-vector current. The general covariant constitutive 
equation in (4), provides 6 relations for the electric and magnetic re-

sponses in a material [25]:

⃖⃖⃖⃗𝐻 = �̌�−1 ⃖⃖⃗𝐵 + �̌�1
∗ ⃖⃖⃗𝐸, ⃖⃖⃗𝐷 = �̌�∗ ⃖⃖⃗𝐸 + �̌�2

∗ ⃖⃖⃗𝐵, (5)

or by rearranging

⃖⃖⃗𝐵 = �̌� ⃖⃖⃖⃗𝐻 + �̌�1 ⃖⃖⃗𝐸, ⃖⃖⃗𝐷 = �̌� ⃖⃖⃗𝐸 + �̌�2 ⃖⃖⃖⃗𝐻. (6)

The 3 ×3 matrices of permittivity �̌� and permeability �̌�, and the magne-

toelectric couplings �̌�1 and �̌�2 in (6), are related to corresponding ones 
in (5) as follows:

�̌� =
(
�̌�−1)−1 , �̌� = �̌�∗ − �̌�2

∗�̌� �̌�1
∗,

�̌�1 = −�̌��̌�1∗, �̌�2 = �̌�2
∗�̌�. (7)

Note that in this work, same as what has been presented in [25, 26], 
�̌�−1, �̌�∗, �̌�1∗ and �̌�2∗, constitute the components of 𝝌 , and the main 
material parameters are obtained from (7).

3. Theory

3.1. Susceptibility reference frame

Here, we bring some relations which are in use in this paper. Ac-

cording to 𝝌vac(⋆𝐅) =⋆𝐅, the vacuum susceptibility is derived as [25]
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𝝌vac = (𝜒vac)𝜇𝜈 𝛼𝛽 = (8)

1
2
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

⎞⎟⎟⎠⎛⎜⎜⎝
0 −1 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠⎛⎜⎜⎝
0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠⎛⎜⎜⎝
0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −1
0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Susceptibility reference matrix in spherical coordinates is [26]:

𝜒𝜇𝜈
𝛼𝛽 = 1

2

⎛⎜⎜⎜⎜⎝
𝟎 ∗ ∗ ∗
 𝟎 ∗ ∗
  𝟎 ∗
   𝟎

⎞⎟⎟⎟⎟⎠
, (9)

where ∗ are obtained using the antisymmetry of 𝝌 , and

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝜇−1
𝑟𝑟 −

𝜇−1
𝑟𝜃

𝑟
−

𝜇−1
𝑟𝜙

𝑟 sin𝜃

𝜇−1
𝑟𝑟 0 −

𝛾∗1𝑟𝜙
𝑟

−
𝛾∗1𝑟𝜃
𝑟 sin𝜃

𝜇−1
𝑟𝜃

𝑟

𝛾∗1𝑟𝜙
𝑟

0 −
𝛾∗1𝑟𝑟

𝑟2 sin𝜃
𝜇−1
𝑟𝜙

𝑟 sin𝜃
𝛾∗1𝑟𝜃
𝑟 sin𝜃

𝛾∗1𝑟𝑟
𝑟2 sin𝜃 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑟𝜇−1
𝜃𝑟

−𝜇−1
𝜃𝜃

−
𝜇−1
𝜃𝜙

sin𝜃

𝑟𝜇−1
𝜃𝑟

0 −𝛾∗1𝜃𝜙
𝛾∗1𝜃𝜃
sin𝜃

𝜇−1
𝜃𝜃

𝛾∗1𝜃𝜙 0 −
𝛾∗1𝜃𝑟
𝑟 sin𝜃

𝜇−1
𝜃𝜙

sin𝜃 −
𝛾∗1𝜃𝜃
sin𝜃

𝛾∗1𝜃𝑟
𝑟 sin𝜃 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑟𝛾∗2𝜙𝑟 −𝛾∗2𝜙𝜃 −
𝛾∗2𝜙𝜙
sin𝜃

𝑟𝛾∗2𝜙𝑟 0 −𝜀∗
𝜙𝜙

𝜀∗
𝜙𝜃

sin𝜃

𝛾∗2𝜙𝜃 𝜀∗
𝜙𝜙

0 −
𝜀∗
𝜙𝑟

𝑟 sin𝜃
𝛾∗2𝜙𝜙
sin𝜃 −

𝜀∗
𝜙𝜃

sin𝜃

𝜀∗
𝜙𝑟

𝑟 sin𝜃 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 −𝑟 sin𝜃𝜇−1
𝜙𝑟

−sin𝜃𝜇−1
𝜙𝜃

−𝜇−1
𝜙𝜙

𝑟 sin𝜃𝜇−1
𝜙𝑟

0 −sin𝜃𝛾∗1𝜙𝜙 𝛾∗1𝜙𝜃

sin𝜃𝜇−1
𝜙𝜃

sin𝜃𝛾∗1𝜙𝜙 0 −
𝛾∗1𝜙𝑟
𝑟

𝜇−1
𝜙𝜙

−𝛾∗1𝜙𝜃
𝛾∗1𝜙𝑟
𝑟

0

⎞⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 𝑟 sin𝜃𝛾∗2𝜃𝑟 sin𝜃𝛾∗2𝜃𝜃 𝛾∗2𝜃𝜙

−𝑟 sin𝜃𝛾∗2𝜃𝑟 0 sin𝜃𝜀∗
𝜃𝜙

−𝜀∗
𝜃𝜃

−sin𝜃𝛾∗2𝜃𝜃 −sin𝜃𝜀∗
𝜃𝜙

0
𝜀∗
𝜃𝑟

𝑟

−𝛾∗2𝜃𝜙 𝜀∗
𝜃𝜃

−
𝜀∗
𝜃𝑟

𝑟
0

⎞⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝑟2 sin𝜃𝛾∗2𝑟𝑟 −𝑟 sin𝜃𝛾∗2𝑟𝜃 −𝑟𝛾∗2𝑟𝜙
𝑟2 sin𝜃𝛾∗2𝑟𝑟 0 −𝑟 sin𝜃𝜀∗

𝑟𝜙
𝑟𝜀∗

𝑟𝜃

𝑟 sin𝜃𝛾∗2𝑟𝜃 𝑟 sin𝜃𝜀∗
𝑟𝜙

0 −𝜀∗𝑟𝑟
𝑟𝛾∗2𝑟𝜙 −𝑟𝜀∗

𝑟𝜃
𝜀∗𝑟𝑟 0

⎞⎟⎟⎟⎟⎟⎠
.

Susceptibility reference matrix in Cartesian coordinates is [26]:

𝜒𝜇𝜈
𝛼𝛽 = 1

2

⎛⎜⎜⎜⎜
𝟎 ∗ ∗ ∗
 𝟎 ∗ ∗
  𝟎 ∗
   𝟎

⎞⎟⎟⎟⎟ , (10)
⎝ ⎠
3

where

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝜇−1
𝑥𝑥 −𝜇−1

𝑥𝑦 −𝜇−1
𝑥𝑧

𝜇−1
𝑥𝑥 0 −𝛾∗1𝑥𝑧 𝛾∗1𝑥𝑦

𝜇−1
𝑥𝑦 𝛾∗1𝑥𝑧 0 −𝛾∗1𝑥𝑥

𝜇−1
𝑥𝑧 −𝛾∗1𝑥𝑦 𝛾∗1𝑥𝑥 0

⎞⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝜇−1
𝑦𝑥 −𝜇−1

𝑦𝑦 −𝜇−1
𝑦𝑧

𝜇−1
𝑦𝑥 0 −𝛾∗1𝑦𝑧 𝛾∗1𝑦𝑦

𝜇−1
𝑦𝑦 𝛾∗1𝑦𝑧 0 −𝛾∗1𝑦𝑥

𝜇−1
𝑦𝑧 −𝛾∗1𝑦𝑦 𝛾∗1𝑦𝑥 0

⎞⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝛾∗2𝑧𝑥 −𝛾∗2𝑧𝑦 −𝛾∗2𝑧𝑧
𝛾∗2𝑧𝑥 0 −𝜀∗𝑧𝑧 𝜀∗𝑧𝑦

𝛾∗2𝑧𝑦 𝜀∗𝑧𝑧 0 −𝜀∗𝑧𝑥
𝛾∗2𝑧𝑧 −𝜀∗𝑧𝑦 𝜀∗𝑧𝑥 0

⎞⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝜇−1
𝑧𝑥 −𝜇−1

𝑧𝑦 −𝜇−1
𝑧𝑧

𝜇−1
𝑧𝑥 0 −𝛾∗1𝑧𝑧 𝛾∗1𝑧𝑦

𝜇−1
𝑧𝑦 𝛾∗1𝑧𝑧 0 −𝛾∗1𝑧𝑥

𝜇−1
𝑧𝑧 −𝛾∗1𝑧𝑦 𝛾∗1𝑧𝑥 0

⎞⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 𝛾∗2𝑦𝑥 𝛾∗2𝑦𝑦 𝛾∗2𝑦𝑧

−𝛾∗2𝑦𝑥 0 𝜀∗𝑦𝑧 −𝜀∗𝑦𝑦
−𝛾∗2𝑦𝑦 −𝜀∗𝑦𝑧 0 𝜀∗𝑦𝑥

−𝛾∗2𝑦𝑧 𝜀∗𝑦𝑦 −𝜀∗𝑦𝑥 0

⎞⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎝

0 −𝛾∗2𝑥𝑥 −𝛾∗2𝑥𝑦 −𝛾∗2𝑥𝑧
𝛾∗2𝑥𝑥 0 −𝜀∗𝑥𝑧 𝜀∗𝑥𝑦

𝛾∗2𝑥𝑦 𝜀∗𝑥𝑧 0 −𝜀∗𝑥𝑥
𝛾∗2𝑥𝑧 −𝜀∗𝑥𝑦 𝜀∗𝑥𝑥 0

⎞⎟⎟⎟⎟⎟⎠
.

3.2. Transformation optics

Based on Plebanski’s constitutive equations, it becomes possible to 
relate electromagnetic properties of a vacuum spacetime with arbitrary 
geometry, to those of a macroscopic media in Cartesian coordinates. 
Plebanski’s equations for an impedance matched media (�̌� = �̌�) are [17]

𝐷𝑖 = 𝜀0𝜀
𝑖𝑗𝐸𝑗 + 𝜖𝑖𝑗𝑘𝑣𝑗𝐻𝑘

𝐵𝑖 = 𝜇0𝜇
𝑖𝑗𝐻𝑗 − 𝜖𝑖𝑗𝑘𝑣𝑗𝐸𝑘 𝑖, 𝑗 = 1,2,3 (11)

where

𝜇𝑖𝑗 = 𝜀𝑖𝑗 = −

√ |𝑔|
𝑔00

𝑔𝑖𝑗

provides the permittivity and permeability of a dielectric media, and 
the bi-anisotropy vector [34]

𝑣𝑗 =
𝑔0𝑗

𝑔00
,

is pertinent to the velocity of the dielectric in a vacuum Minkowski 
spacetime. It turns out that this dielectric can regenerate same field 
equations as those in an arbitrary vacuum spacetime, described by the 
metric 𝑔𝜇𝜈 . Matching equations (6) and (11) for an impedance matched 
dielectric, one finds [25]

�̌�1 = (�̌�2)𝑇 = −𝜖𝑖𝑗𝑘𝑣𝑗 ,

which are simply related to velocity. However, this simplified identifi-

cation of magnetoelectric coupling and velocity does not always hold, 
unless the magnetoelectric dielectric is replaced by an isotropic moving 
media without any magnetoelectric coupling.
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Fig. 1. Manifold 𝑀 and its sub-manifold 𝑀 , which is obtained using a map like 
𝑇 from 𝑀 to 𝑀 . 𝑀 contains a material 𝝌 . The map could be defined, in a way 
to cerate a hole in 𝑀 (cloaked region).

3.3. Covariant formulation of transformation optics

The Plebanski’s theory of TO, derived from equation (11), suffers 
some shortcomings. Firstly, as it has been noted by Plebanski himself, 
these equations are nor covariant. Moreover, the indexing in both equa-

tions in (11) is not conserved. Therefore, it seems that we are in need of 
a more general approach. Based on covariantly developed classical elec-

trodynamics, such method has been introduced in [27] and generalized 
for linear materials in [26]. Here we point out important considera-

tions and results of the approach. For a detailed analysis, the reader is 
referred to these papers and specially to [35] for a very good review.

Firstly, a manifold 𝑀 described by metric 𝐠 is assumed, containing 
a material characterized by 𝝌 . On 𝑀 it holds that d𝐅 = 0, d𝐆 = 𝐉 and 
𝐆 = 𝝌(⋆𝐅). Now consider a sub-manifold 𝑀 ⊆𝑀 , onto which a map 
𝑇 ∶ 𝑀 ⟶ 𝑀 could be defined. Since 𝑀 does not physically change, 
𝑀 is also described by 𝐠, however in order to get a correct physical 
configuration, 𝑀 must contain a material characterized by 𝝌 , satisfy-

ing d�̃� = 0, d�̃� = 𝐉 and �̃� = 𝝌(⋆�̃�) as depicted in Fig. 1. The map 𝑇 , is 
a coordinate transformation from 𝑀 to 𝑀 , which can shape the space 
contained in 𝑀 . For example one can produce a hole, in which no elec-

tromagnetic field exists. This procedure is pursued in cloaking process 
[6, 36].

Another crucial point here is that, although coordinates are trans-

formed by 𝑇 , the fields are transformed by  , the inverse of 𝑇 (note 
that, 𝑇 may not have an inverse however, this method is essentially 
based on a well-defined  and 𝑇 is ignored). Now the field strength 
and excitation tensors on 𝑀 are derived as

�̃� =  ∗(𝐆) =  ∗ (𝝌(⋆𝐅)) = 𝝌
(
⋆ ∗(𝐅)

)
, (12)

where  ∗ is the pullback of  . Rearrangements lead to the following 
componentwise relation [26]:

𝜒𝜆𝜅
𝜏𝜂(𝑥) = −Λ𝛼

𝜆Λ𝛽
𝜅𝜒𝛼𝛽

𝜇𝜈 | (𝑥) ⋆𝜇𝜈
𝜎𝜌| (𝑥)

(
Λ−1)𝜋

𝜎

(
Λ−1)𝜃

𝜌
⋆𝜋𝜃

𝜏𝜂|𝑥,
(13)

where 𝚲 is the Jacobian matrix of  (𝑥) which is calculated at 𝑥 ∈𝑀 . 
Note that, there is no need to think of 𝝌 as a vacuum. Therefore equa-

tion (13) as well, holds for non-vacuum initial media [37]. Also in (13), 
the first Hodge dual is calculated at  (𝑥), i.e. in the transformed coor-

dinates. However, it is crucial to calculate both Hodge duals in same 
physical spacetimes.

Now taking the initial spacetime to be a vacuum, then 𝝌 = 𝝌vac, and 
since 𝝌vac⋆ =⋆, (13) results in

𝜒𝜆𝜅
𝜏𝜂(𝑥) = −Λ𝛼

𝜆Λ𝛽
𝜅 ⋆𝛼𝛽

𝜎𝜌| (𝑥)
(
Λ−1)𝜋

𝜎

(
Λ−1)𝜃

𝜌
⋆𝜋𝜃

𝜏𝜂|𝑥, (14)

which is the main result of the covariant formulation of TO. As it was 
mentioned above, the initial spacetime, described by 𝐠, is arbitrary 
(may be Minkowski), and  changes the fields. Now what we are about 
to find out, is the configuration of the material, 𝝌 , which is supposed to 
perform such transformation. This can be figured out using (14).
4

3.4. Dielectric analog of a spacetime

Once again we mention a covariant formulation which has been de-

rived and developed in [27]. The underlying physics is the same as that 
in the covariant formulation of TO, however the mathematical imple-

mentation somehow differs.

Recalling Plebanski’s perspective of a transformation media, it has 
been stated that the behavior of electromagnetic fields in an arbitrary 
vacuum (may be curved) spacetime, could be identified to that in a di-

electric, residing in Minkowski spacetime. Therefore, the question here 
is: how can we find the material properties of a dielectric, which is sim-

ulating a vacuum curved spacetime? Here this curved spacetime can be 
described by metric 𝑔𝜇𝜈 , a solution of Einstein equations.

Again we consider a manifold 𝑀 , described by 𝐠, however this time 
𝑀 is a flat Riemannian manifold, in which 𝑔𝜇𝜈 = 𝜂𝜇𝜈 and 𝜂𝜇𝜈 is the 
Minkowski metric. We also let 𝑀 to contain a material 𝝌 , and corre-

sponding 𝐅 and 𝐆. Now consider a map  (𝑥), to transform every 𝑥 ∈𝑀

to the vacuum curved manifold �̂� , described by �̂�. �̂� also contains a 
material �̂� , with �̂� = 𝝌vac, and corresponding �̂� and �̂�. The transforma-

tion

 ∶ 𝑥⟶  (𝑥) ∀ 𝑥 ∈𝑀,

takes a tensor 𝐆𝑥 to 𝐆 (𝑥), however having its pullback  ∗, one can 
write equation (12) as

𝐆 =  ∗(�̂�) =  ∗
(
�̂�(⋆̂�̂�)

)
= 𝝌

(
⋆ ∗(�̂�)

)
,

resulting in [27]

𝜒𝜆𝜅
𝜏𝜂(𝑥) = −Λ𝛼

𝜆Λ𝛽
𝜅 ⋆̂𝛼𝛽

𝜎𝜌| (𝑥)
(
Λ−1)𝜋

𝜎

(
Λ−1)𝜃

𝜌
⋆𝜋𝜃

𝜏𝜂|𝑥, (15)

where 𝝌(𝑥) in the rhs, provides the permittivity, permeability and mag-

netoelectric coupling of a spacetime analog dielectric, in Minkowski 
spacetime. In (15), once again 𝚲 is the Jacobian matrix of  (𝑥), calcu-

lated at 𝑥 ∈𝑀 . Also the first and second Hodge duals are respectively 
calculated in the vacuum curved, and Minkowski spacetimes. There-

fore, one should be aware of the difference between the formulations 
(14) and (15). In TO theory formulated in (14), both manifolds were 
physically the same, whereas in (15), we are identifying two different 
manifolds. As a consequence, the coordinate transformation  (𝑥), could 
be considered as the identity map 0(𝑥) = 𝑥, for which (15) results in

𝜒𝜆𝜅
𝜏𝜂(𝑥) = −⋆̂𝜆𝜅

𝜎𝜌|𝑥 ⋆𝜎𝜌
𝜏𝜂|𝑥. (16)

Having this, we just make a analogy between two spacetimes, with-

out any change in coordinates. Such simplification could not be made 
in previously discussed method in subsection 3.3, since in that case 
we were dealing with a transformation media, and letting  (𝑥) = 0(𝑥), 
would result in the susceptibility in equation (8); an unnoticeable ma-

terial.

4. Calculation

4.1. Dielectric analog of Robertson-Walker spacetime and ray tracing

The RW 2-form metric (𝑐 = 1)

𝐠 = −d𝐭 ∧ d𝐭 + 𝑎(𝑡)2

1 −𝐾𝑟2
d𝐫 ∧ d𝐫 + 𝑎(𝑡)2𝑟2d𝜽 ∧ d𝜽+ 𝑎(𝑡)2𝑟2 sin2 𝜃 d𝝓 ∧ d𝝓,

(17)

with 𝑎(𝑡) as the scale factor and 𝐾 as the spatial curvature, is the 
isotropic homogeneous interior solution to Einstein field equations. This 
metric is commonly supposed to describe the distribution of energy-

momentum of a perfect fluid, however in this paper, we let describe 
a vacuum manifold, regardless of any energy constituents. This can be 
done, because the metric in (17), could be derived independently, for a 
homogeneous vacuum sphere (for a detailed analysis see [38]).
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Beginning with (17), we let 𝐾 = 1 to get a closed geometry. Now the 
properties of the dielectric analog of RW geometry is derived from (16). 
To calculate this, the first Hodge dual must be calculated in RW space-

time and the second one, in Minkowski. No coordinate transformation 
is considered, so the identity map is performed

0(𝑡′, 𝑟′, 𝜃′, 𝜙′) = (𝑡, 𝑟, 𝜃,𝜙),

in which the primed coordinates are those in vacuum RW spacetime and 
the unprimed ones are in Minkowski. Using (2) in (16) and comparing 
with (9), the dielectric components in (6) are derived using relation (7).

�̌� = �̌� =

⎛⎜⎜⎜⎜⎝

√
1 − 𝑟2 𝑎(𝑡) 0 0

0 𝑎(𝑡)√
1−𝑟2

0

0 0 𝑎(𝑡)√
1−𝑟2

⎞⎟⎟⎟⎟⎠
,

�̌�1 = �̌�2 = 𝟎.

One can see that the scale factor now appears in the permittivity and 
the permeability of the dielectric analog. This means that the geometry 
has been merged into the properties of media and the spacetime ex-

pansion is vanished. Now the question here is: how we can study the 
propagation of light in this dielectric analog?

To find the answer, we deal with the geometric optics approxima-

tion, characterized by a solution like

𝐴𝜇 = �̂�𝜇(𝑥𝜌) ei𝑆(𝑥
𝜌),

in which, 𝐴𝜇(𝑥𝜌) varies slowly with respect to 𝑆, and 𝑆(𝑥𝜌) has small 
deviations from linearity. Therefore one can write [35]

𝑋𝜅
𝜂 �̂�𝜂 = 0,

in which the 4 × 4 matrix 𝑋𝜅
𝜂 is defined as

𝑋𝜅
𝜂 = 𝑔𝜇𝜆 𝜒𝜆𝜅

𝜏𝜂 𝑘𝜇𝑘𝜏 , (18)

and 𝑘𝜇 = 𝜕𝜇𝑆 could be regarded as the wave vector 𝑘𝜇 = (𝑘0, 𝑘𝑟, 𝑘𝜃, 𝑘𝜙). 
Applying (18) for the dielectric analog of RW spacetime, obtained from 
(16), it is found that det

(
𝑋𝜅

𝜂
)
= 0. Any nontrivial solution for 𝑘𝜇 re-

quires this determinant to be vanished, however since this automati-

cally is the case, instead of it we introduce a Hamiltonian

 = det (𝑋𝑗 𝑚) , (19)

in which

𝑋𝑗
𝑚 =⎛⎜⎜⎜⎜⎜⎜⎝

− −𝑘2
2+𝑘0

2𝑟2𝑎2−𝑘3
2 csc2 𝜃

2𝑟2
√
1−𝑟2𝑎3

− 𝑘1𝑘2
2𝑟2

√
1−𝑟2𝑎3

− 𝑘1𝑘3 csc
2 𝜃

2𝑟2
√
1−𝑟2𝑎3

− 𝑘1𝑘2(𝑟−1)
2(𝑟+1)2

2
√
1−𝑟2𝑎3

(𝑟−1)(𝑟+1)
(
𝑘1

2𝑟4+𝑘0
2𝑎2𝑟2−𝑘1

2𝑟2−𝑘3
2 csc2 𝜃

)
2𝑟2

√
1−𝑟2𝑎3

− 𝑘2𝑘3
√
1−𝑟2 csc2 𝜃
2𝑟2𝑎3

− 𝑘1𝑘3(𝑟−1)
2(𝑟+1)2

2
√
1−𝑟2𝑎3

− 𝑘2𝑘3
√
1−𝑟2

2𝑟2𝑎3
(𝑟−1)(𝑟+1)

(
𝑘1

2𝑟4−𝑘1
2𝑟2+𝑘0

2𝑎2𝑟2−𝑘2
2
)

2𝑟2
√
1−𝑟2𝑎3

⎞⎟⎟⎟⎟⎟⎟⎠
is the spatial part of 𝑋𝜅

𝜂 . Considering only radial propagation of light 
on the equatorial plane of dielectric, we let 𝑘𝜃 = 𝑘𝜙 = 0, and from (19)

we have

 =
𝑘0

2(𝑟− 1)(𝑟+ 1)
[
𝑘0

2𝑎(𝑡)2 + 𝑘𝑟
2 (𝑟2 − 1

)]2
8
√
1 − 𝑟2 𝑎(𝑡)7

. (20)

Accordingly, Hamilton equations are

�̇�𝛼 = 𝜕
𝜕𝑘𝛼

, (21)

�̇�𝛽 = − 𝜕
𝜕𝑥𝛽

, (22)

where dot stands for differentiation with respect to ray parametrization. 
Now for 𝛼 = 𝛽 = 0, (21) and (22) together with (20) result in
5

d𝑘0
d𝑡

=
𝑘0𝑎

′(𝑡)
[
3𝑘02𝑎(𝑡)2 + 7𝑘𝑟2

(
𝑟2 − 1

)]
2𝑎(𝑡)

[
3𝑘02𝑎(𝑡)2 + 𝑘𝑟

2 (𝑟2 − 1
)] . (23)

To have a justification, we need to obtain an expression for 𝑘𝑟. This 
could be done using the Hamilton-Jacobi equation

 = 0,

giving

𝑘𝑟 = −
𝑘0 𝑎(𝑡)√
1 − 𝑟2

. (24)

Considering a monochromatic light ray of frequency 𝑘0 = 𝜔, equations 
(23) and (24) give

𝜔(𝑡) = 𝜔(0) 1
𝑎(𝑡)

, (25)

indicating a redshift, imposed from the material properties, on the fre-

quency of light. Based on the Plebanski based TO, such redshift has 
been also derived in [39] by implementing an optical analog of a spa-

tially flat (𝐾 = 0) RW spacetime.

Now let us consider the radial evolution of the dielectric analog. 
From the Hamilton equations (21) and (22) for 𝑎 = 1 and 𝛽 = 0, and 
considering (24), one gets

d𝑟
d𝑡

=
√
1 − 𝑟2

𝑎(𝑡)
. (26)

If 𝑡𝐵 is the moment in which the light ray commences propagating in 
the dielectric, then (26) can be rearranged to

𝑡

∫
𝑡𝐵

d𝑡
𝑎(𝑡)

=

𝑟𝑝

∫
0

d𝑟√
1 − 𝑟2

, (27)

where 𝑟𝑝 is the longest distance the ray has travelled, since it started 
propagation. Equations (25) and (27) are precisely the standard cos-

mological definitions for the cosmological redshift and particle horizon 
[40], which here, have been derived from a dielectric analog of RW 
spacetime. Note that the horizon has been claimed to be proportional 
to the Casimir energy, obtained in a dielectric analog of de Sitter space-

time [41].

5. Model

5.1. Spherical cloaked region in Robertson-Walker spacetime

Let us study a different situation; a transformation media, moving in 
RW geometry. To deal with this case, we exploit the covariant theory 
of TO, discussed in subsection 3.3. The material is supposed to be re-

ceding from an observer in RW spacetime, and it is desired to obtain its 
properties, however these results are experienced by another observer, 
located in the materials frame (a comoving observer). Therefore using 
appropriate tetrad, one should transform the results which are derived 
for RW spacetime, to a local Minkowski frame, in Cartesian coordinates.

To do this, firstly we consider the relative motion of our media, to 
be only in 𝑟 direction. Therefore the four-velocity vector in spacetime 
coordinates could be written as

𝑢𝜇 = ( d𝑡

d𝜏
,

d𝑟

d𝜏
,0,0),

according to the trajectory parametrization 𝜏 . The time-like behavior of 
𝑔𝜇𝜈𝑢

𝜇𝑢𝜈 = −1, where (𝜃 = 𝜋

2 )

𝑔𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 𝑎2

1−𝑟2 0 0

0 0 𝑟2𝑎2 0

0 0 0 𝑟2𝑎2

⎞⎟⎟⎟⎟⎟⎠
, (28)



F. Payandeh Heliyon 5 (2019) e01818
together with the 0-component of geodesic equations, leads to

𝑢𝜇 = 𝑒
𝜇

0 = 1√(
4 − 4

𝑟2

)
�̇�2 + 1

(
1,−

2
(
1 − 𝑟2

)
�̇�

𝑟 𝑎
,0,0

)
. (29)

Here and form now on, dot stands for d

d𝑡
. The tetrad should obey 

𝑔𝜇𝜈 𝑒
𝜇
𝐴
𝑒𝜈
𝐵
= 𝜂𝐴𝐵 , and for simplicity (as it is common in the literature), 

𝑥 coordinate is assumed to be along 𝑟. Therefore 𝑥 is confined to time 
and the vector in (29). Consequently the non-zero components of 𝑒𝜇1
should be only the first and second ones. The orthogonality condition 
with 𝑒𝜇0 gives

𝑒
𝜇

1 = 2√
𝑟2(

1−𝑟2
)
�̇�2

− 4

(
1,− 𝑟

2𝑎 �̇�
,0,0

)
. (30)

Now since we let 𝑦 and 𝑧 to be respectively along 𝜃 and 𝜙, according to 
(28), a suitable choice for 𝑒𝜇2 and 𝑒𝜇3 could be

𝑒
𝜇

2 =
(
0,0, 1

𝑟 𝑎
,0
)
,

𝑒
𝜇

3 =
(
0,0,0, 1

𝑟 𝑎

)
.

These tetrad are able to transform geometric objects from RW space-

time, to local Minkowskian frame. To transform a 1-form 𝑛𝜇 in RW to a 
1-form 𝑛𝐴 in Minkowski, we use a transformation matrix 𝑆𝐴

𝜇 , consist-

ing of the tetrad in (29) to (30) to form its rows. We have

𝑆𝐴
𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√(
4− 4

𝑟2

)
�̇�2+1

− 2
(
1−𝑟2

)
�̇�

𝑟 𝑎

√(
4− 4

𝑟2

)
�̇�2+1

0 0

2√
𝑟2(

1−𝑟2
)
�̇�2

−4
− 𝑟

𝑎 �̇�

√
𝑟2(

1−𝑟2
)
�̇�2

−4
0 0

0 0 1
𝑟 𝑎

0

0 0 0 1
𝑟 𝑎
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

One can easily check that the condition

𝑔𝜇𝜈 𝑆𝐴
𝜇𝑆𝐵

𝜇 = 𝜂𝐴𝐵 =

⎛⎜⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
,

holds for the matrix in (31). Also note that to transform a vector, we 
should use 𝑆𝐴

𝜇 , the transpose of the inverse of 𝑆𝐴
𝜇 [11]. Having these 

transformation matrices, the material properties, 𝜒𝜆𝜅 𝜏𝜂(𝑥) in equation 
(14), which here are derived for RW spacetime, can be transformed to 
local Cartesian frame as follows

𝜒𝐴𝐵
𝐶𝐷 = 𝑆𝐴

𝜆𝑆𝐵
𝜅𝑆𝐶

𝜏𝑆
𝐷
𝜂 𝜒𝜆𝜅

𝜏𝜂 . (32)

5.2. Spherical cloak

Now let us think of our dielectric media, to perform a peculiar coor-

dinate transformation. This transformation is defined, in a way to create 
a spherical cloak.

A spherical cloak consists of a spherical shell, with 𝑏1 and 𝑏2, respec-

tively as its interior and exterior radii. The center of these concentric 
spheres “c”, is located at distance 𝑟′, from an observer “o”. A light ray 
from a luminous object, enters the shell at 𝑟′ = 𝑟′1 and comes out at 
𝑟′ = 𝑟′2, where

𝑟′1 = 𝑟′ + 𝑏2,

𝑟′2 = 𝑟′ − 𝑏2.

The cloak perform the following transformation from 𝑀 (the vacuum 
manifold) to 𝑀 (manifold containing the material):
6

𝑇 (𝑡′, 𝑟′, 𝜃′, 𝜙′) = (𝑡, 𝑟, 𝜃,𝜙) =
(
𝑡′, 𝑓 (𝑟′), 𝜃′, 𝜙′) ,

where [22]

𝑓 (𝑟′) =

{
𝑏1 +

𝑏2−𝑏1
𝑏2

𝑟′ 𝑟′2 ≤ 𝑟′ ≤ 𝑟′1

𝑟′ elsewhere
,

which is applied to the region 𝑟′2 ≤ 𝑟′ ≤ 𝑟′1 and maps to the interval 
𝑏1 ≤ 𝑟 ≤ 𝑏21, in order to create a cavity. The maximum amount of 𝜓
occurs when the light ray is incoming from 𝜙′ = 0. Whilst 𝜙′ increases, 
𝜓 decreases until at 𝜙′ = 𝜓𝑏2

it vanishes; no deflection. In other words

𝜓max = 𝜓|𝜙′=0,
𝜓min = 𝜓|𝜙′=𝜓𝑏2 = tan−1

(
𝑏2
𝑟′

)
.

However it should be noted that the angular size 𝜓 of the shell varies. 
This means that because of cloak’s radial motion, at later times we have 
more or fewer rays passing through the cloak. Also note that we are 
mostly dealing with the only objects which are located on the radial 
axis (at 𝜙′ = 0) and the cloak is moving towards or apart from them.

As it was stated in subsection 3.3, it is  , the inverse of 𝑇 , which is 
applicable in this approach. Therefore we need

 (𝑡, 𝑟, 𝜃,𝜙) = (𝑡′, 𝑟′, 𝜃′, 𝜙′) = (𝑡, 𝑞(𝑟), 𝜃,𝜙) , (33)

with

𝑞(𝑟) =

{ (𝑟−𝑏1)𝑏2
𝑏2−𝑏1

𝑏1 ≤ 𝑟 ≤ 𝑏2

𝑟 elsewhere
.

The Jacobian of the transformation (33) would be

Λ𝜇
𝜈 =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 𝜕𝑟 𝑞 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
. (34)

Now using (14), (32), (31) and (34), and comparing with (10), the ma-

terial properties of the spherical shell in local Cartesian frame can be 
derived. The non-zero components are

�̌� = �̌� ∶

𝜇𝑥𝑥 =
𝑞2

𝑟2𝑞′

√
1 − 𝑞2

1 − 𝑟2
,

𝜇𝑦𝑦 = 𝜇𝑧𝑧 =
√
(1 − 𝑞2)(1 − 𝑟2)

𝑞′
(
𝑟2 − 4

(
1 − 𝑟2

)
�̇�2
)

𝑟2
(
1 − 𝑞2

)
− 4�̇�2𝑞′ 2

(
1 − 𝑟2

)2 , (35)

�̌�1 = (�̌�2)𝑇 ∶

�̌�1𝑧𝑦 = −�̌�1𝑦𝑧

=

√√√√(
𝑟2 − 4

(
1 − 𝑟2

)
�̇�2
)(
𝑟2
(
1 − 𝑟2

)
�̇�2
)

𝑟2 + 4
(
1 − 𝑟2

)
�̇�2

1 − 𝑞2 − 𝑞′ 2(1 − 𝑟2)

𝑟2
(
1 − 𝑞2

)
+ 4�̇�2𝑞′ 2

(
1 − 𝑟2

)2 .
(36)

These are the properties of a spherical cloak; no field can enter nor 
can protrude. Therefore it becomes completely invisible to the observer 
located at o, and every luminous objects on the radial direction, are 
completely detected.

5.3. A note on magnetoelectric coupling

It is known that moving materials are magnetoelectric and magneto-

electric coupling of a transformation media is sometimes interpreted as 
velocity [9]. However it has been shown in [25] that for an anisotropic 
magnetoelectric medium, it is impossible to reobtain the magnetoelec-

tric couplings, solely from motion conditions. Here, we are about to ask 
whether the magnetoelectric couplings are consequences of the cloak’s 
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radial motion, or general relativistic contributions. To do so, it is more 
convenient to reconsider our case in a spatially flat RW metric, i.e.

g = −dt ∧ dt+ 𝑎(𝑡)2
(
dx ∧ dx+ dy ∧ dy+ dz ∧ dz

)
, (37)

which is more similar to the Minkowski spacetime in Cartesian coordi-

nates. Therefore, the transformation matrix to a comoving frame in this 
case becomes

𝑆
𝜇

𝐴
= 1√

1 − 4𝑎2

⎛⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0

2𝑎 −1
𝑎

0 0

0 0
√
1−4𝑎2
𝑎

0

0 0 0
√
1−4𝑎2
𝑎

⎞⎟⎟⎟⎟⎟⎟⎠
, (38)

according to motion along 𝑥-direction. In this approach and since we 
chose a frame where the spherical 𝑟-direction is supposed to be along 
the Cartesian 𝑥-direction, the cloak transformation (33) could be rewrit-

ten as

 (𝑡, 𝑥, 𝑦, 𝑧) = (𝑡′, 𝑥′, 𝑦′, 𝑧′) = (𝑡, 𝑞(𝑥), 𝑦, 𝑧) , (39)

which together with (14), (37), (38) and (32), we get [25]

�̌� = �̌� =

⎛⎜⎜⎜⎜⎝

1
𝑞′

0 0

0 (1−4𝑎2)𝑞′
1−4𝑎2𝑞′ 2 0

0 0 (1−4𝑎2)𝑞′
1−4𝑎2𝑞′ 2

⎞⎟⎟⎟⎟⎠
, (40)

𝛾1 = 𝛾2
𝑇 = 2𝑎(1 − 𝑞′ 2)

1 − 4𝑎2𝑞′ 2

⎛⎜⎜⎝
0 0 0
0 0 1
0 −1 0

⎞⎟⎟⎠ . (41)

To see whether these results can be recovered for a moving media 
in Minkowski spacetime or not, let us provide a Lorentz boost for an 
equivalent Cartesian transformation in Minkowski spacetime. Indeed 
we consider that the transformation (39) is boosted along 𝑥-direction 
with some speed 𝛽. Such a boost is defined in the following matrix rep-

resentation:

𝐿𝜇
𝑎 =

⎛⎜⎜⎜⎜⎝
𝛾 𝛾𝛽 0 0
𝛾𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
(42)

with 𝛾 = 1√
1−𝛽2

. This frame transformation for 1-forms and its counter-

part for vectors 𝐿𝑎
𝜇 (obtained by letting 𝛽 → −𝛽 in 𝐿𝜇

𝑎) can be exploited 
in the same way as it is in (32) to obtain the material properties of a 
moving material in Minkowski spacetime [26].

𝜒 ′
𝑎𝑏

𝑐𝑑 =𝐿𝜇
𝑎𝐿

𝜈
𝑏𝐿

𝑐
𝜌𝐿

𝑑
𝜆 𝜒𝜇𝜈

𝜌𝜆. (43)

Using (42) and (43), together with (14) and (39) we obtain

�̌� = �̌� =

⎛⎜⎜⎜⎜⎝

1
𝑞′

0 0

0 (1−𝛽2)𝑞′
1−𝛽2𝑞′ 2 0

0 0 (1−𝛽2)𝑞′
1−𝛽2𝑞′ 2

⎞⎟⎟⎟⎟⎠
, (44)

𝛾1 = 𝛾2
𝑇 = 𝛽(1 − 𝑞′ 2)

1 − 𝛽2𝑞′ 2

⎛⎜⎜⎝
0 0 0
0 0 1
0 −1 0

⎞⎟⎟⎠ . (45)

Comparing the results in (40) and (41), with those in (44) and (45), one 
observes that the relativistic results in (40) and (41) which have been 
obtained for a spatially flat RW metric, can be recovered by setting 
𝛽 = 2𝑎. This implies that the magnetoelectric couplings for a moving 
anisotropic transformation media in a spatially flat RW spacetime, are 
directly consequences of its motion. This may become more apparent 
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when the slow speed limit is considered. In this limit, 𝛽 → 0 (or equiv-

alently 𝑎 → 0 for which every spatial separation in RW metric and the 
coordinate velocity will vanish), the material properties become

�̌� = �̌� =
⎛⎜⎜⎜⎝

1
𝑞′

0 0

0 𝑞′ 0

0 0 𝑞′

⎞⎟⎟⎟⎠ ,
𝛾1 and 𝛾2

𝑇 = 0.

Therefore we infer that it is velocity which induces magnetoelectric 
coupling in the anisotropic media in (40), when it is moving in a spa-

tially flat RW universe and therefore they can be regenerated only from 
the medium’s velocity. However this is not the case when spatial cur-

vature is taken into account, since no expression for 𝛽 in (44) and (45), 
can be found in order to recover the fully relativistic results in (35) and 
(36). This shows that beside impacts of motion, these results are highly 
adherent to spatial curvature contributions.

6. Conclusion

The behavior of dielectric media in a vacuum Robertson-Walker 
spacetime was studied, by applying a covariant method in Transfor-

mation Optics. The main idea is that the behavior of electromagnetic 
fields in arbitrary curved spacetime could be regenerated in an appro-

priate dielectric media. Since the complexity of gravitational systems 
may make studying cosmological phenomena somehow complicated, 
in this paper we made a simplification, by creating a dielectric ana-

log of RW spacetime and as a consequence, the fundamental results of 
standard cosmology were regained. Moreover, a cloaked region with 
RW spacetime was also considered and corresponding configuration of 
the functioning material were derived. Such cloaked regions in space, 
if they are actually exist in nature, will be totally invisible although 
the object within may be massive and luminous. However we can not 
deal with such cloaks readily from approaches like the one pursued 
in section 5 of this paper, since the formulation of TO is on a fixed 
background and understanding the back-reaction of a cloak requires a 
dynamical theory, including full general relativity. Therefore this needs 
a completely clarified relationship between TO and general relativity. 
Consequently it is hard at this stage to investigate possible astrophysical 
cloaks. However it may make sense to consider transformation media 
in diversified cosmological models and look for possible evidences.
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