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Abstract

The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield

loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment

of agronomic superior and bean fly resistant common bean varieties aredependent on

genetic variation and the identification of genes and genomic regions controlling economic

traits. This study’s objective was to determine the population structure of a diverse panel of

common bean genotypes and deduce associations between bean fly resistance and agro-

nomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common

bean genotypes were phenotyped in two seasons at two locations and genotyped with 16

565 SNP markers. The genotypes exhibited significant variation for bean fly damage sever-

ity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed

significant variation for agro-morphological traits such as days to flowering (DTF), days to

maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain

yield (GYD). The genotypes were delineated into two populations, which were based on the

Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership

coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers

were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chro-

mosomes. Three markers were identified, each having pleiotropic effects on two traits:

M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD).

The identified markers are useful for marker-assisted selection in the breeding program to

develop common bean genotypes with resistance to bean fly damage.

Introduction

Common bean (Phaseolus vulgaris L., 2n = 2x = 22) is one of the most important grain legume

crops globally. The crop is cultivated for food, cash income, and improves soil fertility through

biological nitrogen fixation [1,2]. It is a primary source of dietary protein for many people in
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Latin America and sub-Saharan Africa (SSA) [3,4]. Common bean provides 15% of daily calo-

rie intake globally, while it provides 36% of protein intake in Africa [5]. The common bean is a

source of micronutrients such as folic acids, iron, thiamine, and zinc [6,7]. Approximately

40% of the bean produced in eastern and southern Africa (ESA) is marketed in local or

regional outlets, providing a total monetary value of about US$ 450 million per annum [8].

Common bean fixes atmospheric nitrogen through their symbiosis with the nitrogen-fixing

bacteria Rhyzobium. The common bean’s ability to fix nitrogen is valued in the legume-cereal

crop rotation systems (e.g. maize-common bean system) among smallholder farmers in SSA to

improve soil fertility [9].

The global production of common bean is approximately 30 million tonnes per annum,

with the bulk of the production occurring in Latin America and ESA [10]. The total produc-

tion of common bean in ESA falls below demand due to low productivity (<600 kg/ha) caused

by several constraints, including insect pests, diseases, drought and heat, and a lack of

improved cultivars [11]. One of the major insect pests of common bean in ESA is the bean fly

(Ophiomyia spp), belonging to the Agromyzidae family [12]. The bean fly causes up to 100%

yield losses [13].

Both the adult and larvae of the bean fly cause significant crop damage. However, the larvae

cause the most significant damage [14,15]. After oviposition under the surface of young bean

leaves, larvae burrow under the thin layer of the leaf (epidermis) and tunnel along the veins

down to the stem and lodges where the stem touches the soil. Pupation takes place inside the

bean stem, resulting in swelling and cracking of the stem at the point where the pupae are

lodged, which destroys the transport system of nutrients from the roots and products of photo-

synthesis from the leaves, leading to stunted growth, and yellowing of leaves at an early plant

stage. Heavily infested crop stands are characterised by premature leaf drop and plant death

[13,15]. The bean fly is widely distributed in all bean growing agro-ecologies in Malawi and is

considered the main cause of low yields. Thus far, the country’s common bean varieties are

highly susceptible to the bean fly pest [16].

The most widely recommended control methods of the bean fly pest include early planting,

intercropping, spraying with organophosphate insecticides, and cultivating resistant cultivars

[17,18]. The use of host plant resistance is regarded as the most sustainable method to manage

insect pests and diseases. Over the past three decades, few bean fly resistance sources in com-

mon bean have been identified [19–21]. However, the utilisation of the genetic resources has

been limited, and there are only a few commercial cultivars with bean fly resistance [22]. The

scarcity of information on the genetic basis of bean fly resistance has contributed to the slow

progress in breeding and development of cultivars with improved bean fly resistance [22].

Bean fly resistance is a complex trait and conditioned by polygenes with major and minor

genetic effects [23,24]. It is essential to identify genetic markers associated with bean fly resis-

tance and important agronomic traits such as reduced maturity period, pod and grain yields in

common bean, and integrate marker-assisted and conventional breeding techniques for accel-

erated breeding and genetic gain [25].

Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) comple-

ments conventional linkage mapping to identify genomic regions controlling quantitative

traits of interest [26]. GWAS has been used in common bean to identify genes associated with

cooking time [27], days to flowering [28], yield-related traits [29], and resistance to angular

leaf spot [30], anthracnose [31], common bacterial blight [32], soybean cyst nematodes

[33,34], bruchids [35] and bean fly [36]. [Ojwang, Eldridge [36]] identified five significant SNP

markers linked to bean fly resistance in common bean on chromosome Pv01, and one of the

markers was reportedly linked to an immune response gene PHAVU_001G075500g [37]. This

was the first identified gene associated with bean fly resistance [36].
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To design and deploy superior, farmer-preferred, and bean fly resistant common bean vari-

eties adapted to Malawi conditions, diverse common bean genetic resources were collected

from different sources. This study aimed to determine the population structure of a diverse

panel of common bean genotypes and deduce associations between bean fly resistance and

agronomic traits based on single nucleotide polymorphism (SNP) markers.

Materials and methods

Germplasm

A total of 99 common bean genotypes were used in the study. Of these genotypes, forty-two

were landraces sourced from the genetic resource unit, under the Department of Agricultural

Research Services (DARS) in Malawi, and the Tanzania Agricultural Research Institute–Uyole

(TARI-Uyole). Forty-one (41) genotypes were breeding lines sourced from the Agricultural

Research Council of South Africa (ARC), the Kenya Agriculture and Livestock Research Orga-

nisation (KARLO), and the International Centre for Tropical Agriculture (CIAT). Sixteen (16)

genotypes were released varieties sourced from the Malawi National Bean Improvement Pro-

gram and CIAT bean improvement program in Malawi. The panel consisted of bean fly resis-

tant lines A429, A55, and Sinoni [38], which were used as checks.

Study sites and experimental design

The genotypes were evaluated for bean fly resistance and agronomic traits at Chitedze (13.85˚

S; 33.38˚ E) and Mbawa (12.06˚ S; 33.25˚ E) Agricultural Research Station farms in Malawi

during the 2018 and 2019 growing seasons. Both locations receive unimodal rainfall, and the

main rainy season falls between November and April. The mean annual rainfall for Chitedze

and Mbawa sites is 900 mm and 692 mm, respectively. Mean monthly temperature ranges

from 16˚C in July to 24˚C in November at Chitedze, and from 16.5˚C in July to 26˚C in Octo-

ber at Mbawa. The soil at the Chitedze experimental farm is deep brown loam soil, while

Mbawa is characterised by red clay soils [39]. The genotypes were established using a 9 × 11

alpha lattice design with three replications. Each genotype was planted in 3 m two-row plot

spaced at 75 cm. Bean seeds were planted at 10 cm apart. Standard agronomic practices were

carried during plant growth [16]. Chitedze and Mbawa are hot spots for bean fly, hence they

were selected for the study [16].

Phenotypic data collection and analysis

Bean fly severity damage (BSD) was evaluated based on overall plot damage scores using a

severity rating scale (1 to 9) where scores between 1 and 3 represented high resistance, 4 to 6

moderate resistance, and 7 to 9 defined susceptibility, as described by Corrales and van

Schoonhoven [40]. The PC was scored two weeks after germination through destructive sam-

pling using four randomly selected plants in each plot. The plant mortality rate (PMR) was cal-

culated as a percentage of the number of dead plants in a plot due to bean fly attack [24,41].

Data were also recorded on five agronomic traits. Days to 50% flowering (DTF), days to 90%

maturity (DTM), number of pods per plant (NPP) from five tagged plants per plot at harvest,

number of seeds per pod (NSP) from five tagged plants in a plot at harvest. Grain yield (GYD)

was recorded as the weight of dried seeds converted to kilograms per hectare. The description

of data collection is fully explained in [42].

The data on bean fly resistance and agronomic traits were subjected to an analysis of vari-

ance using GenStat 18th edition. The means were separated by the Fisher’s protected least sig-

nificant difference at 5% probability [43].
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Genotyping

The 99 genotypes were planted in seedlings trays and raised to the three-leaf growth stage in

a greenhouse. Fresh and young leaves were harvested for genomic DNA extraction. Genomic

DNA was extracted following the plant DNA extraction protocol adapted from [41]. After

extraction, DNA quality was checked for nucleic acid concentration and purity using a

NanoDrop 2000 spectrophotometer (ND-2000 V3.5, NanoDrop Technologies Inc). The

genomic DNA was shipped to the Biosciences Eastern and Central Africa (BecA) Hub of the

International Livestock Research Institute (BecA-ILRI) in Kenya for genotyping by sequenc-

ing. The Diversity Array Technology Sequencing (DArTseq) protocol was used for genotyp-

ing the samples using 17,190 SNP markers assigned to 11 chromosomes of the common

bean. The SNP markers used had a reproducibility value of 1, polymorphic information con-

tent (PIC) values ranging from 0.020 to 0.50, and a mean call rate of 0.93 ranging from 0.84

to 1.00. A total of 15 565 SNP markers and 93 genotypes were used after data imputation

where SNP loci and individuals with <20% missing data and rare SNP, with <5% minor

allele frequency (MAF) were pruned from the data before analysis following Mathew et al.,

[44].

Genetic diversity and population structure analysis

The genomic data were imputed using the optimal imputation algorithm on the KDCompute

sever (https://kdcompute.igss-africa.org/kdcompute/). The SNP distribution across the genome

was visualized graphically in KDCompute. The polymorphic information content (PIC),

minor allele frequency (MAF), observed heterozygosity (Ho), genetic distance (GD), were esti-

mated using the R package “adegenet” [45]. The genomic data were subjected to population

structure analysis in STRUCTURE version 2.3.4 based on the Bayesian clustering method [46].

The burn-in period and Markov Chain Monte Carlo (MCMC) iterations were set at 20,000.

The number of clusters (K) was estimated to be between 1 and 10, and the best K-value was

determined by the Evanno method based on ΔK in CLUMPAK [47]. The 3D visualization of

the genotype clustering was conducted using the principal component analysis (PCA) in

prcomp R 3.0 function [48,49].

Marker-trait association and linkage disequilibrium analyses

Before association mapping, best linear unbiased predictors (BLUPs) were derived for the phe-

notypic traits using the random mixed model in DeltaGen software [50]. BLUPs minimise the

effects of the environmental and seasonal variations, which eliminates the need to conduct

marker-trait association for each environment independently [44]. The BLUPs were used as

input in the GWAS analysis. Association mapping was performed using the association com-

press mixed linear model (CMLM) following the Q + K model that utilizes both population

structure (Q) and kinship matrix (K) in the GAPIT program of R software following [44,51].

The p values and false discovery rate thresholds were set at 0.001 and 0.05, respectively. The

log10 (p) value distributions were displayed in quantile-quantile (q-q) plots and Manhattan

plots using the mhtplot function R package gap [52]. The linkage disequilibrium (LD) was

deduced in the GAPIT program of R software [51]. The LD Heatmaps were generated in R

3.0 using the LDHeatmap package [53] in R package [48] for each trait’s significant markers.

The significant markers for each trait were blasted on Ensemble based on the Phaseolus refer-

ence genome to identify putative genes associated with the markers. Gene ontology of the

potential candidate genes was conducted using SMARTBLAST https://blast.ncbi.nlm.nih.gov/

smartblast/smartBlast.cgi.
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Results

Phenotypic diversity analysis

The combined analysis of variance revealed that genotype × location × year interaction effects

were significant (p<0.05) for BDS, PC, DTF NPP, and GYD (Table 1). In addition, BDS, PMR,

DTF, DTM, NPP, NSP and NSP were significantly (p< 0.05) impacted by the genotype × loca-

tion interaction effects. The genotype × year interaction effects were significant (p< 0.05) for

BDS, PC, PMR, DTF, NPP, NSP and GYD. All the agronomic traits and bean fly parameters

except PM exhibited variability due to the main effect of genotype, location, and year. Overall,

BDS ranged from 1 to 8 with a mean of 6.56 (Table 2). Plant mortality due to bean fly ranged

from 10 to 87 percent. Breeding lines exhibited higher resistance to bean fly compared to land-

races and released varieties. Overall, Mesoamerican genotypes exhibited a higher level of resis-

tance than the Andean genotypes. For instance, the mean BDS score for Mesoamerican

genotypes was 4.89, while it was 6.08 for Andean genotypes. The PMR ranged from 10 to 63

percent among the Mesoamerican genotypes, while it ranged from 19 to 87 percent for the

Andean genotypes. Overall, DTF ranged from 35 to 45 with a mean of 41, while DTM ranged

from 69 to 90 with a mean of 78 and GYD ranged from 158 to 1133 kg/ha with a mean of

371.73 kg/ha. When the genotypes were separated by groups, the mean grain yield for breeding

lines was higher (438.10 kg/ha) compared to landraces (329.98 kg/ha) and released varieties

(311.25 kg/ha).

Population structure and diversity analysis

The highest value for ΔK occurred at K = 2, showing that the genotypes could be delineated

into two sub-populations (Fig 1). The minimum coefficient for membership to a particular

sub-population was 0.60. The two sub-populations were based on the Andean and Mesoameri-

can gene pools, and approximately over 60% of the genotypes were from the Andean gene

pool. The first principal component accounted for more than 60% of the genotypes’ variation,

while the second and third principal components accounted for less than 5% each (Fig 2). The

principal component analysis clustered the genotypes into two distinct groups, congruent with

the structure analysis (Fig 3). The SNP markers used included rare variants with a minimum

Table 1. Mean squares and significant tests for three bean fly resistance parameters and five agro-morphological traits among 99 common bean genotypes assessed

in two locations and two years in Malawi.

Source of variation DF BDS PC PMR DTF DTM NPP NSP GYD

Replication 2 4.40 35.5��� 2392.69� 38.75 60.55 51.24�� 0.54 479419.95���

Replication (block) 24 3.28 5.06 841.76 16.79 136.60��� 12.79 0.79 36204.26

Genotype (G) 98 22.91��� 6.18� 2371.41��� 53.24��� 188.31��� 69.60��� 1.65��� 351422.28���

Location (L) 1 47.75�� 710.41��� 31005.91��� 6018.40��� 1815.46��� 975.02��� 11.19��� 4956546.91���

Year (Y) 1 11.69 462.89��� 25394.72��� 2322.85��� 10782.54��� 22.79 15.91 371603.72��

G x L 98 13.51��� 4.87 1445.16��� 40.69��� 122.27���� 27.79��� 1.00��� 96487.32���

G x Y 98 5.23� 6.87�� 837.26��� 42.62��� 52.85 25.56��� 0.64��� 89709.96���

Y x L 1 62.48��� 199.65��� 1252.43 3412.16��� 10660.82��� 1914.64�� 1.25��� 400766.8��

G x L x Y 98 6.8��� 7.45��� 754.97 21.57 45.47 28.76��� 0.79�� 82167.65���

Error 758 3.72 4.92 681.77 14.93 58.92 13.31 0.70 45489.90

DF = degrees of freedom, G × Y = genotype x year interaction, G × L = genotype by location interaction, L × Y = location by year interaction, G × L × Y = genotype x

location x year interaction, BDS = bean fly damage severity, PC = pupa count, PMR = plant mortality rate, DTF = days to 50% flowering, DTM = days to 90%

physiological maturity, NPP = number of pods per plant, NSP = number of seed per pod and GYD = grain yield.

�, �� and ��� denote significant differences at P < 0.05, P<0.01 and P<0.001, respectively.

https://doi.org/10.1371/journal.pone.0250729.t001
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MAF of 0.05 and common variants with a maximum MAF of 0.5 with a mean MAF of 0.23

(Table 3). The mean polymorphic information content (PIC) of the markers was 0.25, varying

between 0.01 and 0.38. The heterozygosity ranged between 0.21 and 0.45 with a mean of 0.38.

Significant marker-trait associations

Eighty-three (83) significant (P<0.001) marker-trait associations (MTAs) were identified for

all the traits (Table 4). The quantile-quantile (QQ) plots (S1A–S1C, S2A, S2B and S3A–S3C

Figs) for all the traits showed that the expected and observed probability values conformed to

normal distribution. Significant markers associated with bean fly resistance traits were evenly

Table 2. Summary statistics for three bean fly resistance parameters and five agronomic traits when evaluating 99 common bean genotypes in two locations (Chit-

edze and Mbawa research stations) and two years (2018 and 2019) in Malawi.

Population Parameter BDS PC PMR (%) DTF DTM NPP NSP GYD

Breeding line (N = 41) Minimum 1.00 2.00 10.00 36 73 6 4 162.00

Maximum 8.00 5.00 73.00 45 85 19 6 1133.00

Mean 5.07 3.32 34.39 42 78 11 5 438.10

Landrace (N = 42) Minimum 2.00 2.00 19.00 35 69 6 4 158.00

Maximum 8.00 5.00 81.00 45 87 19 6 1081.00

Mean 6.02 3.86 43.57 41 78 9 5 329.98

Released varieties (N = 16) Minimum 4.00 2.00 30.00 37 69 7 4 172.00

Maximum 8.00 5.00 87.00 44 90 15 6 547.00

Mean 6.13 3.25 47.69 41 79 9 5 311.25

Andean (N = 63) Minimum 2.00 2.00 19.00 36 69 6 4 158.00

Maximum 8.00 5.00 87.00 45 90 19 6 1081.00

Mean 6.08 3.63 44.63 41 78 9 5 316.43

Mesoamerican (N = 36) Minimum 1.00 2.00 10.00 35 70 6 4 162.00

Maximum 8.00 5.00 73.00 45 89 19 6 1133.00

Mean 4.89 3.36 33.08 42 79 12 5 468.50

Total (N = 99) Minimum 1.00 2.00 10.00 35 69 6 4 158.00

Maximum 8.00 5.00 87.00 45 90 19 6 1133.00

Mean 5.65 3.54 40.43 41 78 10 5 371.73

CV% 34.20 62.75 63.61 9.24 9.70 35.10 16.98 54.97

N = number of genotypes, BDS = bean fly damage severity, PC = pupa count, PMR = plant mortality rate, DTF = days to 50% flowering, DTM = days to 90%

physiological maturity, NPP = number of pods per plant, NSP = number of seed per pod, GYD = grain yield and CV = Curriculum vitae.

https://doi.org/10.1371/journal.pone.0250729.t002

Fig 1. Population structure of 99 common bean genotypes based on SNP markers (K = 2). Red indicates Andean

subpopulation and green represent Mesoamerican subpopulation.

https://doi.org/10.1371/journal.pone.0250729.g001
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distributed across the 11 chromosomes. For BDS, the markers were identified on chromo-

somes Pv01, Pv06, Pv07, Pv08, and Pv10 (Table 4; Fig 4A). Chromosomes Pv06 and Pv08 had

three markers each that had a significant association with BDS. Markers M3381188 on Pv01

Fig 2. Scree plot showing principal components when assessing 99 common bean genotypes using SNP markers.

https://doi.org/10.1371/journal.pone.0250729.g002

Fig 3. Three dimensional principal coordinate analysis when assessing 99 common bean genotypes with SNP

markers.

https://doi.org/10.1371/journal.pone.0250729.g003
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and M3383205 on Pv08 were strongly associated with BDS exhibiting R2 values of about 0.36

(Table 4). Markers associated with PC were identified on all chromosomes except Pv02 and

Pv08 (Table 4; Fig 4B). Chromosome Pv03 had three markers associated with PC, followed by

Pv06 and Pv11, which had two markers each. Markers associated with PMR were identified on

Pv03, Pv06, and Pv09 (Table 4; Fig 4C).

Markers associated with DTF were distributed on chromosomes Pv01, Pv02, Pv03, Pv06, and

Pv09 (Table 4; Fig 5A). Chromosome Pv06 had five markers, followed by Pv03 and Pv02 with two

markers each. Markers M337537 and M3370846, both on Pv06, exhibited the strongest associa-

tions with DTF with respective R2 values of 48 and 41 percent (Table 4). Significant markers for

DTM were located on Pv02, Pv05, Pv06, and Pv07, while the 14 markers for NPP were distributed

on six chromosomes (Table 4; Fig 5B). Grain yield had the highest number of markers [22] dis-

tributed in all chromosomes except on Pv05 and Pv07 (Table 4; Fig 6C). Chromosome Pv10 had

five markers, followed by Pv04 and Pv01, which had four markers each. Marker M3377146 on

Pv03 exhibited the highest association with GYD (R2 = 0.48). Two pleiotropic markers affecting

BDS and GYD were identified on Pv01 and Pv10. Markers M100049197, M3379537, and

M13122571 were pleiotropic for BDS and NPP, DTF and PC, and NPP and GYD, respectively.

Linkage disequilibrium for significant markers

The average linkage disequilibrium (R2) across the whole genome was 0.20, which occurred at

a distance of about 22Mb (Fig 7). The LD for individual traits ranged from very weak correla-

tions (r<0.20, p<0.001) to very strong correlations (r>0.08, p<0.001) (Figs 8A–8C, 9A, 9B

and 10C). Among the bean fly resistance traits, markers associated with BDS occurred within

the shortest genetic distance of about 33Mb, although the R2 values ranged between 0.20 and

0.60 (Fig 8A). The linked markers were on chromosomes 6, 8, and 10. In comparison, PC had

12 markers that spanned a distance of 49.8Mb, and two of its associated markers had a strong

correlation (R2>0.70) (Fig 7B). The markers were spread across chromosomes 3, 6, 10, and 11.

Three markers associated with PMR spanned a genetic distance of 33.8Mb but exhibited weak

association values (R2<0.20) (Fig 7C). These markers were on chromosomes 6 and 9. The

genetic distance for markers associated with DTF (Fig 9A) was shorter (36.2Mb) than for

DTM (47.4Mb) (Fig 9B). NPP had 10 markers that spanned on a genetic distance of 36.2Mb,

and half of these exhibited stronger correlations (R2>0.70) (Fig 10A). Markers, M10011735,

M3175996, and M3372842, were associated with NSP, and these spanned a genetic distance of

40.4Mb. Grain yield had 22 markers that spanned a distance of 49.5Mb, and 12 of these mark-

ers exhibited a strong correlation (R2>0.70) (Fig 10C).

Putative candidate gene analysis

A blast search of potential bean fly resistance candidate genes identified 11 genes for PC and

one for PMR (Table 3). Candidate genes for PC were identified on chromosomes Pv01, Pv03,

Table 3. Estimates of genetic diversty parameters of 99 common bean genotypes gneotyped with 16,565 SNP

markers.

Parameter MAF GD Ho PIC F

Minimum 0.01 0.01 0.21 0.01 -0.43

Maximum 0.50 0.50 0.45 0.38 0.34

Mean 0.23 0.31 0.38 0.25 -0.23

MAF = minor allele frequency, GD = the Genetic distance, Ho = the Observed heterozygosity, PIC = the

polymorphic information content.

https://doi.org/10.1371/journal.pone.0250729.t003
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Table 4. Significant markers for bean fly resistance and agronmic traits and putative genes identified in 93 common bean genotypes assessed in two locations (Chit-

edze and Mbawa research stations) and two years (2018 and 2019) in Malawi.

Trait SNP Chromosome Position P-Value MAF R square Candidate gene

BDS 3381188 1 6465142 0.000 0.39 0.37

3383205 8 52033029 0.000 0.31 0.37

3375408 8 1235760 0.000 0.40 0.35

100077834 6 24103936 0.000 0.35 0.35

100049197 8 22139614 0.000 0.22 0.34

3383436 6 11110706 0.000 0.37 0.34

13122350 10 3982570 0.000 0.27 0.33

100116632 10 34395982 0.00 0.36 0.33

3372405 7 3947278 0.00 0.23 0.33

8198832 6 16395421 0.00 0.37 0.32

PC 3377482 5 413821 0.000 0.02 0.23 PHAVU_005G005200g

8209338 11 48589864 0.000 0.02 0.23 PHAVU_011G206300g

100050904 1 333838 0.000 0.02 0.21 PHAVU_001G003500g

3378247 10 40113239 0.000 0.21 0.20 PHAVU_010G130800g

8198264 3 29149401 0.000 0.01 0.19 PHAVU_003G116700g

8211638 3 24713365 0.000 0.01 0.19 PHAVU_003G101200g

8207991 3 31845700 0.000 0.03 0.18 PHAVU_003G129900g

8206892 7 9596452 0.000 0.19 0.15 PHAVU_007G093800g

100118766 4 40215749 0.00 0.25 0.14

3370846 6 12663395 0.00 0.18 0.14

8197486 11 50215927 0.00 0.05 0.14 PHAVU_011G216700g

3379537 6 12895866 0.00 0.03 0.14 PHAVU_006G030700g

PHAVU_006G030800g

PMR 3382116 9 8585442 0.00 0.47 0.13

3382360 9 10066070 0.000 0.20 0.30 PHAVU_009G053900g

3377587 3 43928582 0.00 0.04 0.28

3382636 6 14690834 0.00 0.47 0.28

DTF 3379537 6 12895866 0.000 0.03 0.48 PHAVU_006G030800g

3370846 6 12663395 0.000 0.18 0.41

3379313 3 6715929 0.000 0.39 0.31 PHAVU_003G0533000g

8207991 3 31845700 0.000 0.03 0.30

100103598 6 14910556 0.000 0.24 0.29

3380870 6 3275140 0.000 0.04 0.27 PHAVU_006G006900g

3378348 2 42124682 0.000 0.41 0.26

3381588 9 24639921 0.000 0.39 0.24 PHAVU_009G168800g

3378595 1 42919530 0.000 0.41 0.24

3383952 6 13738430 0.000 0.07 0.24

3377998 2 19829201 0.000 0.41 0.23

DTM 3381766 2 623837 0.000 0.38 0.18 PHAVU_002G005400g

3370833 7 41798767 0.000 0.38 0.17 PHAVU_001G137800g

100118763 7 20337949 0.000 0.44 0.17

3369049 5 1228042 0.000 0.42 0.16

13121464 6 26586984 0.00 0.38 0.16 PHAVU_006G152900g

100086666 7 39583133 0.00 0.24 0.15 PHAVU_011G093900g

3384410 2 48039523 0.00 0.31 0.14 PHAVU_002G320900g

(Continued)
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Pv05, Pv06, Pv07, Pv10, and Pv11. Of the identified genes, three were on Pv03, and two were on

Pv11. Two genes, PHAVU_006G030700g and PHAVU_006G030800g (annotated as protein-

coding genes) were linked to marker M3379537 on chromosome Pv06 associated with PC. For

PMR, gene PHAVU_009G053900g was linked to marker M3382360 on chromosome Pv09. For

Table 4. (Continued)

Trait SNP Chromosome Position P-Value MAF R square Candidate gene

NPP 13122062 1 51811442 0.00 0.20 0.42 PHAVU_001G264500g

3377146 3 50623920 0.000 0.02 0.41

8212460 2 30773757 0.000 0.40 0.41 PHAVU_002G166000g

3379026 1 51926066 0.000 0.23 0.41

100049197 8 22139614 0.000 0.22 0.41

3381507 11 5055028 0.000 0.24 0.40

3383526 10 40587716 0.000 0.30 0.40 PHAVU_010G134100g

13122571 11 25423374 0.00 0.39 0.39

100086011 1 15946014 0.00 0.27 0.39

3378689 8 7728249 0.00 0.27 0.39

3374909 11 3542136 0.00 0.41 0.39

3370570 3 33167524 0.00 0.37 0.38

3380620 11 3881871 0.00 0.41 0.38

8215091 10 2257189 0.00 0.14 0.38

NSP 8175995 7 48190209 0.000 0.06 0.38

3372842 1 51394955 0.000 0.23 0.37

8669019 8 58703180 0.000 0.07 0.37

3378274 8 58679992 0.00 0.10 0.37 PHAVU_001G258000g

100117354 7 18306669 0.00 0.35 0.36

GYD 3377146 3 50623920 0.000 0.02 0.48

8215747 10 3143091 0.000 0.23 0.45

3369676 9 15099238 0.000 0.41 0.45

3381188 1 6465142 0.000 0.39 0.44

3383503 10 3012756 0.000 0.31 0.44 PHAVU_010G019700g

8207731 6 12530595 0.000 0.15 0.44

3383465 10 3838534 0.000 0.03 0.44 PHAVU_009G099000g

3377061 11 1164972 0.000 0.07 0.44

100053883 8 46259025 0.000 0.39 0.43

3381982 2 32037784 0.000 0.39 0.43

13122571 11 25423374 0.00 0.39 0.43

3383223 2 31567682 0.00 0.39 0.43 PHAVU_001G245500g

100103590 8 47186185 0.00 0.34 0.43

8215249 1 1636953 0.00 0.23 0.43

8216463 4 44160933 0.00 0.48 0.43 PHAVU_004G159900g

100116632 10 34395982 0.00 0.36 0.42

3365631 10 41170848 0.00 0.42 0.42

3384349 1 50470209 0.00 0.38 0.42

3383570 1 8000131 0.00 0.41 0.42 PHAVU_001G064100g

3378416 2 31532508 0.00 0.17 0.42

BDS = bean fly damage severity, PC = pupa count, PMR = plant mortality rate, DTF = days to 50% flowering, DTM = days to 90% physiological maturity,

NPP = number of pods per plant, NSP = number of seed per pod and GYD = grain yield.

https://doi.org/10.1371/journal.pone.0250729.t004
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DTF and DTM, four and five genes were blasted, although the annotated functions for these

genes could not be established. Three candidate genes, including the adenosine triphosphate

binding gene PHAVU_002G166000g were identified for NPP. Five candidate genes for GYD

were identified, with Pv10 having the two genes, including PHAVU_009G099000g (annotated

Fig 4. Manhattan plots showing candidate single nucleotide polymorphism and their probability values from genome

wide association of 99 common bean genotypes assessed in two locations (Chitedze and Mbawa research stations) and two

years (2018 and 2019) in Malawi. Note: A = Bean fly damage severity (BDS), B = Pupa count (PC), C = Plant mortality rate

(PMR).

https://doi.org/10.1371/journal.pone.0250729.g004
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as zinc ion binding). The other genes PHAVU_001G064100g, PHAVU_001G245500g, and

PHAVU_004G159900g were identified on Pv01, Pv02, and Pv04, respectively.

Discussion

The significant impact of genotype × location × year interaction effects on bean fly resistance

parameters and agronomic traits suggests considerable genetic variation among the genotypes,

and genotype performance exhibited environmental plasticity. Genotype × environment inter-

action results from variable and inconsistent genotype reaction to different seasonal and loca-

tion conditions. This could be the basis for identifying genotypes with superior and specific

adaptation to different environments. These results support earlier studies that there is poten-

tially adequate genetic variation for bean fly resistance and agronomic traits to support breed-

ing efforts [19,20]. The wide variation would help improve bean fly resistance and other traits

in common bean through conventional and molecular breeding. The wide variation for DTF

and DTM would permit the selection of genotypes in different maturity groups. In contrast,

the genetic variation for NPP and NSP would be important for indirect selection for grain

Fig 5. Manhattan plots showing candidate single nucleotide polymorphism and their probability values from genome

wide association of 99 common bean genotypes assessed in two locations (Chitedze and Mbawa research stations) and

two years (2018 and 2019) in Malawi. Note: A = Days to 50% flowering (DTF), B = Days to 90% physiological maturity

(DTM).

https://doi.org/10.1371/journal.pone.0250729.g005
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yield improvement. Indirect selection of yield-related traits is common practice for yield

improvement in many crops [54].

Despite a lack of complete resistance to bean fly among the genotypes in the studied popu-

lation, breeding lines exhibited a higher level of resistance than landraces and released

Fig 6. Manhattan plots showing candidate single nucleotide polymorphism and their probability values from genome

wide association of 99 common bean genotypes assessed in two locations (Chitedze and Mbawa research stations) and

two years (2018 and 2019) in Malawi. Note: A = Number of pod per plant (NPP), B = Number seed per pod (NSP),

C = Grain yield (GYD).

https://doi.org/10.1371/journal.pone.0250729.g006
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varieties. Breeding for bean fly resistance is one of the important objectives in common bean

breeding programs worldwide. Most breeding lines used in this study have likely undergone

deliberate breeding for improved bean fly resistance at some stage in the breeding cycle. Likely,

bean fly resistance genes from lines such as A429 and A55 have been introgressed into the

breeding lines during their development [55]. Ambachew et al. [17] also found that breeding

lines were more tolerant to bean fly infestation than released cultivars. Possibly bean fly resis-

tance present in the released varieties and cultivars was based on a similar resistance mecha-

nism leading to the broken down of resistance by the bean fly. The Mesoamerican lines

exhibited higher resistance than the Andean genotypes suggesting that the Mesoamerican

gene pool would be more useful in breeding for bean fly resistance. This study’s findings cor-

roborate with previous reports showing that Mesoamerican genotypes tended to be more tol-

erant to the majority of biotic and abiotic stresses than the Andean genotypes [17].

The test genotypes were grouped into two sub-populations, suggesting that the clustering

was based on the genotypes’ genetic ancestry. This confirmed previous assertions that

Fig 7. Linkage disequilibrium (R2) plot for all the 16,565 SNP markers across genome in common bean genotypes used in

the study.

https://doi.org/10.1371/journal.pone.0250729.g007
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common bean evolved from the Mesoamerican and Andean gene pools [56,57], which greatly

influence genetic diversity in common bean. The population structure analysis even grouped

the different botanical types (breeding lines, cultivars, and released varieties) into their broad

gene pools showing that the evolution events were stronger than the subsequent recombina-

tions that occurred in modern breeding. Similarly, germplasm from different centres of diver-

sity, such as the ESA region, has been identified as distinct from the Mesoamerican and

Andean gene pools [3]. However, the Mesoamerican and Andean gene pools are still pro-

foundly detectable at the genomic level leading to clustering of genotypes along the broad

Mesoamerican and Andean gene pool lines [35,58]. The PCA also grouped the genotypes into

two groups congruent to the population structure analysis, highlighting the broad gene pools’

importance. This limit selection of divergent parental lines and breeding gains. Parental breed-

ing lines can only be selected within the two gene pools, limiting allelic diversity since allele

frequency is constrained within a population of related individuals. The genetic structure

obtained in the study was consistent with the hierarchical clustering of common bean geno-

types into two major groups based on Mesoamerican and Andean origins [35,59,60]. The

majority of the evaluated lines were of Andean origin, which supported previous studies

reporting that most African common bean germplasm was of Andean origins [3,61]. The

Andean gene pool is the source of most African germplasm and could contribute to restricted

breeding gains with intra-gene pool crosses. Repoterdly, the Andean gene pool had limited

Fig 8. Summary of local LD among markers with significant marker trait associations of 99 common bean genotypes.

Note: A = Bean fly damage severity (BDS), B = Pupa count (PC), C = Plant mortality rate (PMR). The R2 colour key indicates

the degree of significant association.

https://doi.org/10.1371/journal.pone.0250729.g008
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genetic bases before domestication [62]. The evidence of genetic constraints in this gene pool

could delay genetic gains in breeding for polygenic traits such as improved bean fly resistance.

Crossing parental lines from different gene pools could potentially eliminate the genetic bottle-

necks. For instance, the BDS and PMR were relatively higher, which corresponded to lower

bean fly resistance in the Andean genotypes compared to Mesoamerican gene pools. This

points to the high likelihood of crosses derived from Andean parental lines having lower resis-

tance due to their genetic background. The low mean MAF of 0.23 found in this study sug-

gested a limited number of rare variants among the accessions, indicating that most genotypes

shared common alleles [63]. Rare variants have been implicated in playing a bigger role in

complex traits such as disease resistance [64]. The low MAF showed that the genetic base for

developing bean fly resistance might need to be widened to increase the rare variants that

potentially code for resistance. Targeted crosses and mutation induction have the potential to

increasing the frequency of rare variants and widen the genetic base of the current population.

The narrow population structure, low heterozygosity and MAF values in this germplasm sug-

gests the need for controlled crosses involving genetically unique populations with economic

traits to broaden the genetic variation. There were few admixtures identified in the germplasm,

which was expected since varietal mixtures in the common bean are common in Malawi and

other ESA countries. This is due to mixed cropping practices,limited knowledge pedigree of

bean types, and a lack of true-to-type varieties [60]. The average PIC was 0.25, indicating that

this study’s SNP markers were low to moderately informative. The low PIC value indicated

that the germplasm’s genetic base was relatively narrow or moderate, which limits the possible

permutations during crossing. At the genotypic level, the PIC values show that genetic varia-

tion was moderate. The phenotypic differences observed in the population would be more

defined by genotype × environment interaction than genotypic differences. The low average

PIC could be due to SNP makers’ bi-allelic nature, which restrict PIC values to� 0.5 [65,66].

In general, markers such as SNPs usually have less PIC values than simple sequence repeats

Fig 9. Summary of local LD among markers with significant marker trait associations of 99 common bean genotypes. Note:

A = Days to 50% flowering (DTF), B = Days to 90% physiological maturity (DTM). The R2 colour key indicates the degree of

significant association.

https://doi.org/10.1371/journal.pone.0250729.g009
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[67]. However, SNP markers provide a means for identifying allelic diversity at numerous loci

[68,69], making them more useful in genetic diversity and genomic analyses.

The markers associated with bean fly resistance were evenly distributed across the 11 chro-

mosomes, indicating that bean fly resistance is a polygenic trait controlled by major and minor

genes distributed across the whole genome [23,24]. Improvement of bean fly resistance will be

complicated by the whole genome distribution of the involved markers and may involve sev-

eral cycles of breeding to fix the genes. Unlike Mendelian traits whose inheritance can easily be

predicted, the inheritance of polygenic traits such as bean fly resistance is difficult to predict. It

would require efficient phenotyping in multiple environments to identify stable genotypes that

exhibit resistance. The average R2 of 0.20 showed that there was a moderate to weak linkage

among some of the markers that were inherited together. Linkage disequilibria occur when

markers are inherited, leading to the distortion of haplotypes’ expected frequencies [70]. The

Fig 10. Summary of local LD among markers with significant marker trait associations of 99 common bean

genotypes. Note: A = Number of pod per plant (NPP), B = Number seed per pod (NSP), C = Grain yield (GYD). The R2

colour key indicates the degree of significant association.

https://doi.org/10.1371/journal.pone.0250729.g010
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occurrence of disequilibria at 22Mb shows that the LD events occurred at relatively short inter-

vals, which would be unexpected for an inherently autogamous species such as common bean

in which recombinant events take place less frequently compared to outcrossing species. How-

ever, the presence of elite breeding lines and released cultivars could have reduced the LD dis-

tance due to accelerated recombination during their development using divergent parental

lines. Also, shorter LD decay is possible because common bean usually exhibits large blocks of

markers in LD despite being an autogamous species [71]. Rapid LD decay is important for the

recombination and development of new recombinants to improve adaptation and potential

identification of resistant genotypes. The LD found in this study was comparably higher than

10 Mb reported by [72] in common bean germplasm that included commercial cultivars, land-

races, and recombinant inbred lines (RILs) derived from the cross ‘CAL 143’ × ‘IAC UNA’.

This relatively fast LD decay results from more recombination events in inherently self-polli-

nating species especially considering that the germplasm included breeding lines, released

varieties and Mesoamerican genotypes. Several other reports have alluded that populations

derived from Meso-American gene pool had faster LD decay compared to the Andean gene

pool [73,74]. Markers for BDS and PC were identified on Pv01, similar to reports by Ojwang

et al. [36]. This suggests that chromosome Pv01 harbours genes controlling bean fly resistance.

The present study has also identified additional markers associated with bean fly resistance on

other chromosomes that were not previously reported, which could be novel loci that require

validation. Chromosomes Pv06, Pv09 and Pv10 contained several markers for BDS, PC and

PMR in linkage disequlibrium showing that these chromosomes could be important for min-

ing alleles for improving bean disease resistance. Chromosomes Pv09 and Pv10 have been

implicated as harbouring genes involved in main characteristics such as fowering time, plant

size, and seed size used during selection for domestication [71]. Markers associated with bean

fly resistance were also associated with other traits such as DTF and GYD. These pleiotropic

markers could be important for multiple trait selection in developing bean fly-resistant culti-

vars that are high-yielding and early maturing. Pleiotropism has been reported in other associ-

ation studies on common bean [75,76]. Blasting for candidate genes for bean fly resistance

traits revealed several candidate genes for PC and only one candidate gene for PMR. The

majority of these were protein-coding genes. Protein coding genes have been reported to be

important in disease and pest resistance in common bean [34,77].

The study found significant markers for DTF on chromosomes Pv01, Pv03, and Pv06,

which corroborated previous reports for the same trait [28,29,78]. This suggests that the mark-

ers are stable across different populations and in different environments, essential for marker-

assisted breeding for early maturity. Additional markers were identified associated with DTF

on chromosomes Pv02 and Pv09 that were not previously reported. The new markers need to

be validated in subsequent studies.A blast search identified four candidate genes for DTF on

Pv03, Pv06, and Pv09, which was in agreement with previous studies [28,79]. Among the iden-

tified genes were protein-coding genes such as PHAVU_009G168800g, PHAVU_006G006900g,

and PHAVU_006G030800g. The PHAVU_009G168800g gene belongs to the Mu1/VP4 super-

family of genes involved in host cell surface binding [80]. The gene PHAVU_006G006900g is

involved in selective and non-covalent interaction with zinc ions and nucleic acid binding

[81]. Protein coding genes have been important in regulating flowering time in common bean

[28]. Markers for DTM were reported on five chromosomes, including Pv07. Moghaddam

et al. [82] reported markers for DTM on Pv07, suggesting that genomic regions control matu-

rity on chromosome Pv07.

Markers associated with NPP and NSP were identified on chromosomes Pv07 and Pv11,

suggesting the presence of genomic regions associated with seed-related traits on these chro-

mosomes. Blair et al. [83] reported QTL for NPP and NSP on Pv11 and Pv07, respectively.
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Grain yield markers were identified on all chromosomes except Pv05 and Pv07, suggesting

that grain yield is polygenic. Numerous genes condition yield with minor genetic effects [84].

Previously, markers for GYD were also identified on chromosomes Pv03, Pv08, Pv09, and

Pv10, which indicate the stability and potential usefulness of these markers for marker-assisted

breeding [29]. Also, markers such as M100116632, M3381188, M3379537, and M8207991
exhibited pleiotropic effects on different traits. Pleiotropic markers could be useful to select for

multiple traits simultaneously. Markers with pleiotropic effects have been previously identified

and used in common bean breeding. For instance [29], found a pleiotropic marker for NPP

and GYD, while [85] found that DTF and DTM shared a similar marker. Five candidate genes

were identified for GYD from the significant markers, and the molecular function of Pha-
vul_009G099000g was annotated as zinc ion binding. Zinc is an important constituent of hor-

mones and is involved in internode elongation [86]. These functions are important for plant

growth and development, and internode development is particularly critical in common bean.

Growth and development directly impact grain yield production in common bean [87]. The

lack of adequate Zn can lead to significant yield loss and plant death [88], and thus the marker

can be used for selecting genotypes with enhanced ability to bind zinc.

Conclusion

The assessed common bean population exhibited significant variation for agronomic and bean

fly resistance traits, which enabled GWAS to be conducted successfully. The 83 markers

detected across the genome indicated both agronomic and bean fly resistance traits were con-

ditioned by multiple genes, some with pleiotropic effects. Two markers, M3381188 and

M100116632 with pleiotropic effects for BDS and GYD, were respectively identified on chro-

mosomes Pv01 and Pv10. These are effective markers for simultaneous improvement of bean

fly resistance and grain yield in common bean. A weak R2 value of 0.2 that occurred at a dis-

tance of 22Mb was detected, indicating that most of the markers were not tightly linked and

could be selected independently. The present study identified novel markers (e.g. M3381188,

M338320, M33753, M3370846, and M3377146) for marker-assisted breeding in common

bean.
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S1 Fig. Quantile-quantile plots indicating the normality of 99 common bean genotypes

assessed in two locations (Chitedze and Mbawa research stations) and two years (2018 and

2019) in Malawi. Note: A = Bean fly damage severity (BDS), B = Pupa count (PC), C = Plant

mortality rate (PMR).
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S2 Fig. Quantile-quantile plots indicating the normality of 99 common bean genotypes

assessed in two locations (Chitedze and Mbawa research stations) and two years (2018 and

2019) in Malawi. Note: A = Days to 50% flowering (DTF), B = Days to 90% physiological

maturity (DTM).

(TIF)

S3 Fig. Quantile-quantile plots indicating the normality of 99 common bean genotypes

assessed in two locations (Chitedze and Mbawa research stations) and two years (2018 and

2019) in Malawi. Note: A = Number of pod per plant (NPP), B = Number seed per pod (NSP),

C = Grain yield (GYD).

(TIF)
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