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Abstract: Survival and life quality of breast cancer patients could be improved by more aggressive
chemotherapy for those at high metastasis risk and less intense treatments for low-risk patients.
Such personalized treatment cannot be currently achieved due to the insufficient reliability of
metastasis risk prognosis. The purpose of this study was therefore, to identify novel histopathological
prognostic markers of metastasis risk through exhaustive computational image analysis of 80 size
and shape subsets of epithelial clusters in breast tumors. The group of 102 patients had a follow-up
median of 12.3 years, without lymph node spread and systemic treatments. Epithelial cells were
stained by the AE1/AE3 pan-cytokeratin antibody cocktail. The size and shape subsets of the stained
epithelial cell clusters were defined in each image by use of the circularity and size filters and
analyzed for prognostic performance. Epithelial areas with the optimal prognostic performance were
uniformly small and round and could be recognized as individual epithelial cells scattered in tumor
stroma. Their count achieved an area under the receiver operating characteristic curve (AUC) of
0.82, total area (AUC = 0.77), average size (AUC = 0.63), and circularity (AUC = 0.62). In conclusion,
by use of computational image analysis as a hypothesis-free discovery tool, this study reveals the
histomorphological marker with a high prognostic value that is simple and therefore easy to quantify
by visual microscopy.

Keywords: breast cancer; tumor budding; invasion; tumor cell dissociation; individual cell; prognosis;
metastasis; image analysis; particle analysis; pan-cytokeratin; histopathology

1. Introduction

Cancer diagnosis, prognosis, and treatment are the main challenges in oncology. The primary
breast tumor is not life-threatening until the disease becomes systemic by its metastatic spread. For this

Cancers 2019, 11, 1615; doi:10.3390/cancers11101615 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-8907-7781
https://orcid.org/0000-0001-8975-3129
https://orcid.org/0000-0002-2314-7457
http://www.mdpi.com/2072-6694/11/10/1615?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11101615
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 1615 2 of 16

reason, patients are treated with cytotoxic therapy to eliminate distant micrometastases. However,
as most patients do not incur metastasis even without cytotoxic chemotherapy [1], it may be that many
are unnecessarily exposed to toxic side effects of chemotherapy treatment [2]. This could be resolved
by prescribing less intense treatments to those at low risk and more intense chemotherapy to those
reliably prognosticated at high metastasis risk.

Clinicopathological parameters with prognostic value include tumor size, lymph node spread
and metastasis (TNM staging) age, histologic grade, steroid receptor status [3], and gene signatures
such as Mammaprint and OncotypeDX [4]. TNM staging is accepted for disease outcome prognosis
and guidance for cancer treatment [5]. However, for early breast cancer patients with negative lymph
node spread and distant metastasis, this staging system is not anymore prognostically reliable because
it only contains information on tumor size. New prognostic markers are therefore particularly needed
in patients with N0M0 disease in order to compensate for the reduced prognostic value of TNM as the
major prognostic marker.

Histologic grade has been used since the 1920s and includes tubule formation, nuclear pleomorphism,
cell growth structures, and mitotic cells as morphological features capable to prognosticate breast cancer
aggressiveness [6]. However, similarly to TNM, the histologic grade is prognostically less reliable in early
breast cancer with most patients classified as grade 2. Furthermore, although histologic grade examines
morphological features, it does not take into consideration the spatial distribution of malignant cells.

Taken together, the current prognostic methodology cannot provide sufficiently reliable risk
classification, with even the most advanced gene signature tools delivering an accuracy of only 65%
and an area under the receiver operating characteristic curve (AUC) of 0.69 [7]. The prognosis could be
improved by the computational analysis which exploits histopathology information that cannot be
quantified by microscopic inspection, such as spatial distribution, texture, shape, and complexity [8–11].
Its advantages further include high speed and cost-efficiency. This method has become particularly
relevant with improvements in computational power and the availability of whole slide imaging
scanners which might even replace the optical microscope as the primary tool in pathology [12].

The commonly used algorithms in the analysis of medical images include statistical (co-occurrence),
structural (fractal), model-based (Markov random fields), and spectral (Gabor filters, wavelet
transform, and curvelets). These were previously exploited for analysis of either unspecifically [13]
or specifically [14,15] stained histopathology specimens, However, although they provide very good
prognostic value, with AUCs reaching up to 0.77 [16], the obtained features are very abstract due
to their complex calculation and thus unsuitable for straightforward identification of the structural
prognostic clues. For this reason, our current study exploits a simple computational size and shape
analysis of epithelial cell patches in breast tumors. The primary tumor is the valuable source of
prognostic clues as the site of metastatic dissemination [17], while distant metastasis is the main cause
of death and thus the most relevant event for prognostication of individual disease outcome in breast
cancer. Epithelial cell structures were analyzed because this cell type is the origin of a neoplastic
transformation in 99% of breast cancers. Such structures typically exert enormous variability in size
and shape between different tumors and even within the same tumor. We thus hypothesized that
the shapes and sizes of malignant clusters present the abundant source of prognostic information by
reflecting the growth patterns of neoplastic cells which, in turn, might reveal the metastatic potential
of a tumor.

While the prognostic value of epithelial cluster number, size, distribution, staining intensity,
and texture within breast tumors [14–16,18,19] and the peritumoral buds [20] has been previously
investigated, this is the first study aimed to comprehensively analyze the distribution of prognostic
information among intratumoral malignant cell clusters according to their shape and size.

Based on the pressing need to improve breast cancer prognosis, this study explored the strategies
to extract the maximum prognostic information by computational size and shape analysis of malignant
cell clusters in breast tumors. A large number of cluster subsets were selected by filtering and
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subsequently prognostically evaluated by their size, shape, and count. Furthermore, we aimed to
precisely identify the epithelial structure(s) with the highest content of prognostic information.

2. Results

2.1. Patient Characteristics

Selection of breast cancer patients was retrospective and based on the absence of systemic
treatments with hormonal or cytotoxic drugs. This was according to recommendations for lower
risk patients effective in the year 1993 for the smaller size tumors classified as pT1 and pT2, grade 1
and grade 2, and without lymph node involvement or metastasis (N0M0) breast carcinoma (Table 1).
All patients received local treatment by surgery and radiation. In the studied patient group, metastases
occurred in liver, lungs, bones, skin, and in muscle (Table 1). The median time to metastasis was
61 months, ranging between 16 and 155 months, while the median follow-up time for patients without
metastasis was 147 months by a reverse Kaplan-Meier method, ranging between 77–165 months.
Epidermal growth factor receptor 2 (HER2) status was positive in 22 patients (Table 1).

Table 1. Patient characteristics a.

Parameter n Metastasis (%) b

HER2 status
HER2− 80 21
HER2+ 22 20

ER status (cut off = 20 fmol/mg)
ER− 32 13
ER+ 70 23

PR status (cut off = 10 fmol/mg)
PR− 64 25
PR+ 38 17

Tumor size (cm)
≤ 2 73 12
2–5 26 37
≥ 5 2 50

Nodal status
N0 102 20
N+ 0 0

Histologic grade
G1 9 33
G2 92 17
G3 1 0

Count of individual scattered epithelial cells c

Low count (0–7.6) 60 5
High count (8.3–37.0) 42 40

Metastasis
lungs 8 100
bones 7 100
liver 3 100
skin 1 100
muscle 1 100
none 82 0

a The total number of patients was 102. b Percent of actual metastasis occurrence in each patient subgroup. c

The average counts per patient were divided into the low count and high count subgroups by the optimal cut off.
Abbreviations: HER2, epidermal growth factor receptor 2; ER, estrogen receptor; PR, progesterone receptor.
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2.2. Prognostic Performance of the Clinicopathological Features

With TNM and histologic grade being ineffective in this early breast cancer patient group, only
tumor size showed prognostically significant association, with an AUC of 0.65 and p = 0.04 (Table 2). It is
of note that HER2+ in Table 2 defines a positive HER2 amplification, while HER2-enriched represents
the estrogen receptor-negative (ER−), progesteron receptor-negative (PR−), HER2+ molecular subtype
of breast cancer [21]. All parameters in Table 2 were evaluated for prognostic performance by receiver
operating characteristic ROC analysis and use of distant metastasis as the endpoint. In order to avoid
the bias introduced by categorization of the measured values, the statistical analysis for age, tumor
size, ER, and PR was performed by use of continuous values, without any cut-off categorization.
Thereby, the age was measured in years, tumor size in millimeters, and estrogen/progesteron receptors
in fmol/mg tumor tissue. Other parameters presented in Table 2 were intrinsically categorical. AUC
values in the 0.0–0.5 range indicate an association with low risk and the 0.5–1.0 range with high
metastasis risk. AUC values farther away from its random performance mid-point at 0.5 indicate
an improved discrimination efficiency. Thereby, 0.3–0.4 and 0.5–0.6 are considered as fair discrimination
performance, 0.2–0.3 and 0.7–0.8 as good, 0.1–0.2 and 0.8–0.9 as excellent, and 0.0–0.1 and 0.9–1.0 as
almost perfect. The prognostic performance of the established clinicopathological features in Table 2 is
presented for comparison with the newly discovered features presented in Tables 3 and 4.

Table 2. Prognostic significance of the clinicopathological features a.

Parameter AUC p-Value 95% CI

Age 0.60 0.15 0.48–0.73
Tumor size 0.65 0.04 * 0.51–0.78
Grade 0.45 0.50 0.31–0.60
ER 0.60 0.14 0.46–0.75
PR 0.48 0.80 0.33–0.63
HER2+ 0.49 0.45 0.32–0.67
HER2-enriched 0.47 0.67 0.33–0.61
Triple negative 0.46 0.55 0.32–0.60

The receiver operating characteristic (ROC) curve analysis was used for evaluation of prognostic significance.
a bootstrap corrected * p ≤ 0.05. Abbreviations: AUC = area under the ROC curve; CI = confidence interval; HER2
= human epidermal growth factor receptor 2; HER2-enriched = ER−, PR−, HER2+; Triple negative = ER−, PR−,
HER2−; CI, confidence interval.

2.3. Optimization of the Image Binarization as the Strategy for Prognostic Performance Improvement

The binarization step is obviously critical for the particle analysis because it is performed on
binarized images. The circularity feature calculated in automatically thresholded images delivered
an AUC of 0.67 and p = 0.02, thus prognostically exceeding the clinicopathological parameters
(Tables 2 and 3). The image format presented in Figure 1a presents an exemplary original blue
pan-cytokeratin staining, while the 8-bit transformed image in Figure 1b contains 256 shades of grey
ranging from 0 (black) to 255 (white). Figure 1c shows an image produced by automatic binarization
of the 8-bit image. The manually set 240-threshold produced the binary image (Figure 1e) similar to
that obtained by automatic thresholding (Figure 1c). For optimization, we also used the thresholds
producing lighter (220) and darker (250) images (Figure 1d,f). Table 3 indicates that the 240-threshold
provided the best prognostic value in terms of the number of prognostically significant features,
however, the prognostic performance still did not exceed an AUC of 0.67/0.33, generally considered
only as “fair” (Table 3).
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Figure 1. Optimization of the binarization threshold. (a) The blue channel of the representative pan-
cytokeratin-stained tumor tissue section and its (b) 8-bit greyscale version. Binary images obtained 
from the 8-bit format by (c) automatic thresholding, (d) 220-threshold, (e) 240-threshold, and (f) 250-
threshold. Scale bar: 300 μm. 
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Size: 20-infinity 
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Size: 20-infinity 

Binarization:240 
Circularity: 0.0–1.0 

Size: 20-infinity 

Binarization: 250 
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Size: 20-infinity 
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0.46–0.71 
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0.66 
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0.03 * 

0.60 
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0.18 
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0.37 

0.25–0.50 
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0.35 
0.22–0.49 

0.04 * 

0.35 
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0.63 
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0.41 
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a ROC analysis was used for evaluation of the prognostic performance by use of continuous data. b 
corrected by bootstrap. * p ≤ 0.05.  

2.4. Selection of Different Particle Subsets by the Circularity and Size Filtration 

Particle analysis procedure initially outlines all particles in a binary image and then proceeds to 
their counting and measurement. The total number of analyzed particles (Figure 2a) can be narrowed 
by circularity and size filters (Figure 2b–d). Such filtering is based on the fact that particles with 
shapes (circularity) and sizes falling outside of the filter range are ignored. A total of 80 particle 
subsets were produced by combination of 4 binarization thresholds (automatic, 220, 240, 250), 5 
circularity thresholds (0, 0.2; 0.4; 0.6; 0.8), and 4 object size thresholds (10, 20, 50, 100 pixels). Figure 2 

Figure 1. Optimization of the binarization threshold. (a) The blue channel of the representative pan-
cytokeratin-stained tumor tissue section and its (b) 8-bit greyscale version. Binary images obtained from
the 8-bit format by (c) automatic thresholding, (d) 220-threshold, (e) 240-threshold, and (f) 250-threshold.
Scale bar: 300 µm.

Table 3. Prognostic optimization by variation of the binarization thresholds a.

Parameter

AUC/95% CI b/p-Value b

Binarization: auto
Circularity: 0.0–1.0

Size: 20-infinity

Binarization: 220
Circularity: 0.0–1.0

Size: 20-infinity

Binarization: 240
Circularity: 0.0–1.0

Size: 20-infinity

Binarization: 250
Circularity: 0.0–1.0

Size: 20-infinity

Count
0.57

0.46–0.71
0.31

0.58
0.44–0.71

0.29

0.66
0.53–0.80

0.03 *

0.60
0.47–0.73

0.18

Total area
0.37

0.25–0.50
0.08

0.35
0.22–0.49

0.04 *

0.35
0.24–0.47

0.04 *

0.54
0.39–0.68

0.63

Average size
0.40

0.27–0.53
0.15

0.37
0.23–0.50

0.06

0.33
0.21–0.46

0.02 *

0.44
0.29–0.59

0.41

Circularity
0.67

0.55–0.78
0.02 *

0.59
0.45–0.73

0.21

0.65
0.59–0.81

0.04 *

0.62
0.50–0.75

0.09

Solidity
0.62

0.50–0.73
0.11

0.54
0.39–0.68

0.61

0.57
0.43–0.70

0.37

0.57
0.43–0.71

0.32
a ROC analysis was used for evaluation of the prognostic performance by use of continuous data. b corrected by
bootstrap. * p ≤ 0.05.

2.4. Selection of Different Particle Subsets by the Circularity and Size Filtration

Particle analysis procedure initially outlines all particles in a binary image and then proceeds to
their counting and measurement. The total number of analyzed particles (Figure 2a) can be narrowed
by circularity and size filters (Figure 2b–d). Such filtering is based on the fact that particles with shapes
(circularity) and sizes falling outside of the filter range are ignored. A total of 80 particle subsets
were produced by combination of 4 binarization thresholds (automatic, 220, 240, 250), 5 circularity
thresholds (0, 0.2; 0.4; 0.6; 0.8), and 4 object size thresholds (10, 20, 50, 100 pixels). Figure 2 illustrates
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the vast impact of the circularity filter on the count, size, and shape of particles selected for analysis.
The circularity filter was thus the main selection tool and the applied circularity thresholds of 0, 0.2,
0.4, 0.6, and 0.8 were chosen to cover the entire theoretical circularity range from 0–1.0. Circularity
settings above 0.8 were not used due to zero particles selected in most images. Without any filtering,
the exemplary histopathological image in Figure 2a provided 170 particles. The circularity filter setting
at 0.2–1.0 has narrowed the selected particle subset to 146 (Figure 2b), while the circularity range
at 0.6–1.0 included 45 particles (Figure 2c) and circularity at 0.8–1.0 only 20 particles (Figure 2d).
The average particle size also declined from 2331 to 260, 64, and 46 pixels, respectively. The average
Feret maximum diameter has similarly decreased from 46 to 21, 11, and 9 pixels, corresponding to
64, 29, 15, and 13 µm. The particle diameters selected by the highest 0.8–1.0 circularity filter, were
within the size range of an individual cell (9.4–21.4 µm), while 85% of particles were within 9–15 µm
range (Figure 2d).
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in patients with a high count of these particles was much higher in comparison to the low count 
patient subgroup (Table 1). In this optimal particle subset, all features provided AUC values above 
0.5, indicating their association with the increased risk of metastasis (Table 3). Interestingly, while 
binarization with the 240-threshold was prognostically optimal for particles prior to their filtering, 
the 250-threshold provided the best prognostic performance upon particle filtering, followed by the 
240- and 220-thresholds (Figure 3 and Tables 3 and 4). It is important to note that the prognostic 
evaluation presented in Tables 2–5 was performed by use of all 20 distant metastasis occurrences as 

Figure 2. Particle filtering targets analysis to different particle subsets. (a) Representative unfiltered
pan-cytokeratin histopathology staining, binarized as indicated in Figure 1f. Particle subsets were
selected from this unfiltered image by: (b) the circularity filter set to 0.2–1.0 and the particle size filter
set to 20-infinity, (c) circularity filter set to 0.6–1.0 and particle size filter at 20-infinity, (d) circularity
filter set to 0.8–1.0 and particle size filter at 20-infinity. It is obvious that higher settings of the circularity
filter selected the small and round particles resembling individual cells. Magnification 100×. Pixel size
= 1.4 µm. Scale bar: 300 µm.

2.5. Identification of the Prognostically Optimal Particle Subset and the Consisting Particles

By evaluation of all 80 particle subsets defined by particle size and shape filters, we identified the
prognostically optimal subset, specified by the 0.8–1.0 circularity filter and the 20-infinity object size
filter settings, while binarization was performed by the 250-threshold (Table 4, Figure 3). This subset
has accomplished a remarkable level of prognostic performance, with the particle count feature
associating with metastasis outcome by an AUC of 0.82 (Table 4). Consistently, the rate of metastasis
in patients with a high count of these particles was much higher in comparison to the low count
patient subgroup (Table 1). In this optimal particle subset, all features provided AUC values
above 0.5, indicating their association with the increased risk of metastasis (Table 3). Interestingly,
while binarization with the 240-threshold was prognostically optimal for particles prior to their filtering,
the 250-threshold provided the best prognostic performance upon particle filtering, followed by the 240-
and 220-thresholds (Figure 3 and Tables 3 and 4). It is important to note that the prognostic evaluation
presented in Tables 2–5 was performed by use of all 20 distant metastasis occurrences as events.
When the prognostic evaluation was performed separately by metastasis location: 3 in the liver, 8 in
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lung, and 7 in bones, the prognostic significance was achieved by the count (AUC = 0.76/p = 0.03) and
the total area (AUC = 0.77/p = 0.02) features for lung metastases. The average size feature associated
with bone metastases by AUC = 0.74/p = 0.03. These results are not presented in Table 4 because the
number of metastases in each location was below the 17 events required by the sample size calculation.

Table 4. Prognostic significance of the particle analysis features obtained by the optimal settings of
particle filters and binarization.

Parameter AUC a 95% CI p-Value HR b 95% CI p-Value

Count 0.82 0.72–0.90 0.000 * 14.8 5.3–242 0.001 *
Total area 0.77 0.68–0.86 0.000 * 17.2 5.7–230 0.001 *

Average size 0.63 0.54–0.77 0.03 * 11.9 2.1–28.8 0.001 *
Circularity 0.62 0.51–0.74 0.09 12.8 3.3–61.6 0.02 *

a ROC analysis was used for prognostic evaluation by use of continuous data. The prognostic performance is
shown only for the optimal particle subset which was selected by the circularity filter range 0.8–1.0 and object
size filter range 20-infinity, while binarization threshold was 250. Corrected by bootstrap. b Cox proportional
hazards regression analysis was used for prognostic evaluation by use of data categorized by an optimal threshold.
The prognostic performance is shown only for the optimal particle subset. Corrected by bootstrap. * p ≤ 0.05.
Abbreviations: HR = hazard ratio.
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Figure 3. Circularity filter affects the prognostic performance of the particle count feature. The circularity
threshold increases from 0.0–0.8 resulted in consistent incremental improvement of the prognostic
performance for the particle count feature. The particle size filter setting was constant at 20-infinity
pixels. This figure also demonstrates how the prognostic performance of the particle count feature
depends on the binarization threshold.

Identification of the prognostically relevant particles was based on matching between particles
selected in binary images (Figure 4a) and their corresponding original color format (Figure 4b,d,e).
Figure 4a indicates the selected particles as red outline masks, while the magnified color panels
(Figure 4b,d,e) show morphological detail and stromal localization of these particles, in between
the large epithelial cell clusters. The size of these particles, together with their circular shapes,
pan-cytokeratin immunoreactivity and visual inspection under maximum magnification (Figure 4c,f,g),
supported their identification as scattered individual epithelial cells. This result was supported by the
finding that particles in the single cell size range (20–60 pixels, approx. corresponding to a diameter
range of 7–11 µm), provided the best prognostic performance (Figure 5a). Furthermore, the number
of particles larger than a single cell was very small in this prognostically optimal subset (Figure 5b).
The size filter thus served the purpose to define the range of particle sizes providing the best prognostic
value (Figure 5a) and also to exclude the noise from very small particles ranging from 1–10 pixels
(Figure 5a) which did not contain any prognostic information.
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Figure 4. Identification of the structural prognostic clues in breast tumor histopathological specimens
stained for epithelial cells. (a) The exemplary pan-cytokeratin stained tumor tissue section is identical
as in Figures 1f and 2a to facilitate comparison. Particles filtered by the ranges of circularity = 0.8–1.0
and particle size = 20-infinity are indicated by overlay masks in red. (b,d,e) Enlargements show
their small size and stromal localization, detached from large epithelial cell clumps. (c,f,g) Maximum
enlargements show that the selected particles are recognizable as scattered individual epithelial cells by
their morphology, size, and pan-cytokeratin immunostaining. Scale bar for (a): 300 µm.
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Figure 5. The particle size distribution in relation to prognostic performance and particle count.
(a) Prognostic performance of the particle count feature is dependent on particle size. The maximum
prognostic AUC of 0.80 was obtained by the particle size range of 20–60 pixels (approx. 7–11 µm in
maximum diameter). This peak corresponds to the size of an individual cell. (b) The size distribution of
particles. Smaller particles were more abundant. Forty-seven particles were counted in the 10–20 pixel size
range, 16 in the prognostically optimal 20–60 pixel size range, and only 2 in the larger range of 60–80 pixels.
For easy comparison, all data refer to the identical exemplary image as shown in Figures 2a and 4a.
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2.6. Multivariate Analysis of the Clinicopathological and Particle Analysis Features

Multivariate analysis (Table 5) included all the clinicopathological and particle analysis features
satisfying the selection entry criterion of p ≤ 0.2 obtained in univariate analysis presented in Tables 2 and 4.
The variables thus included were: age, grade, ER, particle count, average size, total area, and circularity.
Variables were removed using backward elimination according to the selection stay criterion of p < 0.05.
Table 5 presents only the remaining variables, indicating the independent prognostic value for the count
feature (Table 5).

Table 5. Multivariate Cox regression analysis of the clinicopathological and particle analysis prognostic
features a.

Feature p-Value a HR 95%CI a

Age 0.03 5.5 1.4–1264869
Count 0.001 16.1 5.7–344551

Multivariate stepwise regression analysis was performed by inclusion of the clinicopathological and particle analysis
features to capture the prognostic redundancy. The entry criterion was p ≤ 0.2 and the remain criterion p ≤ 0.05. a

bootstrap corrected.

3. Discussion

We report the first exhaustive and hypothesis-free prognostic screening of the epithelial cell
clusters in breast carcinoma by their size and shape. Epithelial cells are of particular prognostic
relevance because the vast majority of breast cancers develop by their neoplastic transformation.

This study did not analyze predefined morphological features but focused on the identification of
novel prognostic clues. Our computational analysis was therefore not an attempt at the automation of
the visual microscopic analysis, but rather a discovery tool which enabled comprehensive morphological
evaluation and classification into size and shape subsets of the hundreds and often thousands of
epithelial clusters that are found in a typical microscopic field of view. Malignant epithelial cells typically
occur in breast tumors as irregular clusters which reflect their growth patterns. We hypothesized
that such clusters present the abundant source of novel prognostic clues because of their wide
variability in size and shape distribution among different tumors. These clusters were clearly defined
by immunostaining and could thus be easily outlined and analyzed by ImageJ software.

Previous studies aimed at the identification of novel structural prognostic clues in tumor specimens
have mostly focused on tissue sections unspecifically stained by hematoxylin and eosin. This type
of staining is by far more complex than immunostaining for epithelial cells and therefore required
a rather elaborate methodological approach [22]. The identified prognostic clues were inevitably also
complex, therefore only usable by computational analysis. Yet, the sporadic individual epithelial cells
identified as the prognostic clue by our approach are structurally so simple and consistent that they
can be quantified and verified even by standard microscopy.

The prognostic AUC of 0.35 obtained in this study for the unfiltered total pan-cytokeratin stained
area was in line with the obtained AUC value of 0.30 previously reported for the similar pan-cytokeratin
staining intensity feature [14]. Both features thus consistently associated with the low metastasis risk.
However, upon particle selection by the circularity filter, the reversal of the prognostic direction for the
total pan-cytokeratin stained area was notable from its AUC of 0.35 to 0.78. This discrepancy can be
explained by the small overlap of unfiltered particles and the particle subset selected by the circularity
threshold of 0.8. The overlap was only 0.21%, thus allowing for the opposite prognostic performance
of the two particle subsets.

The previous study by Wang et al. of pan-cytokeratin stained breast tumor histopathology
reported the best prognostic AUC of 0.66 for circularity [19]. This result was nearly identical to our
initial data obtained prior to the prognostic enhancement achieved by particle filtering. The circularity
of malignant cell clusters is a geometrical and mathematical feature with a downside that it can only
be quantified by computational image analysis. However, the above data provided an indication
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that increasingly circular particles might deliver much stronger association with high metastasis risk.
By following this lead, we extended our research effort further from the cluster circularity feature,
also previously reported by Wang et al. [19], in order to discover a prognostic marker with a better
prognostic performance that can also be easily visually quantified. This was a major achievement in view
of the fact that computer-based imaging studies rarely manage or even aim to precisely identify simple
prognostic clues. By the reported use of shape and size filters, we managed to extract the particles with
the prognostic value by AUC = 0.82 and hazard ratio (HR) of 17.2, exceeding that reported (AUC = 0.66,
HR = 1.45) by Wang et al. [19]. The stromal localization of these scattered individual epithelial cells,
in between the large epithelial cell clusters, indicated their malignant nature because normal epithelial
cells in the breast form large structures with defined shapes and cannot be found as detached in tumor
stroma. The sporadic individual epithelial cells identified here as the best prognostic performers
are comparable to the previously reported tumor buds described as small clusters of 1–5 epithelial
cells that in 3D reconstruction appear as an initial step of detachment from the main tumor mass into
a stroma, ahead of the invasive front of the tumor [23]. Tumor budding was mostly investigated in
colorectal carcinoma and it is believed to be closely related to the epithelial–mesenchymal transition and
represents the first step of migration, invasion, and metastasis [20,24]. In agreement with our current
results, such tumor buds were reported as markers of the adverse clinical outcome [20]. However,
the important distinction is the size, as tumor buds range between 1–5 cells, while the prognostic
marker identified in our current study is narrower in size range, representing a single cell. Furthermore,
the prognostic value of intratumoral epithelial single cells described in this study is much higher by
HR = 14.8 in comparison to the best previously reported for the peritumoral buds achieving an HR
of 6.5 [20]. Another distinction is the location because the tumor buds were primarily investigated
in the peritumoral area, while we analyzed the intratumoral epithelial structures. The single study
describing intratumoral buds showed a significant association with tumor grade and ER positivity [25].
However, due to the short follow up, the prognostic performance was evaluated only on the basis
of association with these pathological parameters, while the more reliable prognostic events such as
distant metastasis occurrence were not available [25], thus restricting any prognostic performance
comparison with our current results.

The circulating tumor cells (CTC) have received much attention [26] as their content is known to
correlate with metastasis occurrence by an AUC of up to 0.73 [27]. Intriguingly, we report here a stronger
association with metastasis occurrence for the malignant cell count in tumor stroma, even prior to their
dissemination into the blood. Superior prognostic performance of these stromal epithelial cells might
be explained by the ease and reliability of their quantification in tissue sections by computational
analysis, while CTC quantification in the blood is far more challenging and possibly inaccurate [28].

Advantages of this study include the identification of the leading prognostic histomorphological
clue that can be easily quantified by visual microscopy without any need for specialized software.
Computer-based imaging studies exceptionally rarely manage or even aim to identify simple prognostic
clues. The achieved excellent prognostic performance is another major benefit of the current study.
Advantages of this study further include the use of whole-slide images instead of the more common
tissue microarrays which are by far smaller. Computational analysis has also enabled an automatic size
and shape filtering and automatic quantification of malignant clusters according to their size and shape.
Furthermore, the used patient group did not include any systemic treatment which could interfere
with metastasis occurrence. We needed to retrieve the 26-year-old archived samples to assemble such
a group, as more recent treatment protocols prescribe systemic cytotoxic and/or hormonal treatments
to most patients. To assess the robustness of the prognostic evaluation, we performed a bootstrap
validation as a bias-correction method for the ROC and Cox regressions. Advantages of the study
design further include the twofold evaluation of the prognostic significance, by ROC and Cox regression
analyses, followed by the Cox multivariate analysis as the estimation of potential clinical usefulness.
The convenience of the Cox regression was in its consideration of the time to metastasis while ROC
analysis only accounts for metastasis outcome. However, the downside of Cox regression is its
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requirement for categorized data which introduces bias into the prognostic evaluation. Therefore,
we also included ROC analysis which is commonly used in prognostic performance evaluation but
makes use of continuous data values. Due to the long term follow up, this study was able to accumulate
a sufficient number of distant metastasis events to perform a prognostic evaluation. This presents the
major advantage as distant metastasis is by far the most reliable event for prognostication of breast
cancer outcome, based on the fact that it causes 90% of cancer deaths.

Although it exceeded the requirement estimated by the prospective sample size analysis, the group
of 102 patients is a limitation of this study. However, the systemically untreated patient group and
the bootstrap validation supported the reliability of the obtained results. The prognostic validation is
widely understood as the generalizability test which can be performed by internal validation within the
existing patient group and/or the external validation in another unrelated patient group. The current
study has performed the prognostic validation by the internal bootstrap bias-correction method [29].
Additional validation by studies in an extended patient group and external groups would be needed to
further characterize the prognostic clinical validity of the analysis performed in this study. Furthermore,
although the employed computational analysis technique is fully objective, the overall workflow
still included residual subjectivity at the level of selection of representative tumor histopathology
areas for analysis. The retrospective design of the prognostic model was another limitation. Besides,
pan-cytokeratin AE1/AE3 antibody cocktail immunostains both normal and malignant breast epithelial
cells. This limitation was largely overcome by the selection of the predominantly malignant tumor
areas, based on morphological criteria. Therefore, the pan-cytokeratin staining in the current study
indicated the growth patterns of malignant cells.

4. Materials and Methods

Writing of this report was done to include all relevant experimental detail according to
recommendations for tumor marker prognostic studies [30].

4.1. Ethics Approval Statement

The study was approved by the Institutional Review Board (Belgrade University, School of
Medicine, approval #29/VI-4) and conforms with The Code of Ethics of the World Medical Association
(Declaration of Helsinki), printed in the British Medical Journal (July 18, 1964) and its 7th revision
in 2013.

4.2. Patient Group

Patient data were obtained in a de-identified form without identifiers that could enable re-identification
(Safe-Harbour methodology of the 2012 Health Insurance Portability and Accountability Act). All patients
were female Caucasian, treated in the same year (1993) at the Institute of Oncology and Radiology of
Serbia. Sixty-nine percent of patients were positive for estrogen receptor (ER, median of 32 fmol/mL) and
24% were positive for progesterone receptor with a median of 6 fmol/mL, based on the respective cutpoints
of 10 fmol/mg and 20 fmol/mg. Estrogen and progesterone receptors were measured by dextran-coated
charcoal assay [31]. The median age at diagnosis was 57 years (range 37–80). The prospective sample size
calculation was based on a pilot study including 40 patients and required 85 patients with 17 positive
cases for alpha = 0.05, beta = 0.20, and AUC effect size of 0.72/0.28 (MedCalc Software, Ostend, Belgium).
The actually obtained best AUC was 0.82, with a sample size of 102 patients of which 20 cases were
metastasis positive.

4.3. HER2 Amplification Testing

The evaluation of HER2 amplification was not performed at the time of diagnosis in year 1993
because it was not a part of routine clinical testing at that time. This test was performed in 2012 by
the SPOT-Light® HER2 CISH Kit, (Cat. #84-0150, Zymed/Invitrogen, Thermo Fisher Scientific Corp.
Waltham, MA, USA), based on chromogenic in situ hybridization (CISH), as we previously described
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in full detail [32]. This kit uses digoxigenin-labelled DNA probes to quantitatively determine HER2
amplification in formalin-fixed, paraffin-embedded breast carcinoma tissue sections. Hybridization
results were evaluated in the 400× and 1000× magnification fields by a brightfield Olympus BX51
microscope. One to five gene copies per nucleus were defined as no amplification, while more than
6 gene copies per nucleus defined a positive amplification. We have previously reported a high
agreement between the immunohistochemistry and CISH methods in the evaluation of HER2 gene
amplification [32,33].

4.4. Study Design

Histopathology images from 102 patients were stained by pan-cytokeratin antibody to label
epithelial cell clusters which could be outlined by ImageJ software. The circularity filter was used
to select a total of 80 subsets of epithelial clusters differing in shape and size. These subsets were
further screened for their prognostic value and the particles in the optimal subset identified as scattered
individual epithelial cells.

4.5. Image Analysis Workflow

The workflow included immunostaining, selection of tissue sections, image acquisition, stain
decomposition, binarization, particle analysis, and prognostic evaluation and validation. These steps
are described below.

4.6. Immunostaining

Tissue was obtained during surgical removal of a tumor. Primary breast tumor tissue was
formalin-fixed, paraffin-embedded, and cut to produce 4 µm whole sections. A heat-mediated antigen
retrieval was done in a water bath set to 95 ◦C for 40 min in EDTA pH 8 buffer. Endogenous peroxidase
was quenched with 3% H2O2 in methanol for 30 min and 5% goat serum was used for preincubation.
The whole tissue sections were incubated with the CD8 monoclonal rabbit antibody (ThermoFisher
Scientific, Waltham, MA, USA; #RM-9116-S1), followed by the pan-cytokeratin primary antibody clones
mAE1/AE3 (Dako, Glostrup, Denmark, #M3515) in 5% goat serum for 60 min. This antibody cocktail
stains epithelial cells by detecting cytokeratins 1–8, 10, 14–16, and 19. Washing was performed in PBS
and the secondary goat anti-rabbit IgG HRP conjugate added (Jackson ImmunoResearch Laboratories,
West Grove, PA, USA; #111-035-144), followed by alkaline phosphatase conjugated polyclonal goat
anti-mouse IgG (Southern Biotech, Birmingham, AL, USA; #1030-04) in 5% goat serum. Chromogens
were nickel-enhanced DAB (Vector Laboratories, Burlingame, CA, USA) and subsequently the FastBlue
RR (Sigma-Aldrich, St. Louis, MO, USA). Counterstain was not performed in order to highlight only
epithelial cells.

4.7. Selection of Tissue Sections

To achieve maximal reproducibility and validity, the pathologist (KK) selected the tissue sections
containing the growth patterns characteristic for each individual tumor, with the highest content
of pan-cytokeratin stained malignant cells and without artefacts. Pan-cytokeratin-stained cell
arrangements were identified as normal or malignant according to their morphology.

4.8. Image Acquisition

Color images were acquired by use of the Hamamatsu-XRC12000 NanoZoomer high-resolution
digital slide scanner (Hamamatsu City, Japan).
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4.9. Stain Decomposition

Blue (pan-cytokeratin) and brown (CD8) channels were decomposed as previously described in
detail by Li and Plataniotis [34]. All downstream image analysis in this study was performed in the
blue pan-cytokeratin channel.

4.10. Image Binarization

Blue images were transformed to the 8-bit greyscale format by the run (“8-bit”) command of the
Fiji/ImageJ version 1.52n, an open image analysis software [35]. Images were further transformed to
a binary format by the run (“Make Binary”) command for automatic thresholding or setThreshold(0,
220), setThreshold(0, 240), and setThreshold(0, 250) commands for fixed thresholding. Automatic
thresholding applies a different threshold to each image based on the tonal distribution histogram,
while set thresholding applies a fixed threshold to each image in the batch.

4.11. Image Analysis

A total of 532 images provided approximately 5 representative images per patient, for 102 patients.
The binarized images were analyzed by the “analyze particles” function in ImageJ. This analysis
performs an automatic segmentation which distinguishes particles from their background and outlines
the individual particles. Particles were subsequently counted, and their size and shape defined by
parameters such as average size in pixels, maximum Feret diameter, perimeter, circularity, and solidity.
The first three parameters are size descriptors, while circularity is a shape descriptor and solidity
a density descriptor. Solidity is calculated as the area of a particle divided by its convex hull area,
whereby a solid object has a value of 1, while an object with irregular boundary or holes has a value of
less than 1. Circularity or roundness is calculated as 4π × area/perimeter2. A circularity value of 1.0
indicates a perfect circle, while values approaching 0.0 reflect an increasingly elongated shape.

4.12. Prognostic Evaluation

Values of the above-mentioned features were averaged among 5–6 images available for each
patient, followed by the prognostic evaluation by ROC and Cox regression analyses, with metastasis
occurrence as the endpoint event. These tests compare the prognosticated and actual metastasis
outcomes. The area under the rate of change curve (AUC) is a quantitative method commonly used
to assess efficiency of discrimination with a binary endpoint. Discrimination is the capability of
prognostic features to stratify patients with and without the actual metastasis occurrence. AUC = 0.5
represents chance discrimination, while perfect discrimination equals 0.0 or 1.0. AUC is calculated by
use of continuous feature values, while Cox proportional hazards regression analysis is calculated by
use of categorized data. Data was categorized by dividing patients into low- and high-risk subgroups
with an optimal cutpoint selected by X-tile 3.6.1 software (Yale University, New Haven, CT, USA).
Each feature satisfied the proportional hazards assumption based on the Schoenfeld residuals by phtest
(Stata/MP 13 package, StataCorp, College Station, TX, USA). The hazard ratio (HR) is the effect size of
the Cox regression reflecting the metastasis rates in high- and low-risk patient subgroups. It indicates
chance performance at HR = 1.0. As for AUC, the HR values above its chance performance indicate
an association with high risk, while HR values under 1.0 point to low risk markers. The independence
of each prognostic factor was tested by multivariate Cox proportional hazards regression analysis. ROC
analysis and Cox regression can disagree in their prognostic evaluation because the data categorization
step might introduce bias. Furthermore, Cox regression takes the time interval from surgery to
metastasis into account, while ROC analysis does not.

4.13. Validation

The over-optimism of the ROC (Stata/MP 13) and Cox (IBM SPSS) analysis was corrected by the
bootstrap internal validation with 1000 data resamples [36].
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5. Conclusions

Our findings show that malignant cell clusters in breast tumors provide prognostic information by
their count, size, and shape. We also report, for the first time, that the smallest of these patches provide
a particularly high performance in prognostication of metastasis occurrence and can be identified as
scattered individual epithelial cells in tumor stroma. Their count was characterized as an independent
prognostic factor. Internal validation performed by bootstrap suggests that the model is generalizable.
Scattered individual epithelial cells are easy to implement as markers of high metastasis risk because
they can be reliably and widely identified, quantified, and investigated either by computational analysis
or visual microscopy without the use of any specialized software. The clinical relevance of prognostic
improvement is based on its role in early individual treatment decisions which affect the quality of life
and survival.
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