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Abstract

Background: The repertoire of free-living protozoa in contact lens solutions is poorly known despite the fact that
such protozoa may act as direct pathogens and may harbor intra-cellular pathogens.

Methods: Between 2009 and 2014, the contact lens solutions collected from patients presenting at our
Ophthalmology Department for clinically suspected keratitis, were cultured on non-nutrient agar examined by
microscope for the presence of free-living protozoa. All protozoa were identified by 18S rRNA gene sequencing.

Results: A total of 20 of 233 (8.6 %) contact lens solution specimens collected from 16 patients were cultured.
Acanthamoeba amoeba in 16 solutions (80 %) collected from 12 patients and Colpoda steini, Cercozoa sp.,
Protostelium sp. and a eukaryotic more closely related to Vermamoeba sp., were each isolated in one solution.
Cercozoa sp., Colpoda sp., Protostelium sp. and Vermamoeba sp. are reported for the first time as contaminating
contact lens solutions.

Conclusion: The repertoire of protozoa in contact lens solutions is larger than previously known.
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Background
Contact lens (CL) wearers are at risk of developing in-
fectious keratitis [1]. In particular, the prevalence of
amoebic keratitis has been shown to be significantly
higher in CL wearers than in the general population liv-
ing in the same geographic area [2]. Accordingly, it has
been suspected that CL solution could be the source of
amoeba in this situation [3]. Indeed, several studies have
reported detecting amoeba in CL solutions [2]. Thus far,
only amoeba of the genus Acanthamoeba have been doc-
umented in CL solutions [1, 4, 5].
Here, we prospectively search for free-living unicel-

lular protozoa in CL solutions collected from patients
with suspected keratitis, in an effort to broaden the
repertoire of free-living protozoa as potential cornea
pathogens.

Methods
Culture of protozoa
CL solution specimens were collected between 2009 and
2014 by CL wearers presenting to the Ophthalmology
Department of the Timone Hospital in Marseille, France,
for the clinical diagnosis of keratitis and corneal ulcers.
Clinical criteria for diagnosis included evidence of a cor-
neal infiltrate or corneal ulcer with underlying inflam-
mation, which could lead to the necrosis of corneal
tissue. CL solution provided by the patient was poured
into a sterile can kept at room temperature for 4–24 h
before it was analysed in the laboratory. The following
standard protocol was used to search for protozoa. The
CL solution was spread onto a non-nutrient agar plate,
plated with a lawn of living Enterobacter aerogenes. The
non-nutrient agar plate was incubated at 28 °C in a hu-
midified atmosphere (contact with moistened gauze) and
examined by microscope at × 4 and × 10 magnifications.
Free-living protozoa were subcultured on a new non-
nutrient agar plate with living E. aerogenes in order to
obtain sufficient clonal populations. When the growth
was sufficient, areas where protozoa were easily detected
by microscope were cut and centrifuged at 2000 g for
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10 min. The pellet was re-suspended in 1 mL of Amoeba
Page’s saline PAS (Dunstaffnage Marine Laboratory,
Oban, UK) for further DNA extraction.

Culturing bacterial and fungal organisms
CL solution specimens were seeded onto 5 % sheep-
blood agar (COS, bioMérieux, La-Balme-les-Grottes,
France) and BCYE (Buffered Charcoal Yeast Extract,
bioMérieux) and incubated at 32 °C for 10 days in a 5 %
CO2 atmosphere. For the culture of yeasts and fungi, CL
solution specimens were seeded onto Sabouraud agar
containing chloramphenicol and gentamicin (bioMérieux),
incubated at 32 °C for 10 days. All the bacterial isolates
were identified using matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-
TOF-MS; Microflex, Bruker Biospin S.A., Wissembourg,
France) as previously described [6]. Briefly, colonies de-
tached from the agar were directly applied to a MALDI-
TOF MTP 384 target plate (Bruker) in order to analyze
four spots per isolate. Each spot was overlaid with 2 μL of
matrix solution, a saturated solution of α-cyano-4-hydro-
xycinnamic acid in 50 % acetonitrile mixed with 2.5 % tri-
fluoracetic-acid. The matrix-sample was crystallized by
air-drying at room temperature for 5 min. Measurements
were performed using an Autoflex II mass spectrometer
(Bruker Daltonik) equipped with a 337-nm nitrogen laser.
Spectra were recorded in the 2–20 kDa mass range. Data
were automatically acquired using AutoXecute acquisition
control software. The two first raw spectra obtained for
each isolate were imported into the BioTyper software,
version 2.0 (Bruker Daltonik GmbH), and were analyzed
by standard pattern matching (with default parameter set-
tings) against 5625 references in the BioTyper database.
When both spots yielded a score ⩾1.9, identification was
complete. In this study, it was not necessary to complete
accurate MALDI-TOF-MS identification of bacteria by
DNA sequencing.

Molecular identification of protozoa
Total DNA was extracted using the QIAmp tissue kit ac-
cording to the manufacturer’s protocol (QIAGEN SA,
Courtaboeuf, France). A 328-bp fragment of the 18S
rRNA gene was PCR-amplified using the primers NS5/F
5′AACTTAAAGGAATTGACGGAAG3′ and NS6/R 3′
GCATCACAGACCTGTTGCCTC5′ and an annealing
temperature of 60 °C [7]. All amplification reactions
were performed using the 2720 thermal cycler (Applied
Biosystems, Saint-Aubin, France) in a 50 μL-mixture
containing 5 μL of dNTPs (2 mM of each nucleotide),
5 μL of DNA polymerase buffer (Qiagen), 2 μL of
MgCL2 (25 mM), 0.25 μL HotStarTaq DNA polymerase
(1.25 U) (Qiagen), 1 μL of each primer and 35.75 μL of
DNAse-free water. The positive control consisted of
Candida albicans DNA. Sterile distilled water was used

as a negative control. PCR consisted of a 15-min initial
denaturation Taq polymerase Hot-Star at 95 °C followed
by 30-s denaturation at 95 °C, 30-s hybridation at 60 °C
and 1-min elongation at 72 °C. After 35 cycles, extension
was performed for 5 min at 72 °C. Amplified products
were visualized under UV illumination with Syber Safe ®
staining after electrophoresis using a 1.5 % agarose gel.
PCR products were cloned by the pGEM® -T Easy
Vector System Kit according to the manufacturer’s in-
structions (Promega, Lyon, France). They were sequenced
in both directions using the Big Dye® Terminator V1.1
Cycle Sequencing Kit (Applied Biosystems). Original se-
quences have been submitted to GenBank.

Sequence alignment and phylogenetic analysis
Sequencing products were resolved using an ABI PRISM
3130 automated sequencer (Applied Biosystems). Se-
quences were compared with the GenBank database
using the online BLAST program (www.ncbi.nlm.nih.-
gov). The highest percentage of sequence similarity was
used to identify isolates. Sequence similarity higher than
97 % with a described species was considered to be indi-
cative of identification at the species level. Phylogenetic
analysis was established by the neighbor-joining method
using MEGA5 software (www.megasoftware.net). Phylo-
genetic construct was based on the 18S rRNA gene se-
quences aligned with 52 references.

Results
Free living protozoa
A total of 20/233 (8.6 %) CL solution specimens collected
between 2009 and 2014 from 16 patients, cultured at least
one free-living protozoa (Table 1). Protozoa identifications
were made by partial sequencing of the 18S rRNA gene
and by establishing the percentage of similarity of these
sequences with reference sequences. authenticated by the
validity of positive and negative controls. With one excep-
tion, confident identification was obtained at the genus
level only. These identifications include Acanthamoeba in
16 (80 %) solution specimens collected from 12 different
patients, Colpoda steini in specimen n°14, Cercozoa sp. in
specimen n°12, Protostelium sp. in specimen n°15, and an
identical 99 % sequence similarity with both Hartmanella
and Vermamoeba genus in specimen 13.
Further phylogenetic analysis (Fig. 1) confirmed these

identifications and indicated that the protozoa isolated
in specimen n°13 was more closely related to Verma-
moeba. Furthermore, phylogenetic analysis indicated that
the same Acanthamoeba was isolated in left and right
contact lens solutions in patients 6, 11 and 16.

Bacteria and fungi
Twelve of the 20 protozoa-positive (60 %) CL specimens
cultured bacteria, while eight protozoa-positive CL
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Table 1 List of protozoa identified in 16 contact lens solution specimens, along with co-cultured bacteria and fungi

Patient CL case Protozoa Co-cultured bacteria Co-cultured fungi

Patient 1 1 Acanthamoeba sp. Serratia liquefaciens
Stenotrophomonas maltophilia
Pseudomonas aeruginosa

None

Patient 2 2 Acanthamoeba sp. Pseudomonas aeruginosa
Stenotrophomonas maltophila
Chryseobacterium dacguense
Citrobacter freundi

Sacrocadium kiliense

Patient 3 3 Acanthamoeba sp. Pseudomonas aeruginosa
Chryseobacterium gleum
Delftia acidovorans

None

Patient 4 4 Acanthamoeba sp. Pseudomonas fluorescens
Mycobacterium chimaera
Stenotrophomonas maltophila

None

Patient 5 5 Acanthamoeba sp. None None

Patient 6 6-1 Acanthamoeba sp. None None

6-2 Acanthamoeba sp. None None

Patient 7 7 Acanthamoeba sp. None Candida guilliermondii
Fusarium oxyporum

Patient 8 8 Acanthamoeba sp. Stenotrophomonas maltophilia
Raoultella ornithinolytica
Sphingobacterium multivorium
Agrobacterium tumefaciens
Klebsiella terrigena
Pseudomonas hibiscicola
Shewanella putrefaciens
Sphingobacterium siyangense

None

Patient 9 9-1 Acanthamoeba sp. None None

9-2 Acanthamoeba sp. None None

Patient 10 10 Acanthamoeba sp. Klebsiella pneumonia
Enterobacter cloacae
Stenotrophomonas maltophila

Candida parapsilosis
Candida lipolytica

Patient 11 11-1 Acanthamoeba sp. Sphingobacterium multivorum
Aeromonas veronii
Aeromonas caviae
Raoutella ornitolytica
Klebsiella pneumoniae

None

11-2 Acanthamoeba sp. Pseudochrobactrum asaccharolyticum
Aeromonas caviae
Wausteriella falsenii

None

Patient 12 12 Cercozoa sp. Klebsiella oxytoca
Stenotrophomonas maltophila
Alcaligenes xylosidans
Pseudomonas aeruginosa

Candida colliculosa

Patient 13 13 Vermamoeba sp. Enterobacter cloacae,
Stenotrophomonas maltophila
Xanthobacter flavus
Pseudomona aerouginosa
Mycobacterium chelonae

None

Patient 14 14 Colpoda steini None None

Patient 15 15 Protostelium sp. Alcaligenes xylosoxidans
Stenotrophomonas maltophila
Pseudomonas aeruginosa
Sphingomonas multivorum
Aeromonas culicicola
Hicrobacterium flavum
Chryseobacterium hominis
Microbacterium testaceum

None

Patient 16 16-1 Acanthamoeba sp. Microbacterium oxydans Penicillium chrysogenum,
Candida parapsilosis
Fusarium oxysporum

16-2 Acanthamoeba sp. None None

Bouchoucha et al. BMC Ophthalmology  (2016) 16:191 Page 3 of 5



specimens did not. Stenotrophomonas sp. and Pseudomonas
sp. were most frequently identified and found in 8/20 (40 %)
specimens, followed by Klebsiella sp. in 4/20 (20 %) speci-
mens, Aeromonas sp. in 3/20 (15 %) specimens, Chryseobac-
terium sp. and Sphingobacterium sp. in 2/20 (10 %)
specimens and Achromobacter sp., Agrobacterium sp.,
Alcaligenes sp., Citrobacter sp., Delftia sp., Enterobacter sp.,
Microbacterium sp., Mycobacterium sp., Raoultella sp.,
Serratia sp., Shewanella sp. and Wautersiella sp. in 1/20
specimens. Fungi were cultured in five protozoa-positive CL
specimens. Fungi included Candida guilliermondii, Candida
parapsilosis, Candida lipolytica and Candida colliculosa,
Fusarium oxyoprum, Sacrocadium kiliense and Penicillium
chrysogenum. In three cases, several fungi were co-cultured,
including P. chrysogenum, C. parapsilosis and F. oxysporum
in case 16–1, C. guilliermondii and F. oxyoprum in case 7
and C. parapsilosis and C. lipolytica in case 10.

Discussion
We embarked upon a prospective study of the repertoire
of free-living protozoa in the CL solutions. In this study
we observed that, unsurprisingly, the vast majority of
positive specimens grew an Acanthamoeba amoeba. A
previous study reported 28 Acanthamoeba isolates from
CL solutions, including A. lugdunensis, A. hatchettii and
A. castellani [4]. Further species were later found to
contaminate CL solutions of residents in Southern Korea
[5]. Also, amoeba morphologically identified as A. rhy-
sodes, A. polyphaga and A. hatchetti were reported in
CL specimens of patients with clinical keratitis in
Austria [8]. Here, we additionally observed that it is
most likely that the same amoeba contaminates both the
right and the left CL solutions. These observations are
of clinical interest, as Acanthamoeba are known to cause
keratitis [9–12].

Fig. 1 Phylogenetic tree based on the 18S rRNA gene sequences derived from 20 protozoan isolates taken from contact lens solutions. Bootstrap
values are indicted at nodes. The bar indicates 1‰ substitutions in sequences
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However, we failed to find Colpoda sp., Protostelium sp.,
and Vermamoeba sp. in these CL solutions. Likewise, we
found no cases of keratitis which were due to any of these
three species: non-Acanthamoeba keratitis were found to
be due to Valkampfia and Hartmanella amoeba [13, 14].
Amoeba, and Acanthamoeba in particular, have been

shown to host so-called amoeba-resisting bacteria [15, 16],
making them a source of polymicrobial keratitis which may
involve the amoeba itself in addition to bacteria and viruses
[17]. Several bacteria here co-cultivated with Acanth-
amoeba, are amoeba-resisting bacteria, including P. aerugi-
nosa [18] Mycobacterium sp. [19–21] and Aeromonas sp.
[16, 22]. We also co-cultivated several bacteria with Cerco-
zoa sp.,Vermamoeba sp. and Protostelium sp., but not with
C. steini, suggesting further studies of the relationships be-
tween these protozoa and bacteria may be required.

Conclusions
In conclusion, the spectrum of protozoa contaminating
CL solutions is broader than previously thought. These
protozoa may also host ocular pathogens including bac-
teria and fungi. Some of these emerging protozoa escape
the current routine detection of amoeba in clinical speci-
mens collected from corneal lesions, underscoring the
need to develop additional laboratory tools for the diag-
nosis of keratitis.
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