
RESEARCH ARTICLE

Efficient realization of quantum primitives for

Shor’s algorithm using PennyLane library

A. V. AntipovID
1,2*, E. O. Kiktenko1,2, A. K. FedorovID

1,2

1 Russian Quantum Center, Skolkovo, Moscow, Russia, 2 National University of Science and Technology

“MISIS”, Moscow, Russia

* an.antipov@rqc.ru, aantipov@nes.ru

Abstract

Efficient realization of quantum algorithms is among main challenges on the way towards

practical quantum computing. Various libraries and frameworks for quantum software engi-

neering have been developed. Here we present a software package containing implementa-

tions of various quantum gates and well-known quantum algorithms using PennyLane

library. Additoinally, we used a simplified technique for decomposition of algorithms into a

set of gates which are native for trapped-ion quantum processor and realized this technique

using PennyLane library. The decomposition is used to analyze resources required for an

execution of Shor’s algorithm on the level of native operations of trapped-ion quantum com-

puter. Our original contribution is the derivation of coefficients needed for implementation of

the decomposition. Templates within the package include all required elements from the

quantum part of Shor’s algorithm, specifically, efficient modular exponentiation and quantum

Fourier transform that can be realized for an arbitrary number of qubits specified by a user.

All the qubit operations are decomposed into elementary gates realized in PennyLane

library. Templates from the developed package can be used as qubit-operations when defin-

ing a QNode.

Introduction

The use of the laws of quantum mechanics could give rise to a new computing paradigm that

is believed to be superior to classical computing for a certain class of problems [1]. Recent

advances in the realization of quantum computing devices based on diverse physical princi-

ples, such as solid-state systems [2–4], trapped ions [5, 6], and neutral atoms [7, 8], have

pushed their capabilities to the threshold of quantum advantage. In addition to progress in

quantum hardware, software aspects of quantum computing attracted a significant deal of

interest. Various libraries and frameworks for programming quantum devices have been sug-

gested [9, 10]. Still, one of the most important aspects of their use is a sufficient amount of pre-

programmed packages for quantum algorithms and their building blocks. With the increase of

the complexity of quantum algorithms, well-tested packages for primary quantum primitives

become of rising importance.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Antipov AV, Kiktenko EO, Fedorov AK

(2022) Efficient realization of quantum primitives

for Shor’s algorithm using PennyLane library. PLoS

ONE 17(7): e0271462. https://doi.org/10.1371/

journal.pone.0271462

Editor: Pietro Massignan, Universitat Politecnica de

Catalunya - Campus del Baix Llobregat, SPAIN

Received: March 1, 2022

Accepted: June 30, 2022

Published: July 14, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0271462

Copyright: © 2022 Antipov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This work is supported by the grant of

the Russian Science Foundation No. 19-71-10091

https://orcid.org/0000-0003-3678-1999
https://orcid.org/0000-0002-4722-3418
https://doi.org/10.1371/journal.pone.0271462
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0271462&domain=pdf&date_stamp=2022-07-14
https://doi.org/10.1371/journal.pone.0271462
https://doi.org/10.1371/journal.pone.0271462
https://doi.org/10.1371/journal.pone.0271462
http://creativecommons.org/licenses/by/4.0/

One of existing software platforms is PennyLane, which is a cross-platform Python library

for programming quantum computers. Its main application focuses on optimization tasks in

quantum and hybrid quantum-classical algorithms. An interesting feature of PennyLane is

that it is a unified architecture that can in principle be used with any gate-based or quantum

computing platform or quantum simulator as a backend [11]. This feature makes PennyLane

appealing for realizations of many well-known quantum algorithms that can be used, first,

for demonstrative, educational, and research purposes, and, in future, for solving practical

problems.

In this work, we present a set of functions that form the basis for the realization of Shor’s

algorithm [12] using PennyLane library. See the source at [13]. We realize functions that

include all required elements from the quantum part of Shor’s algorithm: efficient modular

exponentiation and quantum Fourier transform. These important quantum primitives can be

realized for an arbitrary number of qubits specified by a user. All qubit operations are decom-

posed into PennyLane’s elementary gates. Functions from the package are realized as templates

and can be used as qubit-operations when defining a QNode. We expect that our results are

directly applicable for programming quantum devices using PennyLane library.

Realization of the mentioned algorithms allows for easy resource-estimation in the terms

of quantum gates, because decompositions are explicitly defined inside these functions. We

focused on ion-trapped quantum processor and developed functionality for transpilation of

decompositions from given quantum algorithm into a set of native single- and two-qubit

gates. Apart from reduction in noise levels due to the use of less noisy gates, the transpilation

provides means for counting the amount of native gates and estimation of the execution time

for a given algorithm.

This paper is organized as follows. In Sec. 1, we provide a general overlook of the package.

Sec. 2 contains the description of the quantum order-finding procedure that is necessary for

the realization of Shor’s algorithm. The most important building block for efficient realization

of the order-finding procedure is the quantum modular exponentiation, so we devote Sec. 3 to

the description of the architecture of quantum modular exponentiation in the case of 3-bit

integer inputs. Although the modular exponentiation procedure in our package is realized for

arbitrary n-bit input, we chose 3-bit inputs for illustrative purposes. Sec. 4 contains an example

of usage of order-finding procedure. Sec. 5 contains a description of transpilation technique.

For an illustration of resource-estimation, we provide a table containing counts of native gates

in the order-finding procedure and depth of the circuit.

Materials and methods

In this work, we used the PennyLane library as a basis for developing a software package con-

taining efficient realizations of building blocks for important quantum algorithms. The main

source with a theoretical description of the realized decompositions is [14]. The PennyLane

software package utilized in this work is described in [11].

Repository containing realization of the developed modules is provided in [13]. The proto-

col associated with this repository can be accessed via the link https://dx.doi.org/10.17504/

protocols.io.b5qaq5se[PROTOCOL DOI] (see [15]).

Results

1 General description

The developed package contains quantum circuits realized as PennyLane’s templates and a class

of classical functions for auxiliary computations. Every template provides a decomposition of

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 2 / 17

(realization of quantum algorithms), Leading

Research Center on Quantum Computing

(Agreement 014/20; transpilation), and by the

Priority 2030 program at the National University of

Science and Technology MISIS (resource-

estimation and implementation analysis).

Competing interests: The authors have declared

that no competing interests exist.

https://dx.doi.org/10.17504/protocols.io.b5qaq5se
https://dx.doi.org/10.17504/protocols.io.b5qaq5se
https://doi.org/10.1371/journal.pone.0271462

desired qubit operation to the level of basic PennyLane gates and a class of classical functions

helps to build some decompositions. The full list of templates and classical functions is provided

in tables below.

We note that the developed templates can be used in the same way as elementary gates

inside PennyLane’s QNode structure. In Listing 1, the script implements the 3-qubit quantum

circuit with 1 standard PauliX gate from the PennyLane library and the gate SUM that is real-

ized as a template. The circuit is depicted in Fig 1.

Listing 1. Example of usage of the template SUM. Circuit in Fig 1 is realized.
import pennylane as qml
import QuantumOperations as q
wires
wires = [0, 1, 2]
device
dev = qml.device (‘default.qubit’, wires=wires shots=1000,
analytic=None)
circuit
def func ():
use standard PennyLane’s gate
qml.PauliX (wires = wires [0])
use template SUM
q.SUM(wires = wires)
return qml.probs (wires)

QNode
circuit = qml.QNode(func, dev)

1. PennyLane’s templates with higher-level functions realizing quantum computations

within PennyLane library are presented in Table 1.

2. Functions from the class ClassicalOperations for auxiliary computations are presented in

Table 2.

The construction of the circuit is defined in the function func() and it is used to define the

QNode object. QNode is a class that is used to construct quantum nodes encapsulating a quan-

tum function or circuit and the computational device it is executed on.

Classical function modular_multiplicative_inverse is crucial for building the

decomposition and it is used as the auxiliary function for MODULAR_EXPONENTIATION.

The role of this classical function is to find parameters for the lower-level decomposition

Fig 1. Example of the gate SUM. Quantum circuit contains one standard PauliX gate from the PennyLane library and one SUM gate from the list of

added PennyLane templates.

https://doi.org/10.1371/journal.pone.0271462.g001

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0271462.g001
https://doi.org/10.1371/journal.pone.0271462

Ctrl_MULT_MOD_inv. Important aspect of modular_multiplicative_inverse is

the efficiency of the realization that relies on the efficiency of two other classical functions gcd
and diophantine_equation.

2 Order-finding circuit description

Order-finding is the only quantum part in Shor’s algorithm for integer factorization [12]. The

procedure of the reduction of integer factorization task to order-finding task is given in S1

Appendix.

The circuit for realization of order-finding procedure is given in Fig 2. It consists of three

blocks: succession of Hadamard gates, modular exponentiation and conjugate transpose of

quantum Fourier transform. The order-finding is realized as the template Order_Finding
and it makes use of templates QFT_ and MODULAR_EXPONENTIATION.

Listing 2. Order_Finding template.
O(n^3) efficient order-finding circuit
input parameters: N,y
class Order_Finding (Operation):
num_params = 3
num_wires = AnyWires
par_domain = None
@staticmethod
def decomposition(� parameters, wires):

Table 1. PennyLane’s templates developed for realization of quantum gates.

Gate Description

SUM Performs 3-qubit addition modulo 2 operation and puts the result in the third qubit

CARRY Performs calculation of the highest order bit in the sum of three bits

CARRY_inv Reversed (conjugate-transposed) CARRY gate

ADDER Performs addition of two integer numbers encoded in input-qubits with respective binary representations

ADDER_inv Reversed (conjugate-transposed) ADDER gate

ADDER_MOD Performs addition modulo N of two integer numbers a, b< N encoded in input-qubits with respective binary representations

ADDER_MOD_inv Reversed (conjugate-transposed) ADDER_MOD gate

Ctrl_MULT_MOD If a control-qubit is |1i, the gate performs multiplication of the integer number z encoded in the input register by integer number m
modulo N; if the control-qubit is |0i, then the initial number z is put into the output register

Ctrl_MULT_MOD_inv Reversed (conjugate-transposed) Ctrl_MULT_MOD gate

Ctrl_SWAP Performs SWAP of two target-qubits conditional on the state of a control-qubit

MODULAR_EXPONENTIATION Performs O(n3) modular exponentiation, in particular, for encoded into the input register integer number x, the gate performs

calculation of yx modulo N and puts the result into the output register

CR_k Performs 2-qubit controlled phase shift gate which is used in the QFT (Quantum Fourier Transform) gate

CR_k_inv Reversed (conjugate-transposed) CR_k gate

QFT_ Performs Quantum Fourier Transform

QFT_inv Performs reversed (conjugate-transposed) Quantum Fourier Transform

Order_Finding Performs quantum order-finding algorithm

https://doi.org/10.1371/journal.pone.0271462.t001

Table 2. Classical auxiliary functions.

Function Description

gcd Performs Euclid’s algorithm for finding greater common divider (GCD) of integers a and b
diophantine_equation Solves Diophantine equation, i.e. given a, b, the function returns x, y such that ax + by = GCD(a, b)

modular_multiplicative_inverse Finds modular multiplicative inverse of an integer a modulo N using the function diophantine_equation

https://doi.org/10.1371/journal.pone.0271462.t002

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0271462.t001
https://doi.org/10.1371/journal.pone.0271462.t002
https://doi.org/10.1371/journal.pone.0271462

check wires and define registers
n_x = int (parameters [2])
if (len (wires)−2−n_x)%5 != 0:
raise Exception(‘Wrong size of registers’)

else:
N = int (parameters [0])
y = int (parameters [1])
n = int ((len (wires)-2-n_x)/5)
wires_x = wires [0:n_x]
wires_z = wires [n_x:n_x+n]
wires_a = wires [n_x+n:n_x+2�n]
wires_b = wires [n_x+2�n:n_x+3�n+1]
wires_c = wires [n_x+3�n+1:n_x+4�n+1]
wires_N = wires [n_x+4�n+1:n_x+5�n+1]
wires_t = wires [−1]

check inputs
check N
check if N does not match the size of wires_N
if N > 2��(len (wires_N))−1:
raise Exception (‘N is too big’)

with qml.tape.OperationRecorder() as rec:
Create superposition with Hadamard gates
for i in range (len (wires_x)):
qml.Hadamard(wires = wires_x[i])

Apply modular exponentiation
MODULAR_EXPONENTIATION (N, y, n_x,\ wires = wires_x+wires_z+wir-

es_a+wires_b+\ wires_c+wires_N+[wires_t])
Apply inverse Quantum Fourier transform
to the first register
QFT_inv (wires = wires_x)
return rec.queue

Listing 2 demonstrates how Order_Finding is realized in the package. As one can see,

there are only commands to add gates to the circuit. All other necessary elements, such as

Fig 2. Quantum circuit implementing the order-finding procedure.

https://doi.org/10.1371/journal.pone.0271462.g002

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0271462.g002
https://doi.org/10.1371/journal.pone.0271462

initializing the circuit with a particular state and performing measurements at the end of the

circuit, should be performed in the QNode environment in a similar fashion to Listing 1.

3 Modular exponentiation circuit description

Here we describe the architecture of efficient O(n3) modular exponentiation circuit from

Ref. [14], for the case n = 3 using specific 3-bit numeric values in order to make the general

approach more illustrative. The circuit is not subject to further lower-level optimization, but it

is still efficient and replicates the logic behind the commonly used decomposition technique.

In general, modular exponentiation is the procedure of finding the value yx mod N when x,

y and N are given integers. The template MODULAR_EXPONENTIATION in Fig 3 is devel-

oped for solving this task.

Registers denoted by subscripts x and N should contain quantum states corresponding to

binary representations of integers x and N. Particular values of y and N define the architecture

of the circuit. Register z should contain the binary representation of the solution |yx mod Ni at

the end of the circuit, and it should be initialized as a binary representation of 1. This means

that if we use three bits for representation of the solution, then the register z should be initial-

ized as |1i|0i|0i, because this state corresponds to the three-bit binary representation 0012 of

the integer 1. Registers a, b, c and t are qubits for auxiliary computations and should be initial-

ized as containing |0i states.

To understand how the circuit in Fig 3 can be decomposed into lower-level quantum gates,

let’s first revisit the idea which is used to construct the circuit of the interest. Using the prop-

erty of modular multiplication,

ðA� BÞ mod N ¼ ððA mod NÞ � ðB mod NÞÞ mod N; ð1Þ

we can see that modular exponentiation is a succession of modular multiplications:

yx mod N ¼ ðyx020

� yx121

� . . .� yxn� 12n� 1

Þ mod N ¼

¼ ð. . . ð½ðyx020

� yx121

Þ mod N� � . . .� yxn� 12n� 1

Þ . . . mod NÞ mod N;
ð2Þ

where x ¼ x02
0 þ x12

1 þ . . .þ xn� 12
n� 1. The above expression can be computed by successive

multiplications modulo N of 1 on miðxiÞ ¼ yxi2i , where i goes from 0 to n−1. This multiplica-

tion is an operation controlled by xi : mið1Þ ¼ y2i mod N and mi(0) = 1. We note that the val-

ues of y2i mod N can be computed efficiently on a classical computer. Then modular

multiplication operation can be represented by modular additions in the following way:

zmiðxiÞmod N ¼ ðz02
0miðxiÞ þ z12

1miðxiÞ þ . . .þ zn� 12
n� 1miðxiÞÞmod N; ð3Þ

where z ¼ z02
0 þ z12

1 þ . . .þ zn� 12
n� 1 is an accumulated product at the i-th step. Finally,

modular addition of two integers A, B< N can be represented in the form

Aþ B mod N ¼
Aþ B; for Aþ B < N;

Aþ B � N; for Aþ B � N:

(

ð4Þ

Let us make some comments on notations: dashed blue wires serve as auxiliary for lower-

level operations. We decided to keep them in schemes in order for the reader not to lose track

of what’s going on. Circuit elements specified by precomputed classical values, namely N and

mi(1), shown by thick red lines.

Let us then build the circuit starting from the lowest level, with elementary quantum opera-

tions, and getting to the highest level of modular multiplications.

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0271462

Fig 3. General notation for the circuit realizing modular exponentiation procedure. The procedure is for finding yx mod N given 3-bit

integers x, y and N.

https://doi.org/10.1371/journal.pone.0271462.g003

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0271462.g003
https://doi.org/10.1371/journal.pone.0271462

3.1 3-qubit addition circuit ADDER. We use elementary circuits CARRY and SUM which

implement bit-wise carry and sum operations. Their decompositions to CNOT and Toffoli
gates are given in Fig 4(a). Note that a thick black line on the right side of a block denotes oper-

ation itself, while a thick black line on the left side of a block denotes a reversed (conjugate-

transposed) operation, i.e. the operation with the reverse order of all elementary operations for

the block with conjugation, if necessary. In fact, the reversed operation corresponds to a Her-

mitian conjugation of the initial operation.

The circuit SUM obtains a sum modulo 2 of two bits, while the idea of the circuit CARRY is

to provide a ‘carry bit’ δ(a, b, c) corresponding to a standard summation of three bits a, b, c 2
{0, 1}:

dða; b; cÞ ¼
0; if aþ bþ c � 1;

1; if aþ bþ c > 1:

(

ð5Þ

Then, CARRY and SUM are used to construct a 3-qubit addition transformation ADDER
depicted in Fig 4(b). We note that here a; b 2 N are numbers encoded by 3 (qu)bits, while the

output register b contains an additional qubit to account for the possibility of a 4-bit result of

the addition.

3.2 3-qubit modular addition circuit ADDER_MOD. Using ADDER and reversed ADDER
circuits, we can construct modular addition by combining circuits in Block 1 and in Block 2,

as shown in Fig 5. The idea behind the Block 1 is the following: firstly, ADDER performs the

Fig 4. SUM, CARRY and ADDER decompositions. (a) Decomposition of SUM, reversed SUM, CARRY, and reversed CARRY circuits (b) Decomposition

of ADDER circuit for adding two 3-bit integers a and b.

https://doi.org/10.1371/journal.pone.0271462.g004

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0271462.g004
https://doi.org/10.1371/journal.pone.0271462

transformation

jaiajbibj0icjNiNj0it ! jaiajaþ bibj0icjNiNj0it: ð6Þ

Then 3 SWAP gates swap the register a with the register N as follows:

jaiajaþ bibj0icjNiNj0it ! jNiajaþ bibj0icjaiNj0it: ð7Þ

An applying of the reversed ADDER results in the transformation

jNiajaþ bibj0icjaiNj0it !

jNiajgða; b;NÞibj0icjaiNj0it;
ð8Þ

where γ(a, b, N) = a+ b−N for a+ b−N� 0 or γ(a, b, N) is some bitstring with the higher order

bit equal to 1 for a+ b−N< 0.

The operation of the remaining part of the circuit is determined by the sign of a + b − N. If

it is greater than 0, we want to keep the result in the register b, but if it is less than 0, we want

to make an addition of N once again to get a + b in the register b. Recall that the information

about the sign of a + b − N is stored in the highest order bit of register b.

If it is equal to 0, then a + b − N� 0 and the register b already contains the a + b mod N.

Using a CNOT gate with a target t, and then applying a number of CNOTs with control on t
leads to erasing the value of N from the register a and replacing it by 0. Therefore, the third

ADDER keeps the value of the register b. Then, we put back the value of N in the register a and

swap values N and 0 between registers a and N to return registers a and N in the original state.

Block 2 is applied to uncompute the value of register t.

In the case of a + b − N< 0, the third ADDER serves as inverse for the second one, thus,

restoring the value of a + b in the register b. SWAP operations set the initial values in registers

a and N, and Block 2 is equivalent to the identity operator.

3.3 3-qubit controlled modular multiplication circuit Ctrl_MULT_MOD. The circuit

Ctrl_MULT_MOD is given in Fig 6 and it implements a controlled modular multiplication of

integers z and m modulo N as a sequence of modular additions of integers zi2i �m mod N. The

Fig 5. Decomposition of ADDER_MOD circuit into lower-level operations. The decomposition realizes modular addition of two 3-bit integers a and b
modulo 3-bit integer N.

https://doi.org/10.1371/journal.pone.0271462.g005

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0271462.g005
https://doi.org/10.1371/journal.pone.0271462

resulting transformation takes the form:

jcixjzizj0iaj0ibj0icjNiNj0it ! jcixjzizj0iajzm mod Nibj0icjNiNj0it; if c ¼ 1

jcixjzizj0iaj0ibj0icjNiNj0it ! jcixjzizj0iajzibj0icjNiNj0it; if c ¼ 0
ð9Þ

For this particular block we use m = 3 = 112, N = 5 = 1012. The role of red Toffoli gates

is to replace zeros in the register |0ia with the state |zi2i �m mod Nia to further add up all these

numbers to get |z �m mod Nib. Red Toffoli gates put values 2i �m mod N in the register a

conditionally on values in registers x and z. We note that numbers 2i �m mod N can be effi-

ciently computed on a classical computer. Also, note that this is the second time when classi-

cally precomputed information affects the configuration of the quantum circuit.

The last block of CNOTs is used to put the value z in the register |0ib if control |cix is |0ix.

3.4 3-qubit modular exponentiation circuit MODULAR_EXPONENTIATION. Finally,

using an array of controlled modular multiplications, we can implement modular exponentia-

tion using known classical information for every step as depicted in Fig 7. It should be a suc-

cession of controlled modular multiplications with controls set on wires of the register x. But

every Ctrl_MULT_MOD should be accompanied by SWAPs and reversed Ctrl_MULT_MOD
to reset one of the registers to zero and free it for the next controlled modular multiplication.

The notation (. . .)−1 mod N is for modular inverse, which can be efficiently classically precom-

puted using Euclid’s algorithm.

To sum up, Ctrl_MULT_MOD blocks implement the following chain of transformations

which lead to the desired result:

jxixj1izj0iaj0ibj0icjNiNj0it !

jxixj1� yx020 mod Nizj0iaj0ibj0icjNiNj0it !

jxixj1� yx020

� yx121 mod Nizj0iaj0ibj0icjNiNj0it !

! . . .! jxixjyx mod Nizj0iaj0ibj0icjNiNj0it

ð10Þ

Fig 6. Decomposition of Ctrl_MULT_MOD circuit into lower-level operations. The decomposition realizes controlled modular multiplication of

two 3-bit integers z and m modulo 3-bit integer N.

https://doi.org/10.1371/journal.pone.0271462.g006

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0271462.g006
https://doi.org/10.1371/journal.pone.0271462

It is worth mentioning that if the size of the register |NiN is n, then the size of the register |

xix should be greater than or equal to 2n+ 1 to make MODULAR_EXPONENTIATION circuit

usable in Shor’s algorithm (see [16]). For instance, going to 2n + 2 = 8 qubits in |xix for

this particular case requires just additional 5 wires for |xi and additional 5 blocks of

[Ctrl_MULT_MOD—SWAPs—reversed Ctrl_MULT_MOD] in Fig 7.

Lastly, let us consider the situation when we increase integers for which we want to com-

pute modular exponentiation. If we go from 3-bit integers to 4-bit integers, then the current

architecture requires 4 qubits for each of registers x, z, a, c, and N; 4+1 qubits for the register

b; and 1 qubit for control t. Thus, one can see that the number of qubits grows as O(n), which

is acceptable according to the original paper.

4 Example

Here we provide an example of usage of the template Order_Finding inside PennyLane

standard environment. The script from the Listing 3 is designed to find with high probability

the least positive integer r such that yr mod N = 1 for 3-bit integers y = 3 and N = 5. The size of

the register x is 2n + 2 = 2�3 + 2 = 8.

Listing 3. Example of usage of the template Order_Finding.
import pennylane as qml
import QuantumOperations as q
define initial parameters
N = 5
y = 3
bits_for_register_with_a_number = 3
bits_for_x_register = 2�bits_for_register_with_a_number + 2
define wires with all registers
wires=[i for i in range(bits_for_x_register+bits_for_register_with_
a_number�5+2)]
device

Fig 7. Decomposition of MODULAR_EXPONENTIATION circuit into lower-level operations. The decomposition realizes modular exponentiation yx

mod N given 3-bit integers x, y, and N.

https://doi.org/10.1371/journal.pone.0271462.g007

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0271462.g007
https://doi.org/10.1371/journal.pone.0271462

dev = qml.device(‘default.qubit’, wires = wires, shots = 10000,
analytic = None)
circuit
def func(N, y,bits_for_x_register,input_):
insert input
for i in range(len(wires)):
if input_[i] == 1:
qml.PauliX(wires = wires[i])

circuit
q.Order_Finding(N, y,bits_for_x_register,wires = wires)
return qml.probs(wires=[0, 1, 2, 3, 4, 5, 6, 7])

QNode
circuit = qml.QNode(func,dev)
Run calculations for given parameters with the
register wires_N initialized as binary N and
register wires_z − as binary 1
measurements_probabilities = circuit (5, 3,bits_for_x_register, [0,
0, 0, 0, 0, 0, 0, 0] + [1, 0, 0] + [0, 0, 0] + [0, 0, 0, 0] + [0, 0, 0]
+ [1, 0, 1] + [0])

Results of measurements in the constructed circuit are put into the variable “measurements_

probabilities” as an array. After post-processing, we can get the probability distribution of mea-

surements as depicted in Fig 8. Each bar corresponds to a particular measurement outcome

that can be interpreted as an estimate of s/r, where r is the order of y modulo N and s is some

integer.

In particular, if measurement has the form |x1 x2. . .i, then the estimate of s/r is the number

0.x1 x2. . . in the binary representation, and possible values of r can be reconstructed from this

estimate. According to the algorithm, measurements with high probability correspond to esti-

mates that are close to the true value of s/r.
In our case, the four measurements with the greatest probabilities are |000000i, |100000i,

|111111i and |010000i. These measurements correspond to representations of s/r in the form

0.000000 = 0, 0.100000 = 1/2, 0.111111 = 63/64 and 0.010000 = 1/4, respectively. It can be seen

that the fourth result gives a proper value of r, since yr mod N = 34 mod 5 = 1.

5 Transpilation and resource-estimation

For real-life implementations of the given algorithm it is important to translate the decomposi-

tion into a set of gates that are native for a platform of the interest. This process of translation

is called transpilation, and for many frameworks particular details of this process are not

explained to a user. Although results of transpilation oftentimes can be accessed, it is not clear

to which extent those results can be reliable for estimation of resources for an algorithm, such as

non-Clifford gate count and execution time expressed in the depth of a transpiled algorithm.

The advantage of using PennyLane package for the realization of the algorithm is the ability

to run algorithms on different platforms. It allows for direct comparison of algorithms’ perfor-

mance for different platforms, which itself can be a subject of research (see, for instance, [17]).

With increase in hardware’s computing capabilities, it will be harder to compile algorithms for

different platforms, so unified framework such as PennyLane library might provide both tools

for realizing algorithms and transparency in rules of decomposing these algorithms to the level

of native gates.

To illustrate this reasoning, we present a simplified protocol for transpilation which is

derived from [18] and provide a table with upper bounds on gate counts and depth of the

order-finding algorithm. The table was derived by direct application of the transpilation proto-

col that we realized using PennyLane library.

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0271462

Additionally, the original work [18] lacks analytic expressions that are necessary for an effi-

cient implementation of single-qubit decompositions and lacks the proof of universality of the

single-qubit unitary operation decomposition. We provide these analytic expressions in the

next subsection and give proofs in S2 Appendix.

An open question for further development of this work is how to define criteria for choice

of algorithms for realization. Shor’s algorithm has many different protocols of realizations

with various advantages and disadvantages, and the protocol of the realization in our work was

chosen for two reasons: efficiency of realization in terms of gate counts and simplicity of expo-

sition. Realization of transpilation techniques could be more sophisticated as well, and it

remains unclear which particular algorithms will be of greater interest in the future.

5.1 Native gates for trapped-ion qubits. Native single-qubit gate with unitary evolution

operator

Rðy; �Þ ¼
cos

y

2
� ie� i�sin

y

2

� iei�sin
y

2
cos

y

2

0

B
B
@

1

C
C
A; ð11Þ

Fig 8. Probabilities of measurements for order finding procedure.

https://doi.org/10.1371/journal.pone.0271462.g008

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0271462.g008
https://doi.org/10.1371/journal.pone.0271462

and native two-qubit gate with unitary evolution operator

XXðwÞ ¼

cosw 0 0 � isinw
0 cosw � isinw 0

0 � isinw cosw 0

� isinw 0 0 cosw

0

B
B
B
B
@

1

C
C
C
C
A

ð12Þ

are used in trapped-ion quantum computer [18]. Available sign of χ is defined by characteris-

tics of particular experimental tool [18, 19]. For ease of exposition, we assume that this sign is

positive for each pair of qubits, although arbitrary signs can be easily introduced in decomposi-

tions as an input parameter.

Note that an arbitrary unitary operation U can be decomposed into a sequence of at most

two native single-qubit gates [18]

U ¼
u00 u01

u10 u11

 !

¼ eidRð� p; � c � p=2ÞRð2bþ p; a � c � p=2Þ; ð13Þ

where uij are complex elements of matrix U, and a, b, c, d are real parameters. The proof of this

result and analytic expressions for a, b, c was not considered in the original work, although

these expressions are crucial for effective decomposition of single-qubit gates. These expres-

sions are

a ¼
1

2
ðφ

00
� φ

11
Þ; b ¼ arccosju00j; c ¼

1

2
ðφ

00
� 2φ

10
þ φ

11
Þ � p; ð14Þ

where φij = Arg(uij). Proofs can be found in S2 Appendix.

5.2 Simplified transpilation protocol. The protocol borrows the simplest steps 1–4 as

well as combining single-qubit gates from the last step of the protocol given in [18]. It can be

briefly formulated as the following sequence of steps:

1. Translate all operations into set {3-qubit Toffoli, CNOTs, single-qubit operations}.

2. Translate 3-qubit Toffoli to Controlled-V and CNOTs, where Controlled-V represents con-

trolled square-root-of-X operation (see [20]).

3. Translate Controlled-V and CNOTs into set {XX, single-qubit operations}.

4. For every set of concurrent single-qubit gates, translate this set into one resulting operation

and decompose it to at most 2 rotations R.

This protocol does not include possibility to bind operations into blocks that can be exe-

cuted simultaneously. Since estimation of execution time might be significantly affected by

parallelization of the circuit operations, we developed a simple algorithm to estimate depth of

the circuit.

By construction, at the end of the transpilation there are at most 2 single-qubit R-gates per

one qubit between any pair of two-qubit gates. Thus, the estimate of the circuit’s depth with

only two-qubit gates multiplied by 3 will give an upper bound.

The counting algorithm has the following steps:

1. Exclude all single-qubit operations from the list of transpilled operations.

2. Prescribe number ‘0’ to every qubit.

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 14 / 17

https://doi.org/10.1371/journal.pone.0271462

3. Iteratively take a two-qubit gate from the list of transpilled operations and update numbers

prescribed to the qubits involved in the current two-qubit operation. In particular, pre-

scribe number ‘m + 1’ to the two qubits, where m is the maximal number prescribed to the

two qubits during previous iterations.

4. Find the maximal prescribed number among all qubits. This number multiplied by 3 is

equal to the upper bound on depth of the circuit.

5.3 Resource estimation. Table 3 represents counts of native gates and depths for the real-

ization of Shor’s algorithm using the simplified transpilation procedure.

Maximal values of N were chosen in the form 2n, because the change in n represents the

change in the size of qubit register. For a fixed size of qubit register, there is no significant

change in the number of operations across different values of N.

Conclusion

In the present work, we have shown a package based on the PennyLane library implementing

decompositions to elementary quantum gates all blocks of the quantum parts of Shor’s algo-

rithm and further transpilation of the decomposition to the level of native operations for ion-

trapped quantum processor. Current realization can be built into the PennyLane library

as quantum gates and can be used for experiments on quantum computers and quantum

simulators, as well as for resource estimation before running an algorithm. We hope that com-

bination of realization and study of aspects of the implementation represents interesting con-

tribution to scientific community. Our study shows that still there is a gap between known

academic results in the field of quantum information theory and implementation of quantum

algorithms using currently available quantum platforms. For example, our idea to use results

of Maslov [18] was not directly realizable and additional research on the universality of single

qubit decomposition and derivation of decomposition’s coefficients were needed. We expect

that our developments will be used as pre-prorgrammed primitives for a broader range of

quantum algorithms.

Supporting information

S1 Appendix. Shor’s algorithm [16].

(PDF)

S2 Appendix. Single-qubit unitary decomposition: Analytic expressions.

(PDF)

Author Contributions

Conceptualization: A. V. Antipov, A. K. Fedorov.

Formal analysis: A. V. Antipov, E. O. Kiktenko.

Table 3. Resource estimation for Shor’s algorithm on trapped-ion platform.

Maximal value of N All native operations Two-qubit native operations Depth

22 23941 5010 3808�3

23 77054 16152 11440�3

24 174649 36650 25648�3

25 340520 71452 48615�3

https://doi.org/10.1371/journal.pone.0271462.t003

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271462.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271462.s002
https://doi.org/10.1371/journal.pone.0271462.t003
https://doi.org/10.1371/journal.pone.0271462

Funding acquisition: E. O. Kiktenko, A. K. Fedorov.

Investigation: A. V. Antipov.

Methodology: A. V. Antipov, E. O. Kiktenko.

Project administration: A. K. Fedorov.

Resources: A. K. Fedorov.

Software: A. V. Antipov.

Supervision: E. O. Kiktenko, A. K. Fedorov.

Validation: E. O. Kiktenko, A. K. Fedorov.

Visualization: A. V. Antipov.

Writing – original draft: A. V. Antipov.

Writing – review & editing: E. O. Kiktenko, A. K. Fedorov.

References
1. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. O’Brien, Quantum computers,

Nature (London) 464, 45 (2010).

2. Neill C., Roushan P., Kechedzhi K., Boixo S., Isakov S.V., Smelyanskiy V., et al. A blueprint for demon-

strating quantum supremacy with superconducting qubits, Science 360, 195 (2018). PMID: 29650670

3. Arute F., Arya K., R. Babbush et al. (Collaboration), Quantum supremacy using a programmable super-

conducting processor, Nature (London) 574, 505 (2019). https://doi.org/10.1038/s41586-019-1666-5

4. Wu Y., Bao W.-S., S. Cao et. al., Strong quantum computational advantage using a superconducting

quantum processor, Phys. Rev. Lett. 127, 180501 (2021). PMID: 34767433

5. Zhang J., Pagano G., Hess P. W., Kyprianidis A., Becker P., Kaplan H., et al. Observation of a many-

body dynamical phase transition with a 53-qubit quantum simulator, Nature (London) 551, 601 (2017).

https://doi.org/10.1038/nature24654 PMID: 29189781

6. Friis N., Marty O., Maier C., Hempel C., Holzäpfel M., Jurcevic P., et al. Observation of entangled states

of a fully controlled 20-qubit system, Phys. Rev. X 8, 021012 (2018).

7. Bernien H., Schwartz S., Keesling A., Levine H., Omran A., Pichler H., et al. Probing many-body dynam-

ics on a 51-atom quantum simulator, Nature (London) 551, 579 (2017). https://doi.org/10.1038/

nature24622 PMID: 29189778

8. Barredo D., Lienhard V., S. de Léséleuc, Lahaye T., and Browaeys A., Synthetic three-dimensional

atomic structures assembled atom by atom, Nature (London) 561, 79 (2018). https://doi.org/10.1038/

s41586-018-0450-2 PMID: 30185955

9. L. Mueck, Quantum software, Nature (London) 549, 171 (2017). https://doi.org/10.1038/549171a

10. Chong F.T., Franklin D., and Martonosi M., Programming languages and compiler design for realistic

quantum hardware, Nature (London) 549, 180 (2017). https://doi.org/10.1038/nature23459 PMID:

28905906

11. V. Bergholm, J. Izaac, M. Schuld et al., PennyLane: Automatic differentiation of hybrid quantum classi-

cal computations. Available from: https://arxiv.org/abs/1811.04968.

12. Shor P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer, SIAM J. Comput. 26, 1484 (1997). https://doi.org/10.1137/S0097539795293172

13. Antipov A., Kiktenko E., Fedorov A. 2021, QuantumOperations library for PennyLane. Available from:

https://github.com/Anatoly-Antipov/QuantumOperations.

14. Vedral V., Barenco A., and Ekert A., Quantum networks for elementary arithmetic operations, Phys.

Rev. A 54, 147 (1996). https://doi.org/10.1103/PhysRevA.54.147 PMID: 9913467

15. Antipov A., Kiktenko E., Fedorov A. 2022, Efficient realization of quantum primitives for Shor’s algorithm

using PennyLane library, protocols.io, https://dx.doi.org/10.17504/protocols.io.b5qaq5se.

16. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information (Cambridge University

Press, 2000).

17. N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, et al. Experimental Com-

parison of Two Quantum Computing Architectures, PNAS 114, 3305-3310 (2017).

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/29650670
https://doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/34767433
https://doi.org/10.1038/nature24654
http://www.ncbi.nlm.nih.gov/pubmed/29189781
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
http://www.ncbi.nlm.nih.gov/pubmed/29189778
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/s41586-018-0450-2
http://www.ncbi.nlm.nih.gov/pubmed/30185955
https://doi.org/10.1038/549171a
https://doi.org/10.1038/nature23459
http://www.ncbi.nlm.nih.gov/pubmed/28905906
https://arxiv.org/abs/1811.04968
https://doi.org/10.1137/S0097539795293172
https://github.com/Anatoly-Antipov/QuantumOperations
https://doi.org/10.1103/PhysRevA.54.147
http://www.ncbi.nlm.nih.gov/pubmed/9913467
https://dx.doi.org/10.17504/protocols.io.b5qaq5se
https://doi.org/10.1371/journal.pone.0271462

18. Maslov D., Basic circuit compilation techniques for an ion-trap quantum machine, New J. Phys. 19,

023035 (2017). https://doi.org/10.1088/1367-2630/aa5e47

19. Debnath S., Linke N. M., Figgatt C., Landsman K. A., Wright K., Monroe C., Demonstration of a small

programmable quantum computer with atomic qubits, Nature 536, 63–66 (2016). https://doi.org/10.

1038/nature18648 PMID: 27488798

20. Barenco A., Bennett C. H., Cleve R., Margolus D. P. DiVincenzo N., Shor P., Sleator T., et al. Elemen-

tary gates for quantum computation, Phys.Rev. A52 (1995) 3457. https://doi.org/10.1103/PhysRevA.

52.3457 PMID: 9912645

PLOS ONE Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library

PLOS ONE | https://doi.org/10.1371/journal.pone.0271462 July 14, 2022 17 / 17

https://doi.org/10.1088/1367-2630/aa5e47
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
http://www.ncbi.nlm.nih.gov/pubmed/27488798
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
http://www.ncbi.nlm.nih.gov/pubmed/9912645
https://doi.org/10.1371/journal.pone.0271462

