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Observation of a quantum phase transition in the
quantum Rabi model with a single trapped ion
M.-L. Cai 1,4, Z.-D. Liu1,4, W.-D. Zhao1,4, Y.-K. Wu1, Q.-X. Mei1, Y. Jiang1, L. He1, X. Zhang1,2, Z.-C. Zhou1,3 &

L.-M. Duan 1✉

Quantum phase transitions (QPTs) are usually associated with many-body systems in the

thermodynamic limit when their ground states show abrupt changes at zero temperature

with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can

also occur in a system composed of only a two-level atom and a single-mode bosonic field,

described by the quantum Rabi model (QRM). Here we report an experimental demon-

stration of a QPT in the QRM using a 171Yb+ ion in a Paul trap. We measure the spin-up state

population and the average phonon number of the ion as two order parameters and observe

clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and

its spatial motion. An experimental probe of the phase transition in a fundamental quantum

optics model without imposing the thermodynamic limit opens up a window for controlled

study of QPTs and quantum critical phenomena.
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Quantum phase transitions (QPTs) have become one of the
focuses of condensed matter physics. Unlike classical
phase transitions that occur at finite temperature, a QPT

can occur at zero temperature under quantum fluctuations1–3.
When a control parameter, such as the external magnetic field or
the doping of a component, is scanned across a quantum critical
point, the ground state of the system changes abruptly, char-
acterized by a spontaneous symmetry breaking or a change in the
topological order2,4.

Studies of QPTs usually consider many-body systems in the
thermodynamic limit, with the particle number N approaching
infinity3. However, it was recently realized that a QPT can also
occur in a small system with only two constituents, a two-level
atom and a bosonic mode, described by the quantum Rabi model
(QRM)5–12 which is one of the simplest models of light-matter
interactions. Its Hamiltonian can be expressed as (throughout this
paper we set ℏ= 1 for simplicity)

ĤQRM ¼ ωa

2
σ̂z þ ωf â

yâþ λ σ̂þ þ σ̂�
� �

âþ ây
� �

; ð1Þ

where ây (â) is the bosonic mode creation (annihilation) operator
and σ̂þ (σ̂�) is the two-level system raising (lowering) operator;
ωa, ωf, and λ are the atomic transtion frequency, the field mode
frequency and the coupling strength between the two subsystems,
respectively. This model has been widely studied in multiple
paramter regions with many experimental platforms. When
∣ωa− ωf∣ ≪ ∣ωa+ ωf∣ and λ/ωf ≪ 1 are fulfilled, the rotating wave
approximation (RWA) can be used to simplify the QRM to the
Jaynes–Cummings model (JCM)13,14 which has been investigated
first in cavity QED15–17 and trapped ions18, and then in other
platforms such as quantum dots19 and circuit QED20,21. When λ
becomes comparable to ωa+ ωf, the RWA breaks down leading to
the ultra-strong coupling regime (λ/ωf≳ 0.1) and deep-strong
coupling regime (λ/ωf≳ 1)14. Many exotic dynamical properties
in these regimes have been observed recently in a plenty of
quantum systems such as circuit QED22–27, photonic system28,
semiconductor system29,30, and trapped ions31.

In the trapped-ion systems, previous works on the simulation
of the QRM have been performed in various regimes. For ωa= 0,
ωf ≠ 0, the QRM reduces to the spin-dependent force Hamilto-
nian which is crucial in trapped-ion quantum computation32–35.
For ωa ≠ 0, ωf= 0, the Dirac equation has been simulated with
trapped ions36,37. For ωa= 0, ωf= 0, the coupling-only regime
can be realized and it has been exploited to engineer the Schrö-
dinger cat state38,39 and the grid state40,41. By controlling the
experimental parameters, ref. 31 has access to the ultra-strong and
the deep-strong coupling regimes. However, most of the previous
works focus on the evolution dynamics governed by the QRM
Hamiltonian in multiple regimes.

Our work realizes the model Hamiltonian in a special para-
meter region ωa≫ ωf, which allows the study of a QPT with the
phases controlled by the coupling strength λ in the QRM. In
ref. 11, it has been shown that an order parameter, the rescaled
photon number in the bosonic mode, is shown to stay zero in the
normal phase while acquiring positive values in the superradiant
phase with a spontaneous breaking of the Z2 parity symmetry.
The ground state of the system exhibits nonanalytical behavior at
the critical point, supporting a second-order phase transition at
zero temperature11. We experimentally demonstrate this type of
QPT without the conventional thermodynamic limit of a large
number of particles. Through laser driving near the blue and the
red motional sidebands, we use a single trapped 171Yb+ ion to
simulate the QRM Hamiltonian with adjustable parameters14,31.
We perform a slow quench on the control parameter and mea-
sure the average atomic-level population, and the average phonon
number as the order parameters on both sides of the transition

point. The experiments are repeated for the increasing ratios of ωa

and ωf, with the limit ωa/ωf→∞ analogous to the thermo-
dynamic limit11. From the qualitative behavior of the order
parameters under the increasing ratios, we obtain strong evidence
of the QPT in the QRM, although the ratio parameter is still not
large enough for a precise scaling analysis of the critical phe-
nomenon. Our work simulates the QRM in a special parameter
region and develops a tool for adiabatic passages that allows the
controlled study of a QPT, and showcases the possibility of
exploring the universal QPT properties using the trapped-ion
system, which has a number of tunable experimental knobs that
can be used for a controlled study of the QPT and the critical
phenomena under influence of various effects.

Results
The quantum critical point in the quantum Rabi model. To
study the QPT, the low-energy effective Hamiltonian in the limit
ωa/ωf→∞ has been derived in ref. 11. When the control para-
meter g � 2λ=

ffiffiffiffiffiffiffiffiffiffi
ωaωf

p
< 1, the effective Hamiltonian in the nor-

mal phase is given by Ĥnp ¼ ωf â
yâ� g2ωf ðâþ âyÞ2=4� ωa=2

with the qubit frozen in its ground state; and when g > 1 we have

the effective Hamiltonian in the superadiant phase Ĥsp ¼
ωf â

yâ� ωf ðâþ âyÞ2=ð4g4Þ � ωaðg2 þ g�2Þ=4 in a displaced
frame of the bosonic mode, with the qubit ground state now
rotated toward the x-axis due to its strong coupling to the bosonic
mode. This generates non-zero spin and bosonic population in
the ground state of the superradiant phase. Hence, we can utilize
both the rescaled bosonic mode number (nf � ðωf=ωaÞhâyâi) and
the spin population (na ¼ 1þ hσ̂zi) at ground state as the order
parameters: in the limit ωa/ωf→∞, we have nf= 0(na= 0) when
g < 1 and nf ¼ ðg4 � g4cÞ=ð4g2Þðna ¼ 1� g�2Þ for g > 111,12.

Experimental setup. We use a single 171Yb+ ion confined in a
linear Paul trap to simulate the QRM, as shown in Fig. 1a. By
performing the Doppler cooling followed by a resolved sideband
cooling18, the spatial motion of the ion along one of its principal
axes x, with the frequency ωx= 2π × 2.35 MHz, is cooled close to
the ground state. Its motional degree of freedom can be well
described as a quantum harmonic oscillator, and thus serves as
the bosonic mode in the QRM. The two hyperfine states in the
ground-state manifold 2S1/2 are chosen as the qubit states, i.e.,
"
�� � ¼ F ¼ 1;mF ¼ 0

�� �
and #

�� � ¼ F ¼ 0;mF ¼ 0
�� �

, with a
frequency difference ωq ≈ 2π × 12.6 GHz as shown in Fig. 1b. We
use two counter-propagating 355 nm pulsed-laser beams to
manipulate the hyperfine qubit through Raman transition. The
pulsed laser has a frequency-comb structure as shown in Fig. 1c,
which can help bridge the large frequency gap ωq between the two
levels42; the undesired teeth of the frequency combs can effec-
tively produce a fourth-order AC Stark shift43, which we carefully
measure and compensate in the experiment (see “Methods” sec-
tion for more details). Two acousto-optic modulators (AOMs) are
used to fine-tune the frequencies and the amplitudes of the laser
beams for driving the Raman transition.

The orientation of the laser beams are chosen such that there is a
nonzero differential wave vector component Δkx along the x axis.
Let us first consider a single pair of Raman beams with the
frequency and the phase difference Δω and Δϕ generating a Rabi
frequency Ω. The laser-ion coupling Hamiltonian is given by
Ĥcouple ¼ Ω cosðΔkx � x̂ � Δω � t þ ΔϕÞσ̂x44, where x̂ ¼ x0ðâþ âyÞ
is the ion-position operator with x0 being the ground state wave-
packet width. Considering the Lamb-Dicke approximation
η

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�nþ 1

p � 1 where η≡Δkxx0 is the Lamb–Dicke parameter
and �n is the average phonon number of the motional state (see
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Supplementary Information for more details about the correction of
the Lamb–Dicke approximation), we transfer Ĥcouple into the

interaction picture of the uncoupled Hamiltonian Ĥ0 ¼
ωqσ̂z=2 þ ωxâ

yâ, and get the interaction Hamiltonian Ĥr ¼
ðηΩr=2Þðâσ̂þeiδrt þ âyσ̂�e

�iδrtÞ if the frequency difference Δω is
tuned close to the red motional sideband with δr=ωq−ωx−Δω,
and Ĥb ¼ ðηΩb=2Þðâyσ̂þeiδbt þ âσ̂�e

�iδbtÞ when Δω is tuned close
to the blue sideband with δb=ωq+ωx−Δω.

In order to construct the QRM Hamiltonian, we employ the
bichromatic Raman beams as shown in Fig. 1 driving the red and
the blue sidebands simultaneously32–34 using the specific imple-
mentation proposed and realized recently in ref. 14,31, as shown in
Fig. 1b. If we set the two Rabi frequencies to be the same Ωr=Ωb=
Ω (in the experiment we can calibrate them such that the
imbalance ∣Ωr−Ωb∣/∣Ωr+Ωb∣ ≤ 2%), the resulting Hamiltonian is
Ĥrb ¼ ðηΩ=2Þσ̂þðâeiδrt þ âyeiδbtÞ þ h:c:, which corresponds to the
interaction picture Hamiltonian with respect to the uncoupled
Hamiltonian Ĥ0 ¼ �ðδb þ δrÞσ̂z=4� ðδb � δrÞâyâ=214,

Ĥ
I
rb ¼ δbþδr

4 σ̂z þ δb�δr
2 âyâ

þ ηΩ
2 σ̂þ þ σ̂�
� �

âþ ây
� �

:
ð2Þ

We clearly see the transformed Hamiltonian is exactly the QRM
Hamiltonian, if we identify ωa= (δb+ δr)/2, ωf= (δb− δr)/2 and
λ= ηΩ/2. From our definition, the control parameter is

g � 2λ=
ffiffiffiffiffiffiffiffiffiffi
ωaωf

p ¼ 2ηΩ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2b � δ2r

q
. Since the uncoupled Hamilto-

nian Ĥ0 commutes with our desired observables, the spin (σ̂z) and
the phonon (âyâ) population, their measurements will not be
affected by this transformation14. By controlling the experimental
parameters δb, δr, and Ω, we can achieve the simulation in the
regime ωa≫ωf where an observation of a QPT is possible.

Observation of quantum phase transition from the spin
population. To observe the QPT from the normal phase to the
superradiant phase in the QRM Hamiltonian, we consider two
measurable order parameters, the spin-up state population
ð1þ hσ̂ziÞ=212 and the average phonon number hâyâi11. As the
control parameter g rises from zero to above the quantum critical
point, the Z2 parity symmetry is broken, and these two values at
the ground state will accordingly increase from zero to a non-zero
value. However, it is hard to prepare the ground state of a general
Hamiltonian45, and since the energy gap closes at the quantum
critical point, we are not able to adiabatically scan the control
parameter across this point without generating the quasi-particle
excitations into the system11. Therefore, in this experiment we
perform slow quench on the control parameter as suggested by
ref. 11, and compare the measured values with the theoretical
predictions.

First, we set δb= 2π × 52.0 kHz and δr= 2π × 48.0 kHz, which
corresponds to a ratio R≡ ωa/ωf= 25 between the atomic
transition frequency and the field mode frequency in the QRM.

Fig. 1 Schematic for experimental observation of QPT in the quantum Rabi model. a Schematic experimental setup. The 171Yb+ ion is confined in the
middle of a four-blade Paul trap, with the principal axes of the secular motion along the x, y, and z directions. Two counter-propagating 355 nm pulsed-laser
beams are focused on the ion, with a nonzero differential wave vector component along the x direction. The two laser beams are controlled by two acousto-
optic modulators (AOMs). AOM1 is driven by a radio-frequency (RF) signal from a phase-locked loop (PLL)56 and AOM2 is controlled by an arbitrary
waveform generator (AWG). b Schematic level structure of 171Yb+. The two qubit states are two 2S1/2 hyperfine ground states "

�� � ¼ F ¼ 1;mF ¼ 0
�� �

and
#
�� � ¼ F ¼ 0;mF ¼ 0

�� �
, at the separation ωq≈ 2π × 12.6 GHz. The Raman transition is mediated by a virtual level about 2π × 33 THz above the 2P1/2 levels.

The differential frequencies of the laser beams are tuned close to the blue and the red motional sidebands, i.e., ωx− δb and −(ωx+ δr) from the carrier
transition. The legend at lower right shows clearly that the purple beam and the blue (red) beam form a near-blue-sideband (near-red-sideband) Raman
transition. c The 355 nm pulsed laser has a frequency-comb structure42 with the repetition rate ωrep≈ 2π × 118.695MHz. With small frequency
adjustments in the AOMs, the desired Raman transitions can be achieved between distant teeth of the frequency combs. d Relative positions of the carrier
transition (black) and two motional sidebands (red and blue) in solid lines and the bichromatic Raman-transition frequencies (red and blue) in dashed lines.
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Under this finite ratio, the energy gap at the quantum critical
point becomes finite which is around 0.4ωf= 2π × 0.8 kHz11,
indicating that the quench time should at least be 1.25 ms such
that the prepared state does not deviate too much from the true
ground state. After sideband cooling, we initialize the ion in the
ground state #; n ¼ 0j i. Then we linearly increase the sideband
Rabi frequency such that ΩSBðtÞ � ηΩðtÞ ¼ Ωmaxt=τq where
Ωmax ¼ 2π ´ 14:2 kHz and the quench time τq= 2 ms are two
pre-determined parameters. In other words, the time to reach the

critical point Ωc
SB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2b � δ2r

q
=2 ¼ 2π ´ 10 kHz is about 1.4 ms.

We expect the quantum state of the system to follow the slow
quench of the control parameter gðtÞ ¼ ΩSBðtÞ=Ωc

SB. Hence with
a duration time t, we generate the target state under a specific
coupling strength of the QRM and measure the order parameters.

The spin-up state population can be measured by a resonant
driving on the j 2S1=2; F ¼ 1i ! j 2P1=2; F ¼ 0i cyclic transition
of the 171Yb+ ion and a detection of the scattered photon
counts46. The result is shown in Fig. 2. Every orange data point is
the average of 20 rounds of measurements of the spin-up state
population and has been corrected by subtracting the 1.0% dark-
state detection error, which arises from the small residual off-
resonant coupling of the detection laser to the bright state46 as the
background. For each round of measurement, the outcome is
acquired by averaging over 500 shots of the experiment sequence.

The error bar is estimated by one standard deviation of the
20 rounds. We clearly observe the increase of the order parameter
ð1þ hσ̂ziÞ=2 after the quantum critical point (the vertical
dashed line in Fig. 2) despite the relatively low sharpness due
to the finite ratio parameter R, which agrees well with the
numerical simulation (the blue curve in Fig. 2 from numerically
solving the time-dependent Schrödinger equation of the QRM
Hamiltonian).

Observation of quantum phase transition from the phonon
number. Next we consider another order parameter, the average
phonon number. After the slow quench of the QRMHamiltonian, a
short optical pumping pulse of 5 μs is applied to pump the internal
state of the ion (qubit state) into #

�� �
46 with negligible effect on the

motional state (phonon state) population. Then, we drive the blue-
sideband transition between #; n

�� �
and "; nþ 1

�� �
(n= 0, 1,…) for

various time interval t. By fitting the resultant spin-up state
population, we can reconstruct the population of different phonon
states, thus calculating the average phonon number17,18,38,39,47–51.

With the same experimental parameters as above, the results are
shown in Fig. 3. Each black dot in Fig. 3a is the calculated average
phonon number from the phonon population distribution with the
error bar estimated by one standard deviation. In Fig. 3b we show
an example for the blue sideband signal of the leftmost data point
in Fig. 3a. The measured spin-up state population is fitted by the
blue curve to give the phonon state population {pk} (k= 0, 1, …)
with a suitable truncation. The fitting result is shown in Fig. 3c
with a covariance matrix (inset) representing the correlation
between different pk’s, from which we further deduce the standard
deviation of the average phonon number, assuming a joint
Gaussian distribution52. More details can be found in the
“Methods” section. As we can see, for this data point we get a
very low average phonon number, consistent with the fact that it is
deep in the normal phase. Similarly, Fig. 3d, e show the results for
the rightmost data point in Fig. 3a. Here, we get much faster
oscillation at the beginning of the blue sideband data owing to the
much higher phonon number population (the sideband Rabi
oscillation frequency � ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

ηΩ) in the superradiant phase, as
well as much faster decay since the phonon number has a wider
distribution. In this case we get larger uncertainty in each fitted pk.
However, they are strongly correlated as shown by the off-diagonal
elements of the covariance matrix (inset of Fig. 3e), and we still get
a reasonable error bar for the average phonon number. Finally, in
Fig. 3a we further compare the measured average phonon number
with the theoretical values from numerically solving the time-
dependent Schrödinger equation. Again these results agree well
within the error bars.

It should be pointed out that the fourth order AC Stark shift
induced by the laser beams is not zero in our setup43, and will
increase as we gradually turn up the coupling strength of the
QRM in the above experiments. Therefore, they cannot be
compensated by a static frequency shift in the laser beams, but
require a dynamic compensation by phase modulation of the laser
as shown in the “Methods” section. Also note that for our slow
quench dynamics to maintain quantum coherence, the total
quench time τq should be shorter than the motional decoherence
time τd of the trapped ion. The motional coherence of our system
is largely affected by the 50 Hz noise from the AC power line.
Therefore we use a line-trigger to lock the experimental sequence
to the AC signal from the power line, which extends the motional
decoherence time to over 5 ms.

Scaling of the order parameter with respect to various
experimental parameters. Finally we consider the scaling of the
order parameter with respect to different experimental parameters.

Fig. 2 Spin-up state population versus sideband Rabi frequency. By
setting δb = 2π × 52.0 kHz and δr = 2π × 48.0 kHz, we keep the ratio
parameter R= ωa/ωf = 25 fixed. As we increase the sideband Rabi
frequency ΩSB (bottom axis) linearly with time (top axis), i.e., ΩSB ¼
Ωmaxt=τq where Ωmax ¼ 2π ´ 14:2 kHz and the quench time τq = 2 ms are

two pre-determined parameters, the control parameter gðtÞ ¼

2ΩSBðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2b � δ2r

q
goes up accordingly. With a duration time t, we

prepare a target state under g(t) and measure the spin-up state
population by florescence detection. Every orange dot is the average of
20 rounds of measurements of the spin-up state population, corrected
by subtracting the 1.0% dark-state detection error as the background;
the error bar is estimated as one standard deviation of the 20-round
outcomes (see Supplementary Information for more details about
the error bar estimation). For each round of measurement, we repeat
the experiment sequence for 500 shots and take the average. The blue
curve is the theoretical value by directly solving the time-dependent
Schrödinger equation under the QRM Hamiltonian. The vertical dashed
line is an indication of the quantum critical point gc = 1 (corresponding
to Ωc

SB ¼ 2π ´ 10 kHz). The inset shows the florescence detection
scheme of 171Yb+ ions46.
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For this purpose, the average phonon number is the preferred
observable because it can vary in a wider range than the spin-up
state population. Our results are summarized in Fig. 4 where we
change the ratio parameter R, the total quench time τq and the
motional decoherence time of the ion τd, while keeping the other
parameters the same. Figure 4a considers different ratios R= (δb+
δr)/(δb− δr) by keeping the critical sideband Rabi frequency Ωc

SB ¼
2π ´ 10 kHz fixed. Hence we can deduce δbðrÞ ¼ Ωc

SBð
ffiffiffi
R

p
± 1=

ffiffiffi
R

p Þ
from the ratio parameter R. As expected, the sharpness of the curve
and the final average phonon number are positively correlated with
the ratio parameter, and approach nonanalytical behavior in the

limit R→∞ (see Supplementary Information for a further dis-
cussion about the finite-ratio scaling). In Fig. 4b, we vary the
quench time τq to study its effect on the order parameter. A shorter
quench time leads to a larger deviation from the adiabatic evolu-
tion, thus the prepared state has larger deviation from the true
ground state. Only for long enough quench time can the prepared
states have large enough overlap with the real ground states, hence
show the clear evidences of the QPT. In Fig. 4c we study the
influence of finite motional decoherence time τd of the trapped ion.
To keep the quantum nature of the system during the slow quench
dynamics, the quench time should be within the coherence time of

Fig. 3 Average phonon number versus sideband Rabi frequency. Again we set δb= 2π × 52.0 kHz and δr= 2π × 48.0 kHz, thus the ratio parameter R=
ωa/ωf= 25. With the same quench process as above, we prepare the target states and measure the corresponding average phonon numbers. a Each black
dot is a measured average phonon number for a specific ground state. Its value and the error bar are determined according to b–e. The blue curve is the
theoretical result by solving the time-dependent Schrödinger equation. The inset shows the blue sideband scheme for analyzing the phonon number
distribution: before the measurement, we optically pump the spin state into #

�� �
46 with tiny influence to the phonon state population; then we drive the blue

sideband transition for various time interval and fit the obtained spin-up state population to extract the phonon distribution. For the leftmost data point in
the normal phase, b presents the experimental data (black dots, averaged over 200 shots) and the fitted curve (blue line), and c shows the fitted
population pk (k= 0, 1, …) with the covariance matrix shown in the inset. The error bar in a is computed from this covariance matrix as one standard
deviation for the average phonon number. Similarly d and e show the results for the rightmost data point in a in the superradiant phase. More details can be
found in the “Methods” section.

Fig. 4 Average phonon number versus sideband Rabi frequency under different experimental parameters. Each dot is an average phonon number
measured in the same way as in Fig. 3, with the error bar representing one standard deviation. In a–c, we vary the ratio parameter R, the total quench time
τq and the motional decoherence time τd, respectively, while keeping the other parameters the same as those in Fig. 3. a. We keep Ωc

SB ¼ 2π ´ 10 kHz and
τq= 2ms. Then we need δb= 2π × 41.3 kHz and δr= 2π × 36.1 kHz for R= 15 and δb= 2π × 26.8 kHz and δr= 2π × 17.9 kHz for R= 5. b We keep
Ωc

SB ¼ 2π ´ 10 kHz, R= 25, but use different quench time τq. c We keep Ωc
SB ¼ 2π ´ 10 kHz, R= 25 and τq= 2ms, but vary the motional decoherence time

τd by turning on (τd= 5.5 ms) or off (τd= 0.7 ms) the locking of the experimental sequence to the 50 Hz reference. The curves in a and b are from
numerical simulation without considering the motional decoherence, similar to the τd=∞ curve in c. The other two curves in c include the motional
decoherence effect by numerically solving a Lindblad master equation (see “Methods” section for more details). The difference between τd=∞ and τd=
5.5 ms is very small for the quench time τq= 2ms, thus justifies our simplification of τd=∞ for a, b and the previous numerical simulations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21425-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1126 | https://doi.org/10.1038/s41467-021-21425-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the system. As is mentioned above, the motional coherence of our
trap is largely affected by the 50Hz noise from the AC power line.
By locking the experimental sequence to the 50Hz reference, the
coherence time is above 5ms; while if we turn off the locking,
the coherence time will drop below 1ms. This phenomenon is also
reported in the ref. 53. We conduct the experiments with the
locking turned on and off, respectively. As expected, the sharpness
of the curve reduces for shorter coherence time. The results agree
well with the theoretical prediction for a motional decoherence
time τd= 5.5 ms and τd= 0.7 ms, respectively from solving the
Lindblad master equation (see “Methods” section). We also per-
form a simulation using the Schrödinger equation without con-
sidering any decoherence, which is labeled as τd=∞. This curve is
very close to that for τd= 5.5 ms, which justifies our numerical
simulation using Schrödinger equation in Figs. 2, 3a, 4a, b, for τq ≤
2ms. We also notice that the heating of the motional mode and the
decoherence of the qubit state are potential sources of errors in the
experiments. However, in our system the heating rate measured by
the standard method54,55 is well below 50 quanta/s, and the qubit
coherence time measured by the Ramsey method using Raman
transition is greater than 50ms, which is mainly limited by the
coherence of the PLL56. Both have negligible effect on the mea-
sured order parameters as discussed in “Methods” section.

Discussion
To sum up, we have successfully observed a QPT from the nor-
mal phase to the phonon superradiance phase associated with the
QRM simulated by a single trapped ion. Through slow quench
dynamics, we measure the spin-up state population and the
average phonon number as the order parameters and observe
them changing from near zero to large values, when the control
parameter is tuned across the quantum critical point. For the
average phonon number, the change becomes sharper when the
ratio parameter increases, analogous to approaching closer to a
thermodynamic limit. The strong controllability of the trapped-
ion system also allows us to vary the experimental parameters and
study their influence on the phase transition. We also note that in
the ref. 12, a method to observe the universal scaling with spin-up
state population was proposed. However, considering some
technical difficulties, it is not possible for our system to observe
the critical phenomena currently (see Supplementary Information
for more discussions about this). To further study the finite-ratio
scaling, we will either need to reduce the experimental noise and
to upgrade the experimental setup to get more accurate results
near the critical point for larger frequency ratio R; or we may
need to develop different scaling methods which use data points
farther away from the critical point. Our work is a first step
towards the more detailed studies of the QPT in the QRM,
including the critical dynamics and the universal scaling11,12.
With reservoir engineering51,57, it is also possible to observe the
dissipative phase transition in the QRM58. Besides, our method
can be directly extended to study the QPT in the many-body
version of the QRM, i.e., the Dicke model5,59,60 when we increase
the number of the trapped ions.

Methods
AC Stark shift compensation. Our 355 nm pulsed laser has a frequency comb
structure with a repetition rate ωrep ≈ 2π × 118.695 MHz and a bandwidth of about
200 GHz. It can be used to bridge the transition between the two qubit levels with a
frequency difference around ωq ≈ 2π × 12.6 GHz, without the need of large fre-
quency shifts between the two Raman beams42. In Fig. 1a, suppose AOM1 intro-
duces a frequency shift of ωAOM1, which is dynamically varied to compensate the
fluctuation of the repetition rate ωrep

56, and AOM2 leads to a frequency shift
ωAOM2,r(b) for the red (blue) component of the bichromatic laser beams. The closest
differential frequencies to the sideband transitions will be Δωr(b)= n × ωrep+
ωAOM1− ωAOM2,r(b) with n= 107, the span number of the frequency-comb pairs as
shown in Fig. 1c.

As we have mentioned in the main text, when tunning the sideband Rabi
frequency from zero to a specific value, the AC Stark shift induced by the off-
resonant coupling of the undesired frequency-comb pairs will also increase
continuously. This is a common shift to δr and δb, which changes δr+ δb and hence
the ratio parameter R. For the 355 nm pulsed laser we use, when the sideband Rabi
frequency is set to 2π × 14.2 kHz, the AC Stark shift can reach over 2π × 10 kHz
measured by the standard Ramsey method61. Such a large shift has non-negligible
effect on the order parameters and must be compensated during the slow quench
dynamics. Before each round of experiment, we calibrate the AC Stark shift Δac

under the QRM Hamiltonian with different sideband Rabi frequencies ΩSB and fit
it according to Δac ¼ αΩ2

SB where α is a proportionality constant. Then when
performing the slow quench experiment, we correct the frequency of the blue (red)
component in the bichromatic beams as ωb(r)(t)= ωb(r)(0)+ Δac(t), to make the
detuning δb(r) fixed. This can be realized by phase modulating the driving RF
signals on AOM2, which can be conveniently implemented by an AWG as shown
in Fig. 1a with a pre-determined waveform loading to its memory. The waveform
for the pulse is given by AðtÞ cosðωAOM2;rðbÞt �

R t
0 ΔacðtÞdtÞ, where ωAOM2,r(b) is a

pre-set driving frequency of AOM2 at the beginning of the experiment and the
driving amplitude A(t) ∝ΩSB(t) is also calibrated before the experiment.

Phonon number distribution measurement. To measure the phonon number of a
quantum state of the spin-phonon system, we trace out the spin part by optically
pumping it to #

�� �
46 within a duration of 5 μs so that its influence to the motional

state can be neglected. Then we apply a blue sideband pulse with various duration t
and measure the resultant spin-up state population P↑(t). It can be fitted by18,31,50

P"ðtÞ ¼
1
2

1�
Xkmax

k¼0

pke
�γkt cosðΩk;kþ1tÞ

" #
; ð3Þ

where pk is the occupation of the phonon number state kj i, γk is a number-state-
dependent empirical decay rate of the Rabi oscillation, where we adopt a com-
monly used form γk∝ (k + 1)0.718,31,50, Ωk;kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
ΩSB is the number-state-

dependent sideband Rabi frequency, and kmax is the cutoff in the phonon number.
If the hyperparameter kmax in the fitting model is too small, we will lose the high-
phonon population and thus limited to a small average phonon number; however,
if kmax is chosen too large, the uncertainty in the fitting will increase because we
need to fit more parameters, and the risk of misjudgement of high-phonon
population from the noise of the blue-sideband signals will also increase (see
Supplementary Information for more details about the choice of kmax).

After fitting the phonon state population P ¼ ðp0; p1; � � �ÞT with its covariance
matrix Σ, we can compute the average phonon number �n ¼ N � P where N= (0, 1,…)
is a row vector representing the phonon number basis. Assuming the fitted parameters
follow a joint Gaussian distribution52 (see Supplementary Information for more details
about this assumption), we can estimate the variance of �n as σ2�n ¼ NΣNT.

Error analysis and numerical simulation. To consider the motional decoherence
effect, we numerically solve the master equation with the Lindblad superoperator

L½Ô�ρ̂ � Ôρ̂Ô
y � Ô

y
Ôρ̂=2 � ρ̂Ô

y
Ô=2 of dephasing type62:

_̂ρðtÞ ¼ �i½Ĥ; ρ̂ðtÞ� þ L½ ffiffiffiffiffiffiffiffi
2Γm

p
âyâ�ρ̂, where Γm= 1/τd is the dephasing rate with the

decoherence time τd. In Fig. 4c with the line-trigger on (off), we set τd= 5.5 ms
(0.7 ms), which is within the range of our daily measurement (see Supplementary
Information for more detials about the motional coherence measurement), to fit
the experimental data.

For the motional heating and the qubit decoherence, we add the Lindblad
superoperators L½ ffiffiffiffiffiffiffiffi

γnth
p

ây� þ L½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðnth þ 1Þp

â�62 and L½ ffiffiffiffiffiffiffi
2Γq

p
σ̂þσ̂��63, respectively,

where γnth ≈ γ(nth+ 1) is the motional heating rate which is below 50 s−1 and Γq is
the qubit decoherence rate which is below 20 s−1 in our system. As we have
mentioned in the main text, the effects of these two terms are negligible from
numerical simulation. All the Lindblad superoperators we used in the master
equation just represent the results in the lab frame (describing the experimental
decay), and does not represent decay in the simulated system frame (describing the
QRM decay).

The fluctuation of the trap frequency (motional mode frequency ωx), which is
within 2π × 150 Hz after applying the RF power stabilization64, can be the main
error source on the ratio parameter R, because the trap frequency fluctuation is
asymmetrical for δr and δb (see Fig. 1d), causing δb− δr to change, thus the ratio
parameter. Under 2π × 150 Hz trap frequency fluctuation, the uncertainty for R=
25, 15, 5 are ±1.7, ±0.82, and ±0.16, respectively. Other sources of errors can be
from the phonon number fitting beacuse some noise in the blue-sideband signals
may be incorrectly recognized as a high-phonon population and cause the fitting
error, and from the fluctuation of the AC Stark shift due to the fluctuation of the
laser repetition rate and the laser intensity. Consider a 1% sideband Rabi freqeuncy
fluctuation (i.e., 1% of 2π × 14.2 kHz for maximal estimation) and 2π × 30 Hz
fluctuation of the repetition rate, the standard deviation of the fluctuated AC Stark
shift from a theoretical calculation43 can reach about 2π × 400 Hz. Under this
value, the ratio parameter uncertainty for R= 25, 15, 5 are ±0.20, ±0.15, and ±0.09,
respectively.
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