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Abstract

Background: Linking computational models of signaling pathways to predicted cellular responses such as gene
expression regulation is a major challenge in computational systems biology. In this work, we present Sig2GRN, a
Cytoscape plugin that is able to simulate time-course gene expression data given the user-defined external stimuli to
the signaling pathways.

Methods: A generalized logical model is used in modeling the upstream signaling pathways. Then a Boolean model
and a thermodynamics-based model are employed to predict the downstream changes in gene expression based on

the simulated dynamics of transcription factors in signaling pathways.

Results: Our empirical case studies show that the simulation of Sig2GRN can predict changes in gene expression
patterns induced by DNA damage signals and drug treatments.

Conclusions: As a software tool for modeling cellular dynamics, Sig2GRN can facilitate studies in systems biology by

hypotheses generation and wet-lab experimental design.

Availability: http://histone.scse.ntu.edu.sg/Sig2GRN/

Background

One of the major forms of cellular responses to extracel-
lular perturbations is to change the gene expression in
response to the cellular signals transmitted by signaling
pathways. Diverse stimuli can be converted into a series of
intercellular reactions through signal transduction path-
ways which generate various transcription factor activi-
ties, thereby producing different gene expression patterns
that result in subsequent cellular behaviors.

Over the past few decades, many studies have pre-
sented various computational strategies, such as data-
driven, logic-based and biochemical kinetic methods, in
modeling signaling pathways or gene regulatory networks
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separately. Data-driven methods [1-4], which are con-
structed mainly based on statistical modeling, show great
potential when the underlying biological mechanisms
are unclear. Logic-based models, such as Boolean Net-
work [5-11] and generalized logic models [12-16] are
suitable formalisms for modeling relatively large net-
works in which the detailed kinetic parameters are not
fully available. If the underlying biochemical mechanisms
are known, biochemical kinetic modeling [17-20] is a
well-established strategy for describing the dynamic sub-
cellular systems using a set of mathematical equations.
In the field of gene regulation, thermodynamic models
have also been successfully applied [21-23] besides the
aforementioned methods.

Despite the many models of signaling pathways and
gene regulatory network (GRN), it is still a big chal-
lenge to link the models of signal transduction with
the downstream gene expression regulation. To address
this challenge, Peng et al. [24] used a set of differential
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equations to do forward simulations of the NF-kB signal-
ing pathway and then used Network Component Analysis
[25-27], a data-driven method based on matrix decom-
position, to reversely engineer a gene regulatory network
(GRN). Then they matched the forward simulations and
reverse engineering results and successfully linked the
signaling profiles with the subsequent gene expression
profiles. However, their method needs detailed kinetic
parameters which may not be available as yet in many
cases. A similar study of Melas et al. [28] first employed a
multi linear regression algorithm to identify correlation-
based relationships between signaling proteins and cellu-
lar responses (e.g., cytokine releases) and connected them
using “non-canonical” edges. Integrating a canonical net-
work of the signaling pathway from prior knowledge, the
whole network was then converted into a Boolean model.
Next, they optimized the network against the experi-
mental data using Integer Linear Programming [8] and
identified the pathway activities that induced the diverse
cellular responses. Their reconstructed model is able to
predict the dynamics of signaling pathways and cellular
responses; however, because the biological meaning of
the “non-canonical” edges learnt from the data is difficult
to interpret, their model can hardly reveal the molecu-
lar mechanisms of how signal transduction regulates gene
expression.

Here, we present Sig2GRN, a software tool which links
the models of signaling pathway with gene regulatory
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networks (GRNs). A generalized logical model, which
we proposed previously in [13] and is based on net-
work topology, is employed here to capture the dynamical
trends of transcription factors in cellular signaling path-
ways. Then two different models, i.e., a Boolean model
and a thermodynamics-based model [21], are integrated
to predict the downstream gene expression patterns based
on the predicted transcription factor activities. As a Java
plugin for Cytoscape [29] (version 2.8.3), Sig2GRN is able
to simulate the dynamics of the signaling pathways and the
subsequent time-series gene expression data. We first pro-
vide an overview of Sig2GRN’s core functionalities, and
then describe two case studies to illustrate the usage and
performance of Sig2GRN.

Methods and implementation

Generalized logical modeling of signaling pathways for
predicting transcription factor activities

Sig2GRN takes a directed graph as the input where each
vertex x in the network represents a molecular species
(e.g., a signaling protein, a transcription factor or a gene)
and each directed edge (u, v) denotes a biological inter-
action (e.g., protein phosphorylation or transcriptional
regulation) from node u to node v. The input network
is divided into two layers, ie., the upstream signaling
pathways and the downstream gene regulatory network,
according to the type of biological interactions from
prior knowledge (Fig. 1). The simulation starts from the
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Fig. 1 The illustration of the overall strategy. A generalized logical model is used in modeling the upstream signaling pathways to generate the
activities of the transcription factors. Then the simulated transcription factor activities are used to predict the downstream gene expression
according to either a Boolean model or a thermodynamic-based model
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user-defined perturbations and generates the dynamical
trends of the signaling proteins using a generalized log-
ical model in our previous work [13]. The goal of the
upstream simulation is to generate the dynamical trends
of the transcription factors under the perturbations. Then
the simulated transcription factor activities are employed
to predict the gene expression patterns over time, using
either a Boolean model or a thermodynamic-based model
[21], which can be selected by users. Therefore, the two
layers of network are linked together by the transcription
factors, and the cellular responses can be predicted given
the extracellular perturbations.

In the upstream signaling pathways, the state S; (with
value €[0, 1], where 0 means fully inhibited and 1 means
fully activated) of node s at the ¢-th simulation iteration
is updated based on its previous state at the (¢t — 1)-th
iteration and the incoming signals from its parent nodes,
according to Eq. (1) [13],

Se=(=d) S+ [1-[Ja -] [Ja-Bya - si-

~[Ta-an[1-TTa-8p]se (1)

where A; (or B;) represents the amount of signals trans-
mitted from the i-th activating (or j-th blocking) parent
node upstream of s, and d is the degradation rate (value €
(0, 1)) at each iteration. Using this model, we have success-
fully predicted the dynamics of a cancer signaling pathway
under various perturbations [13]. In this work, we select
the simulated transcription factor activities (e.g., the pro-
portion of the concentration of transcription factor in the
active form) as the output of the upstream generalized log-
ical mode and use them as the input to the downstream
models to further predict the gene expressions as shown
in Fig. 1.

Boolean modeling of transcriptional regulation

Once the time-series data of the transcription factor activ-
ities (value €[ 0, 1] at each simulation iteration) are gen-
erated, users can select either a Boolean model [30] or
a thermodynamic model [21] to predict the subsequent
gene expression patterns.

Under the Boolean scenario, the AND logical relation
is assigned to the transcription factors that have the same
transcriptional regulation type (e.g., activation or inhibi-
tion) for a gene, so that the gene will be switched ON (or
OFF) when the maximum activity level of activating (or
inhibiting) transcription factors surpasses a user-defined
threshold (value € (0,1)). When both activation and
inhibition regulations are present on the same gene, the
inhibition is assumed to precede the activation. The sim-
ulation result of the Boolean model is a list of Os and 1s,
over the course of time.
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Thermodynamic modeling of transcriptional regulation
Since the Boolean simulation only refers to whether a
gene up-regulated or down-regulated without revealing to
what extent they will be expressed or not, we implement a
thermodynamic (also termed fractional occupancy) model
[21] to describe the gradual responses of gene expres-
sion to signal transduction. The thermodynamic model is
derived under the assumption that the system is in the
thermodynamic equilibrium. As such, the gene expression
level is defined as a function of the activity levels of the
bound transcription factors as shown in Eq. (2) [21],

e (I KL TF] ) @
et (T, Knl TFy] )

where [E] is the gene expression level, N is the number of
all possible arrangements of transcription factors attach-
ing to their corresponding binding sites, G is the set of
transcription factor arrangements that turn the gene on,
n; (ny,) is the number of transcription factor binding sites
employed in the i-th (m-th) arrangement, K; and [TF}]
represent the binding affinity of binding site j and the
activity level of the transcription factor corresponding to
binding site j, and Q; is the probability of the gene being
expressed when the i-th arrangement comprises the bind-
ing of both activating and inhibiting transcription factors
(Qi = 1 when only activating transcription factors are
included).

[E]= (2)

Results

Case Study 1: DNA damage induced cell apoptosis.
DNA damage caused by ionizing radiation will activate
ATM, while that by UV light will activate ATR and DNA-
PK [31-33]. The stimulated kinases ATM, ATR and DNA-
PK can phosphorylate p53 and E2F1 transcription factors
directly or indirectly via Chkl and Chk2. The activated
p53 and E2F1 can regulate transcription of apoptosis regu-
lator Bax, Bcl-2 and Apaf-1. Figure 2 shows the regulatory
cascade of DNA damage induced apoptosis regulation.
The network is constructed using GeneGo MetaCore
database [34].

Given the input data (value €[0,1]) associated with
the receptors of the network (i.e., ATM, ATR and DNA-
PK), the user-specified edge weights (value €[0,1]) and
the number of iterations, Sig2GRN will first generate the
dynamics of all the nodes’ activities in the network based
on Eq. (1). By manually selecting the transcription factors
that regulate the transcription of the genes of interest, we
can run Sig2GRN to further predict this gene’s expression
status over time. Figure 3 shows the simulated expression
of Bax and Bcl-2 as an example. Here ATR and DNA-PK
are selected as input nodes to simulate the exposure of the
cells to UV light. The input levels of the input nodes were
both set to 1; the edge weights of activation and inhibition
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Fig. 2 The network of cell apoptosis regulation induced by DNA
damage [34]. The signals will be transmitted from the upstream
signaling proteins to the transcription factors (e.g.p53 and E2F1),
then the transcription factors will regulate the transcription of
apoptosis regulators (e.g., Bax, Bcl-2, Apaf-1 and Caspases). Rectangle,
diamond and ellipse nodes represent signaling proteins, transcription
factors and regulated genes, respectively. Each activation interaction
is denoted as a green edge with an arrow head and each inhibition
interaction is represented by a red edge with a flat-head. The solid and
dash lines represent signal transduction and transcription regulation,
respectively
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interactions were set to 0.7 and 0.8, respectively; and the
number of iterations was set to 100. In the Boolean model,
for Bax, the selected transcription factor was p53 and the
interaction type from p53 to Bax was set to activation; for
Bcl-2, the transcription factors were E2F1 and p53 and the
interaction types were activation and inhibition, respec-
tively. In the thermodynamic model, the binding affinities
of E2F1 and p53 were both set to 2. The parameter settings
used here are only for purpose of demonstration because
the prior knowledge available for parameter settings is
insufficient in this case study. Moreover, the robustness of
our model to the variations of the parameters (including
the edge weights and the initial values of the nodes) have
been empirically demonstrated in our previous work [13].
It can be seen from Fig. 3a that Bax is expressed (in the
Boolean model, 1 means the gene is expressed) after about
12 iterations when the DNA damage signals are trans-
mitted from p53. Similar conclusion can be drawn from
the thermodynamic model in Fig. 3b that the expression
of Bax increases rapidly to a plateau. In Fig. 3d, Bcl-2 is
also turned on after about 15 iterations. Compared with
Bax, the simulated expression of Bcl-2 using the thermo-
dynamic model (Fig. 3e) increases more smoothly and the
maximum expression is less than that of Bax because of
incoming inhibiting signals from p53.

To validate the simulation, we use a dataset in which
human TK6 cells were treated with UV light and then the
gene expression was measured at three time points, i.e., 4,
8 and 24 hrs [35]. Figures 3c and 3f give the experimental
data (the ratio of the gene expression levels between UV
light treated and control groups) of Bax and Bcl-2 expres-
sion over the three time points. These two genes are the
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overlap between the network (Fig. 2) and the dataset [35],
the dataset has measurements of many other genes which
cannot be included in the network and the gene Apaf-1 in
the network has no measurements in the dataset. It can
be seen from the real data that the expression levels of
both Bax and Bcl-2 increase over time when the cells are
exposed to UV light; the slope of Bcl-2 curve is smoother
and the height of the Bcl-2 curve is lower than that of the
Bax curve. This suggests that, to some extent, our simu-
lation tool is able to link the signal transduction with the
gene expression regulation through transcription factors.

Case Study 2: apoptotic signaling network treated by
different combinations of drugs. Predicting the effi-
cacy of drugs and the design of combination therapy is a
major endeavor for biomedical research and pharmaceu-
tical industry. Lee et al. [36] studied the effects of different
combinations of drugs in enhancing cell death in human
breast cancer cells (cell line BT20). Here we construct
a network based on their experiments and simulate the
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cell responses under different combinations of drug treat-
ments to evaluate the performance of our simulator.

The network (Fig. 4) comprises 35 nodes and 57 edges
[13, 34, 36]. In the 35 nodes, 32 represent signaling pro-
teins and 3 represent cell fates (e.g., apoptosis, prolifer-
ation and cell cycle). From the dataset in [36], we select
four samples, i.e., treated with (1) EGFR inhibitor, (2)
DNA damage activator, (3) both drugs and (4) the control
group. The dataset has no measurement of gene expres-
sion, instead, the numbers of cells that fall into each cell
fate were measured at 5 time points (i.e., 0, 6, 8, 12 and
24 hrs). Therefore, no interaction of transcriptional regu-
lation is included in the network. We directly calculate the
proportion of the dead cells at each time point as the cells
response to the perturbations.

As shown in Table 1, four different types of simula-
tion input are defined to correspond to the experimental
settings in [36]. For example, half activating (0.5) signals
are assigned to both TNFR and EGFR to simulate the
control group; full blocking (0), half activating (0.5) and
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Fig. 4 Network constructed based on [36]. Rectangle and diamond nodes represent signaling proteins and cell fates, respectively. Each activation
interaction is denoted as a green edge with an arrow head and each inhibition interaction is represented by a red edge with a flat-head
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Table 1 Input to the simulation in case study 2

EGFR TNFR DNA damage
Control 0.5 0.5 0
EGFR inhibitor 0 0.5 0
DNA damage stimuli 0.5 0.5 1
Both drugs 0 0.5 1

The columns are the input nodes in simulation and the rows are drug treatments to
BT20 cells in wet-lab experiments in [36]

full activating (1) signals are assigned to EGFR, TNFR
and DNA damage, respectively, to simulate the addition of
both EGFR inhibitor and DNA damage activator together.
The edge weights of activation and inhibition interac-
tions are 0.7 and 0.8, respectively; and the number of
iterations is 100. Since the network in Fig. 4 does not
involve transcriptional regulation, the predicted dynam-
ics of Caspase 3 (the only upstream node of Apoptosis)
is considered as the predicted cell responses to the
perturbations.

Figure 5a shows the simulated proportions of cell death
over time. Compared with the control group (the blue
curve), the addition of drugs (the orange, yellow and pur-
ple curves) enhances cell death. While the EGFR inhibitor
(the orange curve) increases cell death to a small extent,
the effect of DNA damage activator (the yellow curve) is
significant. Furthermore, the treatment with both drugs
together (the purple curve) performs the best in enhanc-
ing the cell death. Compared with the real data in Fig. 5b,
the predictions are consistent with the experimental mea-
surements of the drug effects in terms of trends and
ranking of the curves. However, there is a synergistic effect
of the co-treatment in the real data, e.g., the cell death pro-
portion induced by the co-treatment exceeds the sum of
the cell death proportions induced by the two treatments
separately, which has not been captured by the simulation.
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Moreover, mapping the simulation iterations to the real
time points remains a challenge for our simulator.

Discussion

In spite of the promising performance of our computa-
tional simulations, limitations have also been noticed. For
example, in case study 2, the simulation did not reveal
the synergistic effect of the co-treatment by two drugs.
Possible reasons include the insufficient prior knowledge
of the input networks and an oversimplification of the
computational model of the nonlinear regulatory system.
Moreover, since the simulation is iterated over discrete
time points, it is hard to assign real time to simulation
steps, which is a major obstacle for linking the two biologi-
cal processes (e.g., signal transduction and transcriptional
regulation) with different time scales. Techniques of mul-
tiscale modeling and simulation will be incorporated into
the software in near future.

Conclusions

Computational simulation is an important systems biol-
ogy approach to the analysis of signaling pathways and
gene regulatory networks. In this work, we present a soft-
ware tool called Sig2GRN which is able to link the cellular
signaling pathways with the downstream gene expression
regulation. A generalized logical model is used in mod-
eling the upstream signaling pathways, while a Boolean
Network and a thermodynamic model are employed in
modeling the downstream gene expression based on the
simulated activities of transcription factors. We have
shown two case studies on simulating the cell responses
to the extracellular perturbations and validated the sim-
ulations with wet-lab experimental data. As a Cytoscape
plugin, Sig2GRN is designed to be extensible so that more
computational models of gene regulation (e.g., epigenetic
modifications) can be integrated to facilitates studies in
systems biology. Compared with existing methods to link
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signaling pathways with gene regulation, such as in [24],
Sig2GRN is a parameter-free software which requires no
kinetic parameters of the pathways, and thus it is still
applicable when only insufficient prior knowledge of the
underlying mechanisms is available. Moreover, Sig2GRN
is able to predict the gene expression time-course data
given the perturbations to the signaling pathways, whereas
in [24] the gene expression data are required as the input
of their model, which is therefore unable to predict new
gene expression patterns.
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