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Acute promyelocytic leukemia (APL) accounts for 10–15% of newly diagnosed acute
myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia
with retinoic acid receptor a (RARA) gene. The prognosis is excellent, thanks to the all-
trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small
percentage of APLs (around 2%) is caused by atypical transcripts, most of which
involve RARA or other members of retinoic acid receptors (RARB or RARG). The
diagnosis of these forms is difficult, and clinical management is still a challenge for the
physician due to variable response rates to ATRA and ATO. Herein we review variant APL
cases reported in literature, including genetic landscape, incidence of coagulopathy and
differentiation syndrome, frequent causes of morbidity and mortality in these patients,
sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR
rearrangements, complex rearrangements (involving more than two chromosomes), and
NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.

Keywords: variant acute promyelocytic leukemia, APL-like acute myeloid leukemia, atypical rearrangements,
complex rearrangements, genetic landscape
INTRODUCTION

Acute promyelocytic leukemia (APL) was first described in 1957 by Hillestad and accounts for 10–
15% of newly diagnosed acute myeloid leukemias (AML), with an incidence of about 1,900 cases per
year in Europe (0.12 per 100,000 person-years) (1, 2). APL is characterized by the t(15;17)(q24.1;
q.2) balanced translocation, which results in the fusion of promyelocytic leukemia (PML) with
retinoic acid receptor a (RARA) gene. This oncogene, found in 98% of cases, causes the
transcriptional repression of RARA-targeted genes and the destruction of PML nuclear bodies
(PML-NBs), resulting in altered self-renewal, senescence mechanisms, and response to DNA
damage (3–7). With the introduction of daunorubicin in 1973, all-trans-retinoic acid (ATRA) in
1988, arsenic trioxide (ATO) in 1997, and, eventually, the chemo-free ATRA+ATO approach in
2006, the disease changed from highly fatal to curable leukemia in most cases (6, 8–14).
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Morphologically, APL is characterized by the presence, in the
bone marrow (BM) and/or peripheral blood (PB), of immature
hypergranular promyelocytes with abundant cytoplasm,
irregular nuclei with fine azurophilic granules, and Auer rods
in 90% of cases. The immunophenotypic evaluation often shows
the expression of myeloid antigen CD13, CD33, CD117, and
MPO, while CD34 and HLA-DR, as well as markers of
granulocytic differentiation, results are absent or low. A rapid
diagnosis of APL may be performed by analyzing the
immunocytochemical pattern of the PML protein using the
anti-PML monoclonal antibody PG-M3 (15, 16). However, a
genetic confirmation of the PML/RARA fusion transcript is
mandatory and is carried out by RT-PCR or RT-QLAMP, and
it should be performed by turnaround times of 24–48 h in order
to warrant a rapid treatment start, which is associated with a
reduction in the rate of bleeding complications, the major cause
of early death in APL (15, 17–19). Other diagnostic approaches,
such as conventional karyotyping and FISH, are useful to identify
the t(15;17) translocation (15).

About 2% of APL are characterized by atypical rearrangements,
where the RARA is fused to partners other than PML or in which
the translocation involves other members of the RAR superfamily
(Table 1) (6). These APL-like forms are a tough challenge for the
clinician, both because of the difficulty of diagnosis and the generally
unfavorable outcome due to diagnostic delays and to the frequent
resistance of these forms to treatment commonly used for classical
APL (3, 4, 101, 102).

This paper focus on the latter entities in order to summarize
knowledge on the molecular landscape and correlations
with outcome.

Variant APLs usually have a clinical presentation and
morphological and immunophenotypic picture similar to classical
APL, includingpancytopenia-related symptoms (weakness, fatigue,
infection) and bleeding (103). Therefore, if genetic tests result
negative or are not readily available, a FISH analysis using RARA,
RARB, and RARG probes or conventional karyotype helps to
identify possible alternative RAR translocations or other genetic
abnormalities. In this context, the morphologic and/or
immunophenotypic features of some NPM1-mutated AMLs also
resemble APL and will be described in this review.
PATHOGENESIS, CHARACTERISTICS,
AND MANAGEMENT OF APL VARIANTS

The pathogenesis of APL has been extensively studied and
discussed in previous papers. The chromosomal translocation t
(15;17), resulting in the PML-RARA fusion protein, is the main
and, probably, the only driver alteration of APL, where
additional gene mutations have been reported at a significantly
lower rate when compared to other AML subtypes (26, 104, 105).
The differentiation block typical of APL results from the
destruction of PML nuclear bodies, implicated in DNA
replication, transcription, and epigenetic silencing, and from
the repression of RARA target differentiation genes by the
aberrant recruitment of histone deacetylases (2–4, 105, 106).
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Several rearrangements different from PML-RARA have been
described as driver mutations in APL-like AML (Figure 1). In most
cases, the RAR gene family is involved (1, 103), including RARB and
RARG in addition to RARA, all with a key role in cell development
and differentiation (2, 107). Few cases of rearrangements other than
RAR, mainly pediatric, have been reported (3, 77).

We reviewed the most frequently reported genetic alterations
in APL-like AML since 2010, including cases identified with
modern diagnostic standards and treated with current
therapeutic strategies (Table 1). Because of clinical relevance,
we report data on coagulopathy (main cause of death in APL
patients) and differentiation syndrome (DS) (13, 20–22).
Coagulopathy is defined as prolonged prothrombin time and/
or activated partial thromboplastin time in addition to
hypofibrinogenemia and/or increased levels of fibrin
degradation products or D-dimer (23–25). We excluded from
our analysis cases in which a rearrangement was not identified or
cases with a cryptic PML-RARA rearrangement.
RARA Rearrangements
In APL variants, rearrangements involving RARA gene are the
most frequently described. The most common translocation,
reported in 1% of cases, is the t(11;17)(q23;q21), which fuses
RARA with ZBTB16 (formerly known as promyelocytic leukemia
zinc finger protein PLZF), a key regulator of physiological and
stress-induced myelopoiesis (1–3, 108). Of note is that both the
oncogenic fusion transcripts PML-RARA and ZBTB16-RARA are
characterized by the identical RARA exon sequence, suggesting a
key role of RARA domains in the pathogenesis of this disease. In
contrast to classic APL (109, 110), characterized by a low number
of additional mutations, this variant presents a complex
molecular landscape, similar to other acute myeloid leukemias
(AML) (109, 110). Our group showed that ZBTB16-RARA
rearranged AML and display several gene mutations
commonly identified in AML, including TET2, RUNX1, and
CSF3R, and in particular, the most frequent alteration was found
in the AT-rich interacting domain containing protein 1A gene
(AIRD1A, in 6 out of 7 patients analyzed), a member of the SWI/
SNF family of transcriptional regulators, which is a known solid
and hematological cancer development driver (26, 111).

Data in literature report a lower incidence of coagulopathy
compared to classic APL (40–55%) and a poor outcome, with less
than half of the patients surviving at prolonged follow-up (26–
28, 102). The therapy with ATRA and ATO is not effective on
ZBTB16-RARA AML, and the resistance to ATO is due to the
lack of an ATO-binding site, whereas although ATRA induces
the degradation of the fusion protein, differentiation and
apoptosis do not occur, and there is no clinical response.
Indeed DS has been reported in none of the cases (8, 9, 112,
113). The proteolytic activity of ATRA has shown positive results
in combination with chemotherapy, which remains the main
therapeutic strategy in these patients.

The recent finding of the high prevalence of ARID1A mutations
might open new scenarios on the use of targeted drugs since this
mutation has been associated with a decrease in intracellular
glutathione (GSH). Eprenetapopt (APR-246), a GSH p53-
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TABLE 1 | Genetic, clinical, and prognostic features of variant and acute promyelocytic leukemias.

Fusion
genes

Cases
(N)

Cytogenetic Coagulopathy ATRA ATO Chemotherapy Combination
therapy

Differentiation
Syndrome

Outcome (OS) References

RARA rearrangements
PML-
RARA

98% of
total

t (15;17)
(q22;q21)

65-83% S S S S 2–54% 12 y, OS 87% (13, 20–25)

ZBTB16-
RARA

1% of
total

t (ll;17)
(llq23;q21)

40-55% R R S S Not reported 25 mo; 40% alive (16, 26–28)

STAT5B-
RARA

17 t (17;17)
(q21;q21)

8 (47%), 7 ND R R S S 0 15 mo (0–53); 7 alive; 7
dead; 3 ND

(29–42)

NPM1-
RARA

11 t (5;17)
(5q35;q21)

2 (18%), 8 ND S ND S S 0, 3 ND 18 mo OS (0–46); 7 alive;
2 dead; 2 CR, ND on FU

(28, 43–52)

IRF2BP2-
RARA

6 t (l;17) (q42;q21) 2 (33.3%) S ND ND S 0 17 mo (1–50); 3 alive; 3
dead

(53–58)

TBLR1-
RARA

4 t (3;17)
(q26;q21)

0, 2 ND ND ND ND S 0 5.5 mo (0–11); 2 dead; 1
CR no data on FU; 1 ND

(59, 60)

FIP1L1-
RARA

4 t (4;17) (ql2;q21) 0, 2 ND S ND R ND 2 (50%), 1 ND 2 mo OS (0–5); 1 alive; 2
dead; 1 CR ND on FU

(61–64)

BCOR-
RARA

2 t (X;17) (pll;q21) 1 (50%) ND R S S 0 26.5 mo (26–41); 2 alive (65, 66)

STAT3-
RARA

2 t (17;17)
(q21;q21)

ND R R ND R 0 20 mo (7–33); 2 dead (67)

PRKAR1A-
RARA

2 t (17;17)
(q21;q24)

1 (50%) ND ND ND S 0 24 mo, alive; CR, ND on
FU

(68, 69)

OBFC2A-
RARA

1 t (2;17)
(q32;q21)

0 ND ND S S 0 15 mo, alive (70)

6TF2I-
RARA

1 t (7;17) (qll;q21) 1 (100%) R R R R 0 5 mo, dead (71)

FNDC3B-
RARA

1 t (3;17)
(q26;q21)

1 (100%) ND ND S ND 1 (100%) CR, ND on FU (72)

NUP98-
RARA

1 ND 1 (100%) ND ND S ND 0 44 mo, alive (73)

TNRC18-
RARA

1 ND 1 (100%) R R S ND 0 9 mo, alive (74)

HNRNPC-
RARA

1 t (14;17) (qll;q21) 0 R ND S ND 0 12 mo, alive (75)

X-RARA 1 t (X;17) (q28;ql2) ND ND ND S R 0 23 mo, dead (76)
RARB rearrangements
TBLR1-
RARB

6 t (3;3) (q24;q26)/
inv.(3)/t (3;10;12)

1 (17%), 5 ND R ND S ND ND 63 mo (23–108); 4 alive; 2
ND

(77–79)

X-RARB 1 t (X;3) (q28;q21) ND R ND S ND ND 31 mo, alive (79)
RARG rearrangements
CPSF6-
RAR6

8 t (12;12) (ql3;ql5) 4 (50%), 3 ND R R S ND 1 (12.5%) 11 mo (1–33); 3 alive; 3
dead; 2 ND

(27, 77,
80–83)

NUP98-
RAR6

5 t (ll;12) (pl5;ql3) 1 (20%), 1 ND R R S S 1 (20%) 20 mo (0-32); 1 alive; 3
dead; 1 CR ND on FU

(84–89)

PML-
RAR6

1 t (12;15)
(ql3;q22)

0 R ND S ND 0 CR, ND on FU (89)

NPM1-
RAR6-
NPM1

1 ND 0 R R ND ND 0 8 mo, dead (90)

HNRNPC-
RAR6

1 ND 0 R R S ND 0 13 mo, dead (91)

Non-RAR rearrangements
ELL-MLL/
MLL-ELL

2 t (ll;19)
(q23;pl3.3)

1 (50%), 1 ND ND ND ND S ND 170 mo, alive; 1 ND (77, 92)

MLL-AF1Q 1 t (l;ll) (q21;q23) ND ND ND ND S ND 34 mo, alive (77)
RPRD2-
MLL

1 t (l;ll) (q21;q23) ND ND ND ND S ND 34 mo, alive (77)

NPM1-
CCDC28A

1 ND ND ND ND ND S ND 54 mo, alive (77)

TBC1D15-
RAB21

1 ND ND ND ND ND S ND 56 mo, alive (77)

(Continued)
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targeting compound inhibitor, has been shown to be effective in
both ARID1A-mutated solid tumors and p53-mutated
myelodysplastic syndromes and may be active in ZBTB16-RARA
AML (10, 11, 114–116).
Frontiers in Oncology | www.frontiersin.org 4
The signal transducer and activator of transcription 5B
(STAT5B) is a member of the STAT family transcription factors
and mediates cell differentiation, proliferation, and survival signals
induced by various cytokines and hormones (13, 117). STAT5 has
TABLE 1 | Continued

Fusion
genes

Cases
(N)

Cytogenetic Coagulopathy ATRA ATO Chemotherapy Combination
therapy

Differentiation
Syndrome

Outcome (OS) References

Complex rearrangements
TF6-RARA 1 14;17)

(ql2;qll;q21)
0 S ND ND S 0 3 mo, alive (93)

PML-
RARA

1 L7;15)
(P13;q21;q22)

ND S ND ND ND 0 CR, ND on FU (94)

PML-
RARA

1 15;17)
(q24;q24;qll)

ND ND ND ND S 0 4 mo, alive (95)

PML-
RARA

1 t (l;17;15)
(q21;q21; q24)

1 (100%) ND ND ND S 1 (100%) 48 mo, alive (96)

PML-
RARA

1 t (6;17;lS)
(p21;q21; q22)

1 (100%) S S ND ND 0 60 mo, alive (97)

PML-
RARA

1 17;15)
(q25;q21;q24)

1 (100%) ND ND S ND 0 4 mo, alive (98)

PML-
RARA

1 t (5;17;15;20)
(q33;q12;
q22;qll.2)

1 (100%) ND ND ND S 0 CR, ND on FU (99)

PML-
RARA

1 34;q21;q24;
q13;q 26.1)

1 (100%) ND ND ND S 1 (100%) CR, ND on FU (100)
April 2022 | Volume 12 | A
CR, complete response; FU, follow-up; mo, months; ND, no data; OS, overall survival; R, resistant; S, sensitive.
A B

C D

FIGURE 1 | Schematic representations of RARx translocations. Common (A) and rare (B) RARA rearrangements. RARB (C) and RARG (D) rearrangements. The
figures were created with Biorender.com. 5′-UTR, 5′-untranslated region; DBD, DNA-binding domain; LBD, ligand-binding domain; CC, coiled coil domain; POZ,
BTB/POZ domain; Pro, proline-rich region; Zn, zinc finger domain; SH3, protein–protein interaction domain; SH2, docking domain for phosphorylated tyrosine
residues; BBD, BCOR Bcl6-binding domain; ANK, ankyrin repeats; Fip1, FIP1-binding domain for polymerase; LisH, lissencephaly type-1-like homology motif; DDD,
dimerization/docking domain of the type I alpha regulatory subunit of cAMP-dependent protein kinase; ND, nucleoplasmin/nucleophosmin domain; LZ, leucine
zipper; PHD TF, plant homeodomain finger transcription factor domain; FN3, fibronectin type 3 domain; GLEBS, Gle2/Rae1-binding sequence; GLFG, Gly-Leu-Phe-
Gly repeats; R1, I-repeat domains; RRM, RNA recognition motif; R, RING finger domain; B1 and 2, B box.
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been linked to several hematological cancers, in particular
lymphoma and acute leukemia (118). Fusion with RARA
generates the t(17;17)(q21;q21) and the STAT5B-RARA
rearrangement, of which 17 cases have been described (29–41).
This variant shares common features with ZBTB16-RARA AML: a
moderate incidence of coagulopathy, resistance to ATRA and ATO,
and poor outcome (42). Chemotherapy is likewise the best strategy,
but hypomethylating agents may also be effective, as shown in a case
successfully treated with decitabine and ATRA (29). Given the high
relapse rate, patients with STAT5B/RARA-positive leukemia might
benefit from hematopoietic stem cell transplantation in the
first remission.

The rearrangement of RARA with nucleophosmin 1 [NPM1-
RARA, t(5;17)(5q35;q21)], a protein physiologically implicated
in genomic stability and DNA repair and one of the most
commonly mutated genes in AML, has been frequently
reported (101, 102, 119, 120).

These cases have morphologic and phenotypic features
similar to PML-RARA-positive APL, but blasts display
abundant cytoplasm with small azurophilic granules and
regular nuclear outline. A coagulopathy has been rarely
reported (2 out of 11 cases), and the prognosis seems better
than for the previous variants, probably because of the sensitivity
to the drugs used in classic APL. Indeed NPM1-RARA-positive
AML are sensitive to ATRA (alone or in combination with
chemotherapy, but DS has not been reported (28, 43–52)).

Interferon regulatory factor 2-binding protein 2 (IRF2BP2)
plays a role in apoptosis, survival, and cell differentiation (121).
In six cases of t(1;17)(q42;q21), IRF2BP2-RARA-rearranged
AML has been reported. Coagulopathy occurred in 2 patients;
ATRA, alone and in combination with chemotherapy, resulted
effective, while no DS has been reported (53–58).

Transducinb-like receptor 1 (TBLR1)plays an important role in
stem cell proliferation and differentiation and is involved in the
oncogenesis of solid tumors (122). The TBLR1-RARA fusion
transcript [t(3;17)(q26;q21)] has been described in 4 cases. ATRA
and ATO were successfully used in combination with
chemotherapy, andnocoagulopathyandDSwereobserved (59, 60).

Factor interacting with PAPOLA and CPSF1 (FIP1L1), fused
with platelet-derived growth factor receptor a (PDGFRa), has been
linked to several hematologic malignancies (hypereosinophilic
syndrome, chronic eosinophilic leukemia, systemic mastocytosis)
(123). The FIP1L1-RARA chimeric protein [t(4;17)(q12;q21)]-
positive AML is ATRA-sensitive, and two DS events were
reported. Nevertheless, it is an aggressive variant, and half of the
reported cases died due to bleeding before the start of therapy or
resistance first to chemotherapy and then to ATRA+chemotherapy.
No coagulopathy has been reported (61–64).

BCL6 Corepressor (BCOR) is an epigenetic regulator whose
alterations recur in solid and hematologic tumors (124). Two
BCOR-RARA [t(X;17)(p11;q21)]-positive AML cases have been
described. One patient presented coagulopathy that was relieved
by ATRA and tamibarotene. Both patients underwent
chemotherapy with and without ATRA, and complete response
was achieved in both cases. The role of ATRA as monotherapy is
therefore uncertain, and ATO resulted ineffective (65, 66).
Frontiers in Oncology | www.frontiersin.org 5
Signal transducer and activator of transcription 3 (STAT3), a
member of the STAT family transcription factors, has functions
similar to STAT5 and has been likewise linked to hematological
cancers (118). A STAT3-RARA variant [t(17;17)(q21;q21)] has
been reported in two cases with unfavorable outcome. Both
patients were resistant to ATRA, and one of them was resistant
to ATO. One patient, treated with chemotherapy, achieved a
temporary complete response (67).

The rearrangement between RARA and protein kinase CAMP-
dependent type I regulatory subunit alpha PRKAR1A-RARA, [t
(17;17)(q21;q24)], implicated in several cellular functions and in the
tumorigenesis of solid cancers, has been described in two cases
(125). Both were sensitive to ATRA in combination with
chemotherapy (19). One patient presented coagulopathy at onset
(68, 69).

Individual cases of rare rearrangements of RARA with the
following genes have been described: oligonucleotide/
oligosaccharide-binding fold containing 2° [OBFC2A-RARA, t
(2;17)(q32;q21)], general transcription factor II-I [GTF2I-RARA, t
(7;17)(q11;q21)], fibronectin type III domain-containing protein 3B
[FNDC3B-RARA, t(3;17)(q26; q21)], nuclear pore complex protein
98 (NUP98-RARA, cytogenetic analysis not available), trinucleotide
repeat containing 18 (TNRC18-RARA, cytogenetic analysis not
available), heterogeneous nuclear ribonucleoprotein C (HNRNPC-
RARA, t(14;17)(q11;q21)), and chromosome X (X-RARA, t(X;17)
(q28;q12)). In most cases, these AMLs resulted resistant to ATRA
and ATO. The only exception is a patient with a FNDC3B-RARA-
positive AML, who presented DS after 4 days from ATRA initiation
and achieved complete response, but there are no data on the long-
term response. Chemotherapy was effective, and CRwas achieved in
all cases, except for one patient with a GTF2I-RARA rearrangement
and who experienced early death. Coagulopathy was reported in
GTF2I-RARA, FNDC3B-RARA, NUP98-RARA, and TNRC18-
RARA-positive AML (70–76).
RARB Rearrangements
TBLR1-RARB rearrangement has been frequently described, with
variable cytogenetic features (t(3;3)(q24;q26)/inv.(3)/t(3;10;12)
(q26.2;q22;q15)) (77–79). The patients were resistant to ATRA
therapy, and no DS occurred, while chemotherapy was effective.
One patient presented coagulopathy at the onset of disease. Osumi
et al. reported a second type of rearrangement involving RARB,
whose partner gene was not detected by whole-genome sequencing
[X-RARB: t(X;3)(q28;q21)], which occurred in an AML, which was
resistant to ATRA and sensitive to chemotherapy (79).

Thus, in patients with RARB rearrangements, chemotherapy
seems a valuable option, as it guarantees good results and
favorable outcomes, with all patients alive at a mean follow-up
of 56.6 months (range, 23–108 months) (Table 1).
RARG Rearrangements
The most commonly described RARG rearrangement involves the
cleavage and polyadenylation specificity factor subunit 6 (CPSF6-
RARG, t(12;12)(q13;q15), implicated in solid cancer viability and
April 2022 | Volume 12 | Article 871590
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tumorigenesis and reported in 8 patients (126). Coagulopathy
occurred in half of the patients. This variant is not sensitive to
treatment with ATRA and ATO, with discrete responses to
chemotherapy. Only one case of DS has been described in a
patient treated with ATRA+ATO, who died 1 month after
diagnosis (27, 77, 80–83).

Five cases of AML with rearrangements between RARG and
NUP98 (NUP98-RARG, t(11;12)(p15;q13), have been described.
NUP98 is a gene known to fuse with different partner genes in
several hematological malignancies (127). Coagulopathy occurred
in one patient. ATRA and ATO, alone or in combination, resulted
ineffective. One patient presented DS after 14 days from ATRA
+ATO initiation, and an in vitro study demonstratedATRAactivity
(3). Four patients treated with chemotherapy, one of them
combined with ATRA, achieved complete response (84–89).

Three other RARG partner genes have been reported: PML
(PML-RARG t(12;15)(q13;q22), NPM1 (NPM1-RARG-NPM1,
cytogenetic analysis not available), and heterogeneous nuclear
ribonucleoproteins C1/C2 (HNRNPC-RARG, cytogenetic analysis
not available). In these cases, no coagulopathy occurred, and the
disease was resistant to ATRA and/or ATO (89–91).

Overall, variant APLs with RARG rearrangements are
characterized by poor outcome (more than half of the patients
died) and resistance to ATRA and ATO, although these drugs
Frontiers in Oncology | www.frontiersin.org 6
have some effect on blasts, as shown by the reported DSs.
Therefore, a combined approach with ATRA ± ATO and
chemotherapy may be reasonable.

Non-RAR Rearrangements
A few cases of APL variants with RAR-negative rearrangements
have been reported, including myeloid/lymphoid or mixed-lineage
leukemia and RNA polymerase II elongation factor ELL (ELL-MLL/
MLL-ELL, t(11;19)(q23;p13.3), MLL and AF1Q (MLL-AF1Q, (t
(1;11)(q21;q23), MLL and regulation of nuclear pre-MRNA
domain containing 2 (RPRD2-MLL, t(1;11)(q21;q23), NPM1 and
coiled-coil domain containing 28A (NPM1-CCDC28A, cytogenetic
analysis not available), TBC1 domain family member 15, and Ras-
associated binding 21 (TBC1D15-RAB21, cytogenetic analysis not
available) (77, 92).

Most of these genes are known to be involved in leukemogenesis,
DNA damage response, and stem cell self-renewal (128–132). All
rearrangements have been described in pediatric patients by Zhao et
al. ELL-MLL/MLL-ELL has been also described in a young woman,
the only one who presented with coagulopathy. The patients were
successfully treated with a combination therapy (ATRA, ATO, and
chemotherapy) (77, 92).

Of note is that a NPM1-CCDC28A fusion transcript has been
recently described in an adult patient whose features, however,
FIGURE 2 | Diagnostic algorithm in the suspicion of acute promyelocytic leukemia (APL) and APL-like acute myeloid leukemias. In patients with morphologic,
immunophenotypic, or clinical features raising a suspicion of APL, the guidelines (15) recommend molecular genotyping, which can confirm APL diagnosis in a few
hours. If the PML/RARA rearrangement is absent, RT-PCR for recurrent translocations and for PLZF/RARA rearrangement, together with NPM1 and FLT3 mutation
testing, should be performed. In all cases, cytogenetic tests, including FISH, allow the diagnostic assessment for RARX rearrangements in 1 to 2 days, while
conventional karyotyping will detect karyotype abnormalities in 5–7 days, as recommended by ELN 2017 (139).
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resembled more an NPM1-mutated AML than APL (93). The
similarities between APL and NPM1-mutated AML will be
discussed in the dedicated paragraph.

Complex Rearrangements
Complex rearrangements are translocations involving more than
two chromosomes. With the exception of the case reported by
Chong et al., all patients presented typical PML-RARA fusion
transcripts. Compared with the other atypical transcripts, these
patients presented features similar to classic APL: a high percentage
of coagulopathy (71%), good response to ATRA, ATO, and/or
chemotherapy, discrete incidence of differentiation syndrome
(29%), and an excellent prognosis (patients alive at a mean
follow-up of 23.8 months; range, 3–60 months). This suggests
that karyotypic complexity does not affect the characteristics and
outcome of ASPL with typical rearrangements (94–100, 133).

Chong et al. described the only complex rearrangement bearing
a fusion transcript different from PML-RARA. It involves RARA
and the tropomyosin receptor kinase-fused gene (TGF-RARA, t
(3;14;17)(q12;q11;q21), a regulator of intracellular proteins
trafficking and fusion partner in solid cancers. This APL variant
was also sensitive to ATRA therapy, alone and in combination with
chemotherapy, with a favorable outcome. No coagulopathy and DS
were observed (94).

Cases of NPM1-Mutated AML With
APL-Like Morphology
Recent studies have shown that, in a discrete proportion of cases
(up to 30%), NPM1-mutated AML may present clinical and
laboratory features similar to APL.

Mason et al. conducted the study with the largest number of
cases and included 42 patients. The immunophenotype
commonly found in this subset of AMLs was CD117+MPO
+CD34-HLA-DR-CD11b-CD13dim/- (134). Furthermore, in
this subset of AMLs, the immunocytochemical pattern of the
PML protein may resemble APL (135, 136).

In the case series of Rosainz et al., the morphological features
of blasts were similar to APL, with Auer Rods found in 2 of the 5
patients and signs of coagulopathy found in all patients. A
possible confounding factor may be the frequent leukocytosis
in these patients, a feature uncommon in APL and associated, in
AML, with an increased risk of DIC. These patients seem to have
a better outcome than AML-NPM1 mutated without APL-like
features, with significantly longer relapse-free survival (median
64 vs. 9 months) and overall survival (median 81 vs. 20 months)
in those who achieved CR (137).

Interestingly, Mason et al., examining next-generation
sequencing data, found either TET2 or IDH1/2 mutation in
almost all of these patients (98%) (134). El Hajj et al. and Martelli
Frontiers in Oncology | www.frontiersin.org 7
et al. have recently shown that ATRA and ATO can induce
differentiation and apoptosis in NPM-1 blasts, suggesting that
this combination may also be effective in NPM1-mutated AMLs
(135, 138).

FINAL CONSIDERATIONS

Numerous reports in recent years broadened the knowledge on
variant APL prognosis and drug resistance profile. With this
literature update, we hope to describe these cases in a complete
and detailed manner to support the correct classification of the
variants, which, although rare, remain a challenge for the clinician.

Astrong suspicionofAPLshould lead to theprompt initiationof
treatment withATRAand, if the PML-RARA transcript is negative,
to further diagnostic investigations. Figure 2 shows a diagnostic
algorithm for APL and APL-like AMLs. Frequent monitoring and,
possibly, correction of coagulation parameters and blood count are
of utmost importance to prevent the onset of coagulopathy. In case
of a newly identified transcript, combination therapymay be a valid
strategy. Patientmanagement should include carefulmonitoring of
fluid balance, bodyweight, and any signs of possible SD, whichmay
occur even in the absence of a therapeutic response to ATRA
or ATO.
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Cellulaire, UK Cancer Cytogenetics Group and BIOM. Blood (2000)
96:1297–308. doi: 10.1182/blood.V96.4.1297

47. Kanegane H, Nomura K, Abe A, Makino T, Ishizawa S, Shimizu T, et al.
Spontaneous Regression of Aleukemic Leukemia Cutis Harboring a NPM/
RARA Fusion Gene in an Infant With Cutaneous Mastocytosis. Int J
Hematol (2009) 89:86–90. doi: 10.1007/s12185-008-0216-y

48. Otsubo K, Horie S, Nomura K, Miyawaki T, Abe A, Kanegane H. Acute
Promyelocytic Leukemia Following Aleukemic Leukemia Cutis Harboring
NPM/RARA Fusion Gene. Pediatr Blood Cancer (2012) 59:959–60. doi:
10.1002/pbc.24199

49. Nicci C, Ottaviani E, Luatti S, Grafone T, Tonelli M, Motta MR, et al.
Molecular and Cytogenetic Characterization of a New Case of T(5;17)(Q35;
Q21) Variant Acute Promyelocytic Leukemia. Leukemia (2005) 19:470–2.
doi: 10.1038/sj.leu.2403645
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