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Externally controlled high degree of 
spin polarization and spin inversion 
in a conducting junction: Two new 
approaches
Moumita Patra & Santanu K. Maiti

We propose two new approaches for regulating spin polarization and spin inversion in a conducting 
junction within a tight-binding framework based on wave-guide theory. The system comprises a 
magnetic quantum ring with finite modulation in site potential is coupled to two non-magnetic 
electrodes. Due to close proximity an additional tunneling is established between the electrodes 
which regulates electronic transmission significantly. At the same time the phase associated with site 
potential, which can be tuned externally yields controlled transmission probabilities. Our results are 
valid for a wide range of parameter values which demonstrates the robustness of our proposition. We 
strongly believe that the proposed model can be realized in the laboratory.

The way of getting selective spin transmission through a conducting junction has always been an interesting topic 
in the subject of spintronics1,2. The most common route of generating polarized spin currents is the use of ferro-
magnetic electrodes3,4 though it has strong limitations due to resistivity mismatch5. Utilizing a simple quantum 
dot (QD) driven by radio frequency gate voltages one can also get polarized spin current in presence of moderate 
in-plane magnetic field6,7.

For purposeful design of spintronics devices like spin filters, spin transistors, single spin memories, solid 
state qubits, etc., the generation of polarized spin current is not the only requirement, but its proper regulation is 
highly significant8–10. Some intrinsic properties, for example, spin-orbit (SO) interaction which couples electron’s 
spin to the charge degree of freedom provides deeper insight11–15 for generating polarized spin current. Usually 
two types of SO interactions, namely Rashba16 and Dresselhaus17, are encountered in solid state materials, out of 
which Rashba SO coupling, originated from the lacking of structural symmetry, plays the key role for selective 
spin transfer as one can regulate its coupling strength by external gate potential18,19.

For the three-terminal case where a bridging material is connected with three electrodes this approach is 
highly appreciated20–23. Whereas for the two-terminal system only SO coupling is not capable for producing polar-
ized spin currents as it does not break the Kramer’s degeneracy between | ↑ 〉k  and | − ↓ 〉k  states24,25. Thus one 
has to incorporate magnetic impurities or magnetic field to achieve this goal26 which essentially brings the diffi-
culty as confining a strong magnetic field in a nano-scale region such as quantum dot or nano-ring is not so 
trivial.

Few other approaches have also been discussed to achieve higher degree of spin polarization. For instance, an 
organic polymer coupled to a quantum wire can exhibit selective spin transmission27 where the spin polarization 
is manipulated by an external gate voltage, instead of external magnetic field. In another work, Lindelof et al., 
have proposed28 spin reversal in a QD coupled to ferromagnetic leads by purely electrical means which provides 
the fundamental importance of designing spintronics devices. Recently one of the authors of us has also shown 
that controlled spin dependent transport can be obtained29 through a magnetic quantum wire coupled to a mag-
netic quantum ring in presence of in-plane electric field. This in-plane electric field regulates electronic transport 
through the junction in a controlled way.

Till date many works have been done both theoretically as well as experimentally and have already revealed 
several unique features27–44 of spin selective transmission. But very less amount of these works have discussed the 
fact of externally controlled selective spin transfer through a nano-junction which is highly significant in designing 
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controlled spintronics devices. This essentially motivates us, and in the present work we intend to explore a possible 
route of getting externally controlled spin dependent transport.

We consider a simple two-terminal junction, where the bridging system is a magnetic quantum ring. A finite 
modulation in site energy (described by εi, i being the site index) is given in the form of Aubry-André-Harper 
(AAH) model45–47 i.e., ε πλ φ= + νw icos(2 )i , where w describe the width of the site energy, and λ is an irrational 
number which is fixed at +(1 5 )/2 (golden mean). The phase factor φν  associated with this expression plays an 
important role to regulate electron transmission, more precisely, spin transmission. This φν  can be tuned exter-
nally, which thus suggests a possible route of regulating spin transmission, without directly disturbing any other 
physical parameters. At the end of our theoretical analysis the feasibility of implementing such a model in labora-
tory is discussed. Along with this, we propose another way of current regulation by introducing the proximity 
effect of two non-magnetic source and drain electrodes those are coupled to the neighboring sites of the ring (see 
Fig. 1). Due to close proximity an additional coupling is established between the end atomic sites of the electrodes 
so that electrons can directly tunnel between them48,49 including their propagation through the magnetic quan-
tum ring. This coupling which is of course tunable, plays a significant role in current regulation. From our numer-
ical results we see that the present model exhibits a very high degree of spin polarization, some cases it almost 
reaches to 100% and at the same time complete spin reversal can be achieved. Our results are valid for a wide 
range of parameter values, which demonstrates the robustness of our proposition, and we strongly believe that 
both the two approaches can be implemented experimentally.

Molecular Model and Theoretical Framework
Model and Hamiltonian. Let us begin with the nano-junction shown in Fig. 1 where a N -site magnetic 
quantum ring is coupled to two perfect non-magnetic semi-infinite metallic electrodes, namely, source and drain. 
Each site of the ring is accompanied with a local magnetic moment with amplitude hi and its orientation is 
described by the polar angle θi and azimuthal angel ϕi in spherical polar coordinate system. At the same time, the 
site energies get modified following the relation πλ φ+ νw icos(2 ) i.e., in the form of famous AAH model. Thus 
the bridging material is essentially a correlated disordered system, where the disorder is introduced only in site 
energy (viz, diagonal correlated disordered model).

On the other hand, the two site-attached electrodes are perfect as well as non-magnetic. Due to close proxim-
ity a direct coupling, described by the parameter tC, exists between the two end atomic sites of the electrodes. This 
strength can be regulated either by changing the separation between the electrodes or by rotating them49.

In order to write the Hamiltonian of the nano-junction we use Tight-Binding (TB) framework which is 
extremely suitable for analyzing electron transport particularly in the absence of electron-electron interaction. 
Within the nearest-neighbor hopping approximation the Hamiltonian of the full system looks like

= + + +H H H H H (1)R S D T

where different sub-Hamiltonians correspond to different parts as described below. The Hamiltonian of the mag-
netic quantum ring is written as31,33,40
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Figure 1. Schematic view of conducting nano-junction where a magnetic quantum ring with continuous 
modulation in site energy is coupled to two non-magnetic electrodes. Due to close proximity an additional new 
path is established between source (S) and drain (D) electrodes, which is one of the key control parameters of 
our study. Filled colored circles correspond to the atomic sites where magnetic atoms, having a finite magnetic 
moment, are trapped. The direction of the magnetic moment in each site is described by the green arrow.
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Here t and εi correspond to the nearest-neighbor hopping (NNH) integral and site energy, respectively, in the 
ring. This site energy (εi) is taken in the form of diagonal AAH model as discussed above. The term σ.hi  describes 
the interaction of injected electron with the local magnetic moment placed at i-th site having strength hi. 
σ σ σ σ={ , , }x y z  denotes the Pauli spin matrices in σz diagonal representation.

The second and third sub-Hamiltonians in the right side of Eq. 1 represent the source and drain electrodes, 
and they are expressed as
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where a b( )n n  and † †a b( )n n  are the annihilation and creation operators, respectively, for the source (drain) electrode. 
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where 0  and t0 are the site-energy and nearest-neighbor hopping integral in the electrodes, respectively.
Finally, HT, the tunneling Hamiltonian can be written as,
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Here, tS and tD describe the couplings of the ring with source and drain, respectively and tC measures the direct 
coupling between the end atomic sites of the electrodes.

Below we discuss the theoretical prescription which includes the calculations of spin dependent transmission 
probabilities, junction currents and spin polarization.

Transmission Probability. To calculate transmission probabilities we use wave-guide theory (which is very 
simple to understand)48–51. The theoretical prescription given below is an extension of earlier studies where spin 
degrees of freedom have not been taken into account. Here we consider electron spin and the required steps are as 
follows.

Let us start with the station wave-function of the entire system (viz, source-ring-drain)
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The coefficients σAn, , σBn, , and σCn,  correspond to the amplitude for an electron having spin σ (↑ or ↓) at the n  th 
site of the source, drain, and i  th site of the ring, respectively.

With this wave function we can write a set of coupled linear equations from the time-independent Schrödinger 
equation ψ| 〉H  = ψ| 〉EI  (I being the ( ×2 2) identity matrix) as:
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Up spin incidence from the source lead. Assuming a plane wave incidence for up spin electrons with unit ampli-
tude, we can write the amplitudes as:
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where a being the lattice spacing and k is the wave vector associated with the energy E. The other parameters are 
as follows:

 ↑↑t  = Transmission amplitude of a up spin (↑) transmitted as up spin (↑),
↑↓t  = Transmission amplitude of a up spin (↑) transmitted as down spin (↓).
↑↑r  = Reflection amplitude of a up spin (↑) reflected as up spin (↑),
↑↓r  = Reflection amplitude of a up spin (↑) reflected as down spin (↓).

Using the expression of An and Bn we can now find the reflection and transmission amplitudes by solving the 
set of coupled equations (Eq. 7) for a particular energy associated with each wave vector k . The we can define the 
pure spin transmission and spin flip transmission probabilities as = | |↑↑ ↑↑T t 2 and = | |↑↓ ↑↓T t 2, respectively for the 
case of up spin incidence.

Down spin incidence from the source lead. For the case of down spin incidence the amplitudes An and Bn look 
like:
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where the meaning of different factors are as follows:

↓↑t  = Transmission amplitude for down spin (↓) transmitted as up spin (↑),
↓↓t  = Transmission amplitude for down spin (↓) transmitted as down spin (↓).
↓↑r  = Reflection amplitude for down spin (↓) reflected as up spin (↑),
↓↓r  = Reflection amplitude for down spin (↓) reflected as down spin (↓).

Using the same prescription as stated for the case of up spin incidence, here also we can calculate all coeffi-
cients by solving the equations given in Eq. 7, and eventually, find the transmission probabilities as = | |↓↓ ↓↓T t 2 and 

= | |↓↑ ↓↑T t 2.
Finally we can write the total transmission probability for spin up as = +↑ ↑↑ ↓↑T T T  and for spin down as 

= +↓ ↑↓ ↓↓T T T .

Junction Current. Once the transmission function is determined, the net junction current for a particular 
bias voltage V  at absolute zero temperature, can be evaluated from the relation52
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where EF is the equilibrium Fermi energy.

Spin Polarization. Finally, we define spin polarization coefficient as53

=
−

+
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P

I I
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P = +1(−1) corresponds to the only up (down) spin propagation, and thus, under this situation the degree of up 
(down) spin polarization becomes 100%. =P 0 represents no spin polarization.

Numerical Results and Discussion
Following the above theoretical prescription now we present our numerical results. The physical parameters those 
are kept constant throughout the computation are as follows. In the source and drain electrodes, the site energy 0  
and nearest-neighbor hopping integral t0 are fixed at 0 and 3  eV, respectively, whereas in the bridging conductor 
(i.e., the ring) we set =t 1  eV and choose i  following the relation πλ φ= + νw icos(2 )i  considering =w 1  eV. 
In the ring conductor we consider the strength of magnetic moment =h 1i  eV and the azimuthal angle ϕ = 0i  
for all i and also, unless otherwise specified, θ = 0i  for all i. The other two parameters tS and tD are fixed at 1  eV. The 
values of tC and phase factor φν  are placed in appropriate figures, as they are not constant. All the calculations 
presented below are computed at absolute zero temperature setting equilibrium Fermi energy =E 0F .

Before addressing the central issues i.e., regulations of spin polarization as well as spin inversion with the help 
of external phase φν  and direct coupling parameter tC, let us start by analyzing spin polarization coefficient for 
some typical values of tC and φν. The results are presented in Figs 2–4, where the variation of spin polarization P is 
given as a function of bias voltage V  along with up and down spin transmission probabilities considering the ring 
size =N 80.

For =t 0C  and φ =ν 0 , the spin polarization coefficient P almost reaches to a maximum for low bias region 
(P = +1 or P = −1 represents a maximum spin polarization associated with the complete suppression of down or 
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up spin propagation through the junction), and it (P) gradually decreases with increasing bias voltage and even-
tually drops almost to zero for higher voltages (Fig. 2(a)). This behavior can be justified from the transmission 
spectra given in Fig. 2(b) and (c). For narrow energy window across =E 0 , transmission probability of up spin 
electrons is almost zero whereas finite transmission of other spin electrons is obtained which results ∼ −P 1 over 
a narrow voltage region associated with the energy window. But when we consider wide energy region, associated 
with the bias voltage, both up and down spin channels contribute in electronic transmissions yielding lesser spin 
polarization.

Figure 2. Voltage dependent spin polarization coefficient P along with spin dependent transmission 
probabilities ↑T  and ↓T  as a function of injecting electron energy E for a 80-site ring at some typical values of φν  
and tC. At zero bias ( =V 0) there is no current across the junction, and thus, we cannot take the ratio of the 
currents following Eq. 9 as it is undefined. Therefore, we ignore this point in the P-V  curve.

Figure 3. Same as Fig. 2, with = .t 0 5C  eV.
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The spin polarization, more precisely spin selective transmission, essentially depends on the separation 
between up and down spin channels. For such a system, where atomic sites of the bridging conductor are mag-
netic, spin flip interaction term is responsible for it. As hopping integral is fixed (same for both up and down spin 
electrons), the separation between the up and down spin channels is controlled by the term ε σ− .h( )i i , out of 
which εi again contains a tunable factor φν  and its precise role can be understood from the forthcoming analysis.

Apart from this factor (i.e., ε σ− .hi i ), quantum interference has significant role on spin selective transmis-
sion. To reveal this fact let us focus on the results placed in Fig. 3(a), where we set a finite tC , keeping all other 
parameters unchanged as taken in Fig. 2(a). Introduction of tC means there is an addition of a new path along with 
two conducting paths (namely longer and shorter paths in the magnetic quantum ring). Thus, these three paths 
are responsible for electronic transmission and we get the combined effect in the drain electrode. In presence of 
tC the degree of spin polarization gets reduced, compared to the previous case (viz, Fig. 2(a)), which is clearly 
noticeable in the low bias region (Fig. 3(a)). This reduction of spin polarization is expected because of the inclu-
sion of new path which allows in certain percentage to pass up and down spin electrons, avoiding the magnetic 
ring. This is reflected in the transmission-energy spectra where we get finite transmission probabilities for both 
up and down spin electrons. So for a particular voltage window both of them are contributing, and depending on 
the contributing electrons we get a net polarization (which of course is less than 100%). For large enough tC, one 
can expect much lesser spin polarization for any bias window as in that case electrons directly pass through this 
new path, without encountering any spin dependent interaction in the magnetic ring.

Under this situation if we incorporate the phase factor φν then transmission spectra for both up and down spin 
electrons get modified, (Fig. 4(b) and (c)), and accordingly, spin polarization changes (Fig. 4(a)). Around 80% 
spin polarization is achieved for a wide bias window, though eventually it decreases with higher voltages like the 
other two cases (viz, Figs 2 and 3).

From the results analyzed so far (i.e., Figs 2–4), we see that in the low bias region down spin electrons domi-
nate suppressing the other spin electrons. An exactly opposite behavior might be observed for other set of param-
eter values depending on the channel separation, which in principle, is regulated by several factors for the present 
model.

Regulation of spin polarization by tC. Now we discuss the explicit dependence of spin polarization P on 
the coupling parameter tC. The results are presented in Fig. 5 for a 120-site ring considering two different values of 
φν . Two observations are noteworthy. First, by regulating the external tunneling coupling tC, P can be changed 
widely from +1 to −1 and vice versa. Second, a phase reversal of spin polarization takes place with the help of 
AAH phase φν. When φ =ν 0, P varies from −1 to +1, while for the other case (φ π=ν /2), it (P) runs from +1 to 
−1, and for large tC decreasing spin polarization is observed in these two cases.

To implement this wide variation of P, we choose three distinct points from P-tC curve of Fig. 5(a), represented 
by encircled dots, and present the characteristics of up and down spin transmission probabilities for these tC in 
Fig. 6. The results are shown for a specific energy window (− . ≤ ≤ .E0 125 0 125) associated with the voltage 

= .V 0 25  V. When φ =ν 0 and =t 0C , up spin transmission probability is almost zero (red line of Fig. 6(a)), while 
finite transmission probability is obtained for down spin electrons (blue line of Fig. 6(a)) which results ∼ −P 1. 
The scenario gets reversed at .t 0 67C , shown in Fig. 6(c), where only up spin electrons transmit through the 

Figure 4. Same as Fig. 2, with = .t 0 5C  eV and φ π=ν /2.
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junction providing P = +1. At .t 0 3C , finite transmission probabilities are obtained for both up and down spin 
electrons, and ↑I  is very close to ↓I  which gives vanishing spin polarization (Fig. 6(b)). Similar kind of analysis is 
also used for analyzing the behavior of spin polarization in the system with φ π=ν /2.

In addition to these features it is also observed that for both zero and non-zero values of AAH phase, P grad-
ually decreases with increasing tC as two opposite spin electrons are allowed to pass more easily from the source 
to drain electrode without encountering magnetic region. Thus, from the results presented in Fig. 5, it can be 
emphasized that controlling tC externally, the spin polarization can be varied in a wide range (+1 to −1 and vice 
versa) through this nano-junction, without changing any other physical parameters. This is indeed an interesting 
observation and we believe that it can be verified through an experimental setup.

Regulation of spin polarization by φv. To establish the specific dependence of P on phase factor φν , in 
Fig. 7 we present the results for a 100-site ring considering two typical values of tC. Quite interestingly we see that, 
like Fig. 5, here also the spin polarization coefficient exhibits a wide range of variation (cent percent up spin polar-
ization to cent percent down spin polarization and vice versa) upon the change of φν  for a fixed tC. The role of tC 
on phase reversal is also clear from the spectra given in Fig. 7(a) and (b). This interesting pattern can be visualized 
from the transmission spectra placed in Fig. 8, where we present the variations of up and down spin transmission 
probabilities in a particular energy window associated with the voltage bias, selectively choosing three arbitrary 
points from the P-φν  curve of Fig. 7(a), represented by encircled dots, where P becomes ∼ + 1, 0 and −1, respec-
tively. For a particular phase a situation may arise where only up spin electrons transmit resulting P = +1, and the 
other situation can also happen for another phase value where only down spin electrons propagate yielding 

= −P 1. The third possibility is that for a specific φν  both electrons can contribute equally in a typical voltage 
window providing vanishing transmission probability. All these possible cases are visualized clearly from Fig. 7. 
Since this phase factor φν  is tuned externally, we can suggest that the present model can be utilized as a phase con-
trolled device for getting selective spin transmission through a nano-junction.

Like the case of controlling spin polarization by introducing tC, one may think whether there is any possibility 
to expect the wide variation of spin polarization as a function of phase factor φν  without doing any numerical 
calculations or not. The answer is of course yes, since it depends on which spin channel (up or down) is dominat-
ing the other for a specific energy window associated with bias voltage V . The widths of up and down spin bands 
of the magnetic quantum ring essentially depends on the factors εi, h and NNH integral t. Based on these param-

Figure 5. Spin polarization coefficient P as a function of tC for a 120-site ring considering two different values of 
φν. Here we set = .V 0 25  V.
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eter values we get an overlap between the two spin bands over a finite energy window, while no overlap is obtained 
for other energy regions. This overlapping region, on the other hand, can be controlled by tuning the phase factor 
φν  as it eventually regulates the site energy εi through a cosine modulation term. Thus, for a fixed Fermi energy, 
when overlap region comes within a voltage window for a specific φν , vanishingly small spin polarization is 
observed, whereas keeping all other parameters unchanged we can shift the overlap region from the voltage win-
dow by tuning φν  and in that case high degree of up (down) spin polarization is obtained depending on the spe-
cific channel. This is exactly what we see in Fig. 7.

It is to be noted that when all site energies (εi’s) are same i.e., the system becomes an ordered magnetic ring, 
the eigenenergies of up and down spin bands can be evaluated analytically so that their overlap can easily be esti-
mated. While, for correlated site energies (like our present model) analytical solution is no longer available. 
Though we can intuitively estimate the wide variation of spin polarization with phase φν without doing numerical 
calculations, complete transmission-energy spectrum only reveals the precise determination of spin polarization 
at different phases.

Simultaneous variation of P by tC and φv. From the above analysis (Figs 5–8) naturally the question 
appears how the spin polarization gets modified with the simultaneous variation of both tC and φν. The answer is 

Figure 6. Energy dependence of ↑T  (red curve) and ↓T  (blue curve) at three different values tC those are 
represented by encircled dots in Fig. 5(a). The other physical parameters are same as taken in Fig. 5.
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given in Fig. 9 where we present the dependence of P as functions of tC and φν  considering a 60-site ring at .0 25  
Volts. This is a clear picture to visualize the combined role of these two externally controlling parameters. For 
lower tC, P becomes ∼ + 1 or ∼ − 1 for a wide range of φν  providing a broad zone of identical color (red or pink), 
while the width of these zones becomes narrow down as we move towards higher tC. This diagram suggests that 
the physical pictures are valid over a large range of parameter values, rather than a specific tC and φν, which claims 
the robustness of our observation.

Spin Inversion. Finally, we concentrate on spin-flip scattering through this nano-junction. To get spin-flip 
transmission we have to set a non-zero value of θi, as θ = 0  (we can call θ θ=i  ∀ i, for simplification) does not 
involve the factors σ+ and σ− in the spin-flip term σ

→
.→hi  (Eq. 2)54 which are responsible for spin flipping.

In Fig. 10 we present the spin-flip transmission probabilities ↑↓T typ  ( ↓↑T typ ) for two different ring sizes consid-
ering θ π= /2, where the upper and lower rows correspond to =N 60 and 40, respectively. The typical value of 
spin-flip transmission probability is determined by taking the maximum value of σσ′T  from the σσ′T -E curve con-
sidering the variation of E within the energy window − ≤ ≤E4 4. From the spectra it is observed that for a finite 
(small) window of AAH phase a complete spin reversal takes place (see Fig. 10(d)), while in other cases though 
full spin inversion is not available but the degree of spin inversion is sufficiently high at some particular tC and φν  
windows (Fig. 10). It indicates that by controlling the physical parameters a possibility may arise to achieve com-
plete spin inversion through this nano-junction.

To make it more clear in Fig. 11 we present ↑↓T typ  ( ↓↑T typ ) as functions of both φν  and tC considering =N 60 
and θ π= /2. Almost 95% spin inversion takes place for a reasonable window of the parameter values which defi-
nitely suggests an experimental verification as the results are not so sensitive with fine tuning of these parameters. 
In addition, we would like to state that though the results presented in Fig. 11 are computed for a specific value of 
θ, almost similar kind of physical picture (viz, large degree of spin polarization for wide window of parameter 
values) is also obtained for other values of θ. Therefore, we do not repeat the same thing considering different 
values of this parameter (θ).

Experimental Perspective. In order to substantiate the proposed scheme of tuning spin polarization via 
controlling the phase factor φν  in laboratory we have to think about the possible realization of an experimental 
setup. Our essential goal is to develop a 1 D magnetic quantum ring where site energies are modulated in the form 
of standard AAH model i.e., in one hand the site energies are quasiperiodic and in the other hand this determin-
istic energy profile can be regulated externally (which is φν  in our model). Several experimental proposals have 

Figure 7. P-φν  characteristics at two typical values of tC for a 100-site ring considering = .V 0 25  V.



www.nature.com/scientificreports/

1 0Scientific REPORTS | 7: 14313  | DOI:10.1038/s41598-017-14499-2

been made along this direction to construct such a ring-like geometry, in fact different other geometrical shapes 
can also be designed55–59. Two counter propagating laser beams having wave vectors k1 and k2 are used for gener-
ating such a quasiperiodic potential, where the incommensuration parameter is defined by the factor k k/1 2. Once 
the profile is formed by optical means then magnetic atoms are trapped in the dip regions as shown in Fig. 12. 
Tuning any one the two laser beams the profile can be regulated which practically describes the change of phase 
factor φν externally. Thus, a magnetic quantum ring with finite modulation in site energies can be formed through 
which spin-dependent transport can be tested. The details of experimental realization are available in refs55–59 
Before we end, we would like to point out that with the help of interfering laser beams different kinds of aperiodic 
lattices (our model is one such case) can be formed, but it is very hard to design a setup to map a random disor-
dered model since in this case site energies are no longer correlated.

The other scheme of spin current regulation by means of tuning tC can easily be implemented in a laboratory 
setup. One can do it either by changing the separation between the source and drain electrodes or by rotating 
them49.

Figure 8. Energy dependence of ↑T  (red curve) and ↓T  (blue curve) at three different values φν  those are 
represented by encircled dots in Fig. 7(a). The other physical parameters are kept constant as taken in Fig. 7.



www.nature.com/scientificreports/

1 1Scientific REPORTS | 7: 14313  | DOI:10.1038/s41598-017-14499-2

Summary
To conclude, in the present work two new mechanisms have been pointed out for the regulation of spin polariza-
tion as well as spin inversion through a magnetic nano-junction. A complete sign reversal of spin polarization 
(i.e., P = +1 to P = −1 and vice versa) takes place by changing any one of the two controlling parameters (viz, φν  
and tC). The tunneling coupling tC between the electrodes can be regulated externally by some mechanical ways, 
and the other physical parameter i.e., AAH phase φν  can also be tuned externally. Our results are valid for a wide 
range of parameter values, and thus, definitely an experimental verification can be made along this line. Focusing 
in that direction, finally we have discussed briefly how the proposed model can be realized in laboratory.

We have given a detailed theoretical description for the calculation of spin dependent transmission proba-
bilities based on quantum wave-guide theory which might be helpful for investigating spin dependent transport 
through any such magnetic system. The scattering theory presented here is the extension of earlier studies where 
spin degrees of freedom have been ignored. So, in that context our theoretical prescription based on wave-guide 
theory involving electron spin is quite new, to the best of our knowledge.

Figure 9. Simultaneous variation of P with tC and φν  for a 60-site ring at = .V 0 25  V.

Figure 10. Spin flip transmission probabilities ↑↓T typ  ( ↓↑T typ ) as a function of tC (φν) for two different ring sizes, 
where the upper and lower rows correspond to =N 60 and 40, respectively. Here we choose θ π= /2i  ∀ i. The 
typical value of spin-flip transmission probability is determined by taking the maximum value of σσ ′T  from the 

σσ ′T -E curve considering the variation of E within the energy window − ≤ ≤E4 4.
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In our forthcoming work we will analyze the behavior of spin polarization in such a nano-junction where two 
different phases, namely φν and φλ, are introduced in site potentials and hopping integrals, respectively, along with 
the external tunneling coupling tC. Both these phases (φν  and φλ) can be regulated simultaneously and inde-
pendently through an experimental setup, and we strongly believe that some interesting features will be obtained 
that can be utilized in designing spin based quantum devices.

Some Additional Points
Here we would like to discuss some additional points for the sake of completeness and the benefit of interested 
researchers.

 A. In our model we have considered identical strength of all magnetic moments (i.e., =h hi  (say) for all i). 
One can in principle consider different hi which means different magnetic sites in the ring. The main 
reason of not considering different hi is that here we intend to focus on the interplay between correlated 
diagonal disorder (that can be designed experimentally) and the external coupling (shunting path) term tC. 

Figure 11. Simultaneous variation of ↑↓T typ  ( ↓↑T typ ) with tC and φν  for a 60-site ring considering θ π= /2i  ∀ i. σσ′T  
is determined in the same way like Fig. 10.

1

N

Figure 12. Schematic view of a ring-shaped geometry where trapping potentials are formed by two laser beams. 
In each such potentials (described by black line) a magnetic atom is trapped to form a magnetic quantum ring 
with modulation in site energy. The source and drain electrodes will be connected at the sites 1 and N , 
respectively.



www.nature.com/scientificreports/

13Scientific REPORTS | 7: 14313  | DOI:10.1038/s41598-017-14499-2

So there are two factors (i) phase in site potential and (ii) tC, that can be used to regulate spin transmission 
through the conducting junction. Introduction of different hi does not provide any new physical signature. 
Only the height of the transmission peaks get reduced without changing the polarization characteristics. 
The same argument also goes to select the other two parameter values (θi and ϕi).

 B. In describing the Hamiltonian of the magnetic quantum ring (Eq. 2) we have ignored exchange interaction 
term between local magnetic moments. So one may ask why we have not considered the exchange term. 
The reason is that at low temperature this interaction term has very minor impact and does not make any 
qualitative difference. And the other important point is that since thermal broadening of energy levels is 
too weak compared to the energy level broadening caused by ring-to-electrode coupling, even moderate 
temperature are expected to have a very little impact on our qualitative predictions52. Therefore only zero 
temperature has been considered here. Naturally at zero temperature we can ignore this interaction term.

 C. It is well known that Rashba SO coupling is responsible for spin-flip scattering. So the question naturally 
comes can we expect similar kind of characteristic features, as discussed above, if we replace the magnetic 
quantum ring by a Rashba ring. The answer is of course no. The first thing is that in a two-terminal system 
only SO coupling is not responsible for producing polarized spin currents. We have to apply a magnetic 
field to break the Kramer’s degeneracy, and confining of a magnetic field in a small sized ring is always a 
difficult task. This part has already been discussed in the introduction.

The other point is that it is very hard to design a Rashba ring considering such a deterministic disordered 
potential in experiment, whereas magnetic atomic sites can easily be trapped optically. The Rashba term 
appears because of the asymmetry in the confining potential. So the mechanism is completely different and 
we do not know whether it is at all possible to design a Rashba ring by constructing a potential profile with 
the help of two interfering laser beams. May be a theoretical analysis can be done using a two-terminal 
Rashba ring in presence of magnetic field or considering a three-terminal Rashba ring (where magnetic 
field is no longer required to get spin polarization in outgoing leads) by this same prescription, but ques-
tion may arise how to design such a model experimentally.

 D. Throughout the numerical analysis we set a specific parameter values of w, tS, tD and t. Naturally the 
question may arise how the results get modified if we choose other set of parameter values, for example, if 
we increase or decrease w, tS, tD compared to t.

First consider the effect of w and (say) we are increasing w. It (w) measures the correlated disorder strength. 
So keeping all other parameters fixed if we increase w then disorder strength will be increased which means 
electronic states will be less conducting, as expected in correlated disordered systems. Accordingly peak 
heights in transmission spectra get reduced. So eventually for large enough disorder strength ( w t) all 
states of the ring will be almost localized. Under this situation electrons will not enter into the ring geometry. 
But due to the additional shunting path, which is incorporated by considering a coupling between two elec-
trodes, electron can easily hop from source to drain, avoiding the localized regime i.e., the ring geometry. As 
the electrons are not entering into the ring they will not experience any spin-dependent scattering and hence 
for this large enough w we will not get any spin polarization.

We can also think the above situation in other way. Suppose we fix w which is not so large to localize elec-
trons. Under this situation if we increase the coupling term tC then electrons will try to pass directly from 
source to drain, ignoring the ring geometry. In that case also we get decreasing spin polarization. Since dis-
order effect is well known we do not want to repeat this, whereas we present our results by changing tC which 
on the other hand can be realized in experiments quite easily.

Now we discuss the case where w gets decreased. In this case electron will try to move through the ring, and 
there are two possible paths in the ring. So in total three possible paths: two arms in the ring (say upper and 
lower arms) and the third one is the shunting path. Thus combined interference effect will be there which 
again analogous to the change of tC for a fixed w. Because of this, we have elaborately described the effect of 
coupling tC.

Finally, we focus on the ring-to-electrode coupling effect i.e., how the results get affected by changing tS and 
tD with respect to t. This coupling effect has already been studied in a series of papers by us and other few 
authors too. Therefore, we do not want to repeat this behavior once again, and one can easily follow this 
effect from the refs31,48,60–62.
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