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Choice of antiretroviral therapy differentially
impacts survival of HIV-infected CD4 T cells
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Abstract

Background: HIV eradication strategies are now being evaluated in vitro and in vivo. A cornerstone of such
approaches is maximal suppression of viral replication with combination antiretroviral therapy (ART). Since many
antiretroviral agents have off target effects, and different classes target different components of the viral life cycle,
we questioned whether different classes of ART might differentially affect the survival and persistence of
productively HIV-infected CD4 T cells.

Methods: In vitro infections of primary CD4 T cells using clinical isolates of HIV-1 that were either protease inhibitor
susceptible (HIV PI-S), or resistant (HIV PI-R) were treated with nothing, lopinavir, efavirenz or raltegravir. Cell viability,
apoptosis, and the proportion of surviving cells that were P24 positive was assessed by flow cytometry.

Results: In HIV PI-S infected primary cultures, all three antiretroviral agents decreased viral replication, and reduced
the total number of cells that were undergoing apoptosis (P < 0.01) similarly. Similarly, in the HIV PI-R infected
cultures, both efavirenz and raltegravir reduced viral replication and reduced apoptosis compared to untreated
control (P < 0.01), while lopinavir did not, suggesting that HIV replication drives T cell apoptosis, which was confirmed
by association by linear regression (P < 0.0001) . However since HIV protease has been suggested to directly induce
apoptosis of infected CD4 T cells, and HIV PI are intrinsically antiapoptotic, we evaluated apoptosis in productively
infected (HIV P24+) cells. More HIV p24 positive cells were apoptotic in the Efavirenz or raltegravir treated cultures than
the lopinavir treated cultures (P = 0.0008 for HIV PI-R and P = 0.06 for the HIV PI-S), indicating that drug class impacts
survival of productively infected CD4 T cells.

Conclusions: Inhibiting HIV replication with a PI, NNRTI or INSTI reduces total HIV-induced T cell apoptosis. However,
blocking HIV replication with PI but not with NNRTI or INSTI promotes survival of productively HIV-infected cells. Thus,
selection of antiretroviral agents may impact the success of HIV eradication strategies.

Background
The major barrier to HIV eradication is latent virus con-
tained within resting cells. Because these cells contain in-
tegrated HIV provirus and do not replicate virus, they are
resistant to agents which inhibit viral replication, and they
are not affected by immune effector mechanisms that tar-
get viral proteins. One approach to eradicating these cells
involves reactivating HIV [1,2], which to be of benefit,
must cause the death of cells harboring HIV. In a recent
report using a primary cell model of latent infection with a
green fluorescent protein–labeled NL4.3ΔNefΔPol virus
cells with SAHA-mediated reactivation of HIV did not die
during 18 days of observation, even when co-incubated

with autologous CD8 T cells [3]. Another study evaluated
latently infected central memory CD4 T cells (TCM) cells;
reactivation with interleukin-2 and interleukin-7 did not
cause cell death, whereas reactivation with CD3-CD28 co-
stimulation did kill cells [4], indicating that it is possible to
reactivate HIV from latency in a manner which causes the
death of latently infected cells. Thus, as strategies are be-
ing developed to test this in patients, it will be critical to
know if exogenous factors modify the ability of these cells
to be killed.
The so-called “shock and kill” [5] theoretical approach to

HIV eradication invariably involves co-administration of
antiretroviral medications to prevent further rounds of in-
fection and repopulation of the latent reservoir. The latent
reservoir consists principally of integrated provirus within
central memory CD4 T cells. These are thought to arise in
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one of two non-mutually exclusive ways: direct infection of
central memory cells, or infection of activated cells which
then revert to a memory phenotype. These models predict
that the size of the latent reservoir is proportional to the
cumulative number of productively infected cells. This pre-
diction has been tested and verified in vivo [6-8]. Therefore,
it is of interest to understand factors which influence the
size of this ‘active reservoir’ of HIV.
A variety of reports suggest that different classes of anti-

retroviral agents have off target effects [9,10] and differ in
their ability to impact apoptosis – for example efavirenz
has been suggested to be pro-apoptotic [11], whereas pepti-
domimetic protease inhibitors (eg. lopinavir) have been sug-
gested to be anti-apoptotic [12]. Indeed the anti-apoptotic
effects of PI have been used to reverse non-HIV disease
processes characterized by excessive apoptosis [13-15].
Moreover, since HIV protease can directly induce HIV
infected-cells to die [16-18], we hypothesized that protease
inhibitors might inhibit HIV infected cell death. Therefore,
we tested different representative antiretrovirals’ abilities
to impact the survival of HIV infected cell cultures, or spe-
cifically productively HIV infected cells, and assessed
whether these effects were dependent upon inhibition of
viral replication.

Methods
Cell culture and infection
Jurkat and primary CD4 T cells (American Type Culture
Collection, Manassas, VA) were cultured in RPMI 1640
(Mediatech Inc, Manassas, VA) supplemented with 10%
fetal calf serum (Atlanta Biologics, Atlanta, GA) and
2 mM L-glutamine at 37°C and 5% CO2. Peripheral blood
mononuclear cells were obtained from leukoreduction sys-
tem chambers from anonymous, HIV-negative apheresis
donors via an Institutional Review Board (Mayo Clinic In-
stitutional Review Board) approved protocol [19]. Primary
CD4 T cells were isolated using RosetteSep® Human CD4+
T Cell Enrichment Cocktail (Stemcell Technologies,
Vancouver BC, Canada) per manufacturer’s protocol,
and cultured with 1 μg/ml phytohemagglutinin (Remel,
Lexena, KS) and 50 IU/ml interleukin-2 (Chiron Cor-
poration, Emeryville, CA) for 24 hours. HIV-1 strains
AD.MDR01 (PI-resistant), and Donor E (PI-susceptible)
(NIH AIDS Reagent Program) were used to infect primary
CD4 T cells as previously described [20]. The genotype of
the PI-resistant strain has been previously published [21].
Immediately following infection, cells were treated with or
without – efavirenz (10 nM), lopinavir (100 nM), or ralte-
gravir (100 nM) (NIH AIDS Reagent Program).

Cell free procaspase 8 cleavage assay
To assess the effect of the various antiretrovirals on the
proteolytic activity of HIV protease, a fluorometric assay
was used for the cleavage of a consensus site on procaspase

8 peptide, performed as previously described [18]. The
fluorogenic peptide for the cleavage site at Caspase8 to
yield Casp8p41 was Arg-Glu(EDANS)-Pro-Lys-Val-Phe-
Phe-Ile-Gln-Ala-Lys(DABCYL)-Arg.

P24 measurement
HIV-1 p24 antigen ELISA (ZeptoMetrix, Buffalo, NY) was
performed on cell culture supernatants according to man-
ufacturer’s protocol and read on an EL800 plate reader
(BioTek, Winooski, VT).

Flow cytometry
Apoptosis was measured by Terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick end labeling
(TUNEL) (Roche, St. Louis, MO), according to the man-
ufacturer’s protocol. Viability was determined cells with
LIVE⁄DEAD® Fixable Dead Cell Stain Kit (Molecular
Probes, Life Technologies, Grand Island, NY) according
to the manufacturer’s protocol. Cells were fixed with 2%
paraformaldehyde, permeabilized with 0.01% NP-40 in
phosphate buffered saline (PBS), and stained with a PE-
conjugated anti-HIV p24 monoclonal antibody (Clone
KC57, Beckman Coulter, Mervue Galway, Ireland) at a
1:1000 dilution in 5% bovine serum albumin in PBS. Isotype
antibodies were used for negative controls. Flow cytometry
was performed on a FACScan or LSRii flow cytometer
(Becton Dickinson, Franklin Lakes, NJ), and data analyzed
with FlowJo software (Tree Star, Inc, Ashland, OR).

Statistical analysis
Data are expressed as means +/− standard error. Values
were compared across samples by t-test or one way
ANOVA as appropriate. Correlations were performed by
linear regression analysis. A p-value < 0.05 was considered
statistically significant. Statistical analyses were performed
using GraphPad InStat software (Graphpad Software Inc,
La Jolla, CA).

Results
One of the earliest observations about the immunopathol-
ogy of HIV was that HIV infection results in the apoptotic
death of both HIV infected and HIV uninfected (by-
stander) cells [22]. Reducing HIV replication by any means
reduces this effect, however there are at least two theoret-
ical reasons by which protease inhibitors (eg lopinavir)
might reduce apoptosis to a greater extent than an NNRTI
(eg efavirenz) or an integrase inhibitor (eg raltegravir) – 1)
through stabilization of the mitochondrial outer mem-
brane pore, thereby blocking all mitochondrial-dependent
forms of apoptosis, as has been experimentally shown
[23]) and 2 theoretically through inhibition of HIV prote-
ase mediated cleavage of procaspase 8, which generates
proapoptotic Casp8p41 [16,17,24]. To assess whether lopi-
navir indeed inhibits generation of Casp8p41, we used a
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validated in vitro assay which measures the cleavage
of a procaspase 8 octapeptide representing the cleavage
site within procaspase 8 which is cleaved to generate
Casp8p41 [18]. Lopinavir (100 nM) decreased HIV pro-
tease cleavage of procaspase 8 by >90% compared to
untreated control, whereas a lower dose (10 nM) of
lopinavir, raltegravir (10 and 100 nM), and efavirenz
(1 and 10 nM) did not (Additional file 1: Figure S1).
Since Casp8p41 is only present in productively-infected
cells [17], these data suggest that lopinavir may inhibit
apoptosis of productively-infected cells through this
unique mechanism.
Next we assessed whether raltegravir, efavirenz, and

lopinavir would have different effects on apoptosis associ-
ated with HIV infection, or apoptosis in HIV-infected
cells. Primary CD4 T cells from HIV-uninfected donors
were infected in vitro with two clinical isolates of HIV-1 –
a PI-resistant (HIV PI-R) strain and a PI-susceptible (HIV
PI-S) strain – in the presence or absence of single antiviral
agents. In the absence of antiviral agents, infection of

primary CD4 T cells with the PI-S and the PI-R strain re-
sulted in a similar loss of viability over time (35.5 ± 6.3%
and 30.2 ± 5.9% viable at day 6 respectively, vs 81.1 ± 4.1%
viable in the mock infected, P < 0.001, Figure 1A), and
similar viral replication, as assessed by p24 antigen pro-
duction at day 6 (83469 ± 16801 pg/ml and 147522 ±
28382 pg/ml, P = 0.07, Figure 1B). These data suggested
that the PI-S and PI-R viruses had similar fitness and
pathogenicity in our model.
Treatment of the HIV PI-S infected cultures with

lopinavir, raltegravir, and efavirenz resulted in 95.5%,
100% and 100% reduction in p24 production by day 6
(Figure 1B). However, as expected, treatment of the HIV
PI-R cultures with lopinavir did not reduce viral replica-
tion (122708 ± 8404 pg/ml of p24), whereas treatment
with raltegravir and efavirenz resulted in 99.5% and
100% reduction in p24 production by day 6 compared
to control treated infected cells (Figure 1B). These data
confirmed that the HIV PI-R virus was in fact resistant
to the antiviral activity of lopinavir in our model.
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Figure 1 Primary CD4 T cells were in vitro infected with the PI-resistant AD.MDR01 and the PI-susceptible Donor E HIV-1 strains in the
presence or absence of efavirenz, lopinavir or raltegravir. A) Cell viability over time as measured by trypan blue exclusion. B) HIV p24
concentration in cell culture supernatants was measured by ELISA at day 6 post infection. C) Apoptosis as measured by TUNEL staining and flow
cytometry at day 6 post infection; representative results of three independent experiments. D) The percent of cells TUNEL positive at day 6 post
infection, expressed as mean +/− standard error of three independent experiments, was compared by ANOVA. * indicates a significant P value <0.05
compared to untreated infected cells.
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Both the HIV PI-S and the HIV PI-R infections resulted
in more apoptosis, as measured by TUNEL positivity,
compared to mock infected cells at day 6 (40.7 ± 6.1% and
38.9 ± 5.2%, vs 14.5 ± 2.7% in the mock infected, P < 0.001,
Figure 1C and D). In the HIV PI-S infected cultures, treat-
ment with lopinavir, raltegravir, and efavirenz reduced
TUNEL positivity compared to untreated, infected cells
(21.2 ± 3.5%, 20.7 ± 4.1, and 24.9 ± 6.1% TUNEL positive
respectively, P < 0.01 compared to 40.8 ± 6.2% in HIV
alone). There was no difference between treatments (P >
0.05), and the degree of apoptosis was not different than
mock infected cells (P > 0.05). However, in the HIV PI-R
infected cultures, treatment with lopinavir did not reduce
TUNEL positivity (36.1 ± 6.5%, P > 0.05 compared to
38.9 ± 5.2% in HIV alone), whereas raltegravir and efavirenz
treatment did reduce TUNEL positivity to levels similar
to uninfected cells (18.2 ± 2.5% and 21.3 ± 4.4%, P < 0.01
compared to untreated infected cells). These data sug-
gest that blocking viral replication by agents of any class
is sufficient to reduce global HIV-associated apoptosis.
In fact, TUNEL positivity at day 6 post infection was
strongly and significantly correlated with p24 produc-
tion across samples (r = 0.7753, P < 0.0001, Figure 2A),
regardless of infecting strain or class of antiretroviral.
We next questioned whether similar results would be

seen specifically in productively-infected cells, which con-
stitute the major reservoir of ongoing viral replication even
on “suppressive” cART [25]. HIV-infected cell death and
intracellular expression of HIV p24 was reduced in the
HIV PI-R infected cultures by efavirenz or raltegravir, but
not lopinavir. In the cultures infected with HIV PI-S reduc-
tions in intracellular p24 expression were seen with all
three antivirals (Figure 2B). Interestingly, at 48 hours post
infection, treatment with efavirenz or raltegravir resulted in
a two- to three-fold increase in the proportion of p24 posi-
tive cells that were dead, compared to untreated or lopina-
vir treated p24 positive cells (P = 0.0008 for HIV PI-R and
P = 0.06 for the HIV PI-S by ANOVA, Figure 2B and C).
Similar results were not seen at later time points
through day 6 post infection (data not shown). These
data are consistent with PI-mediated inhibition of apop-
tosis [15], and NNRTI-induction of apoptosis [11] in
productively-infected cells and Pr inducing apoptosis in
infected cells.

Discussion
It is widely accepted that total CD4 T cell apoptosis fol-
lowing in vitro HIV infection is proportional with viral
replication, and therefore it is not surprising that inhibit-
ing HIV replication with lopinavir, efavirenz or raltegravir
results in similar reductions in total HIV-associated apop-
tosis. However, in the current report we demonstrate that
important differences exist between these drugs in terms
of their impact on apoptosis of productively HIV-infected

cells; HIV PI promote the survival and persistence of
productively infected cells. The in vivo correlate of this
finding is untested and unknown, but potentially the
clinical use of a PI might increase the cumulative bur-
den of cells containing HIV, when compared to non-PI
containing regimens. If true this could greatly impact
the likelihood of eradicating HIV in different patient
populations, and therefore should be directly assessed
in large, carefully controlled clinical studies.
Combination ART results in decreased apoptosis of

CD4 T cells that correlates with a reduction in viral load
and reductions in immune activation in peripheral blood
[26,27] and lymph nodes [28]. However, the relative con-
tribution of individual components of regimens remains
unclear. The NRTIs azidothymidine, didanosine, lamivu-
dine and stavudine are to varying degrees pro-apoptotic
in vitro and in vivo [29-32]. Similarly, treatment of T cells
in vitro with supratherapeutic concentrations of efavirenz
results in increased apoptosis compared to untreated cells
[11]. On the other hand, PIs decrease apoptosis in HIV in-
fected CD4 T cells in vitro and ex vivo through inhibition
of mitochondrial transmembrane potential loss [23], inde-
pendently of the antiviral effect [12]. PIs also decrease
apoptosis in animal models of non-HIV related diseases
associated with excessive apoptosis, such as sepsis [13],
Fas-induced hepatitis, stroke [14], and retinal degeneration
[15]. This differential effect on apoptosis was recently
demonstrated clinically in virologically suppressed HIV-
infected patients on a PI-containing regimen who had a
decrease in intrinsic apoptosis of peripheral blood
mononuclear cells over time, whereas patients on an
NNRTI-regimen did not [33]. The effects of entry inhib-
itors (maraviroc), fusion inhibitors (enfuvirtide), and
integrase inhibitors, on apoptosis in HIV-infected cells
have not been extensively studied previously.
Our data complement the recent advances in our under-

standing of death occurring in abortively HIV-infected,
non-permissive CD4 T cells [34]. They demonstrate
that entry inhibitors and efavirenz permit survival of
non-permissive, resting CD4 T cells in the face of HIV
exposure, whereas AZT and raltegravir permit death of
these cells through accumulation of toxic DNA inter-
mediates from incomplete reverse transcription and in-
tegration. While this provides a suitable model for a
mechanism of “bystander” cell death in untreated HIV-
infection, we focused on cell death in permissive (acti-
vated), productively infected (ie. p24 positive) cells, as
eradication strategies that involve viral reactivation
necessarily involve post-integration events in the viral
life cycle.
Since our observations were made in vitro using only

single drug treatments, future studies in patient cohorts
on triple drug regimens will be required both to validate
our results and to assess these effects in the context of
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multiple pro and anti -apoptotic mechanisms involved
in in vivo HIV-infection [35]. Also, since representative
medications from three drug classes were studied; add-
itional studies are necessary to establish class effects
versus individual drug effects. This is important as we
have previously demonstrated that some anti-apoptotic
effects of PIs are restricted to peptidomimetic PIs (such
as lopinavir, saquinavir and nelfinavir) and may not ex-
tend to non-peptidomimetic PIs (such as atazanavir and
darunavir) [12]. However, it is likely that the effect dem-
onstrated by lopinavir in this study would be similar
with other peptidomimetic PIs. Additional studies are
also needed examining various combinations of ART
agents and classes.
In the current era where curing HIV infection is being

considered, it is now important to reassess the drugs
which we use to treat HIV infection to determine how
they could impact the size of the HIV reservoir. Inhibiting
apoptosis of HIV-infected cells may preserve or increase
the size of the latent viral reservoir, whereas increasing
apoptosis of HIV-infected cells would predictably decrease

the reservoir. Indeed consistent with our observations,
cART intensification by the addition of reverse transcip-
tase inhibitors [36], maraviroc [37] or raltegravir [38,39]
to an already suppressive regimen results in modest de-
creases in the magnitude of the latent reservoir.

Conclusion
As eradication strategies are being designed, investiga-
tors need to be cognizant of the potentially confound-
ing effects of choice of drug class on survival of
productively infected cells, particularly as it relates to
regulation of apoptosis.

Additional file

Additional file 1: Figure S1. A fluorogenic peptide corresponding to
the protease cleavage site in procaspase8 in acetate buffer (pH4.7)
with or without indicated concentration of raltegravir (10 nM or 100
nM) or lopinavir (10 nM or 100 nM) or efavirenz (1 nM or 10 nM) were
preincubated at 37C for 30 min. HIV-1 protease was added, and
cleavage monitored over time by measuring fluorescence.
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Figure 2 Lopinavir specifically promotes survival of productively HIV-infected CD4 T cells. A) The percent of TUNEL positive cells at day 6
was regressed upon supernatant p24 concentration using linear regression. P < 0.05 considered statistically significant. B) Intracellular HIV p24
expression as a marker of cell infection and cell death (Aqua stain positive) were measured by flow cytometry. Representative results at day 2
post infection of 3 independent experiments. C) The percentage of p24+ cells that co-stained positively for the Aqua dead stain, expressed as the
mean +/− standard error for three independent experiments, was compared using ANOVA. *Indicates a p value <0.05, **a p value <0.01 in
post-tests between groups.
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