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ABSTRACT

A meta-analysis of animal models was conducted to evaluate the prophylactic 
effects of mesenchymal stem cells (MSCs) on acute graft-versus-host disease (aGVHD) 
after allogeneic hematopoietic stem cell transplantation. A total of 50 studies involving 
1848 animals were included. The pooled results showed that MSCs significantly 
reduced aGVHD-associated mortality (risk ratio = 0.70, 95% confidence interval 0.62 
to 0.79, P = 2.73×10-9) and clinical scores (standardized mean difference = -3.60, 
95% confidence interval -4.43 to -2.76, P = 3.61×10-17). In addition, MSCs conferred 
robust favorable prophylactic effects on aGVHD across recipient species, MSC doses, 
and administration times, but not MSC sources. Our meta-analysis showed that MSCs 
significantly prevented mortality and alleviated the clinical manifestations of aGVHD 
in animal models. These data support further clinical trials aimed at evaluating the 
efficacy of using MSCs to prevent aGVHD.

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation 
(allo-HSCT) is the only curative modality for many 
hematological malignancies. The number of patients 
undergoing this procedure is rapidly increasing because 
of the development of novel allo-HSCT strategies and 
improved supportive treatments [1]. However, life-
threatening complications, especially acute graft-versus-
host disease (aGVHD), are frequently encountered after 
allo-HSCT and can limit the widespread use and success 
of this important therapy [1, 2]. Currently, a variety 
of prophylactic strategies, including T-cell depletion 
and immunosuppressive agents, are used to prevent 
aGVHD. However, T-cell depletion impairs the graft-
versus-leukemia effect and has been associated with an 
increased rate of primary disease relapse [1]. Furthermore, 

pharmacological strategies are associated with impaired 
immune reconstitution in recipients [3]. Therefore, novel 
prophylactic strategies for aGVHD are urgently needed.

Mesenchymal stem cells (MSCs) are considered 
ideal candidates for cell therapy during allo-HSCT 
because of their unique immunomodulatory and reparative 
properties [4]. MSCs are currently generating significant 
interest because they confer potential prophylactic effects 
against aGVHD following allo-HSCT [5, 6], and several 
relevant randomized controlled trials (RCTs) have been 
published [7-10]. However, the results of these studies 
have been inconsistent. Ning et al. [7] reported that the 
rate of grade II-IV aGVHD was significantly lower in 
an MSC-infused group than in the control group (11.1% 
versus 53.3%, respectively), whereas Liu et al. [8] 
reported that a higher rate of aGVHD was observed when 
participants received infusions of MSCs (51.8% versus 
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38.9% compared to recipients who did not receive MSCs). 
Because these studies included small sample sizes and 
their results were conflicting, our and other groups have 
conducted meta-analyses of relevant clinical trials, but the 
results have not indicated that the adoptive transplantation 
of MSCs prevents aGVHD [11, 12].

MSCs have been extensively studied in animal 
models as a prophylactic strategy against aGVHD after 
allo-HSCT. Similar to clinical trials, studies using animal 
models have produced conflicting results. Here, we perform 
the first meta-analysis of these animal models to provide 
recommendations for designing future clinical trials.

RESULTS

Study selection and characteristics

We identified a total of 2305 potentially relevant 
studies. After removing duplicates and screening article titles 
and abstracts, 2167 non-relevant studies were excluded. The 
full texts of the remaining 138 studies were screened. This led 
to the exclusion of an additional 88 studies that did not meet 
the eligibility criteria. The excluded full-text studies and the 
reasons for their exclusion are listed in Supplementary Table 
1. Finally, 50 studies involving 1848 animals (1067 MSC 
recipients and 781 controls) and 93 and 41 comparisons that 
assessed aGVHD mortality and clinical scores, respectively, 
were included in the meta-analysis (Supplementary Figure 
1) [13-62]. The majority of the studies used a previously 
described clinical scoring system [63] to assess the severity 
of aGVHD (a higher clinical score indicates more severe 
aGVHD). The characteristics of the included studies are 
listed in Tables 1 and Supplementary Table 2.

Methodological quality evaluation

Five studies reported that animals were randomly 
assigned to an MSC or control group [13, 19, 33, 38, 
44], and four studies indicated that the assessors were 
blinded to outcomes [15, 45, 53, 58]. The majority of the 
included studies reported compliance with animal welfare 
requirements and conflict of interest statements. However, 
none of the included studies mentioned allocation 
concealment or sample size calculations (Tables 2 and 
Supplementary Table 3).

Meta-analysis

A total of 49 studies involving 93 comparisons 
examined the effect of MSCs on aGVHD-associated 
mortality in animal models of allo-HSCT [13-48, 50-
62]. The pooled results indicated that aGVHD-associated 
mortality was significantly lower in the MSC groups than 
in the control groups (RR = 0.70, 95% CI 0.62 to 0.79, P = 
2.73×10-9) (Figure 1). There was significant heterogeneity 
among the studies (I2 = 66.1%, P = 2.12×10-18) (Figure 1). 

In addition, 29 studies involving 41 comparisons examined 
the effect of MSCs on aGVHD-associated clinical scores 
[14, 15, 17, 19, 20, 22, 24, 27, 28, 33, 34, 36-39, 42, 44, 
46, 47, 49-52, 55, 57-59, 61, 62]. The pooled analysis 
indicated that aGVHD-associated clinical scores were 
significantly lower in the MSC groups than in the control 
groups (SMD = -3.60, 95% CI -4.43 to -2.76, P = 3.61×10-

17) (Figure 2). There was significant heterogeneity among 
the studies (I2 = 92.8%, P = 2.26×10-92) (Figure 2).

Subgroup meta-analysis and meta-regression

Because there was significant heterogeneity among 
the studies, we conducted a subgroup meta-analysis using 
the following factors: recipient species, MSC source, MSC 
dose and administration time. We included only variables 
for which more than two comparisons were made. The 
subgroup meta-analysis demonstrated that MSCs provided 
similar beneficial prophylactic effects on the mortality and 
severity of aGVHD based on the recipient species, MSC 
dose and administration time (Supplementary Tables 4 and 
5). In the MSC source data, the rate of aGVHD-associated 
mortality was significantly lower in groups administered 
mouse bone marrow (BM)-, human BM- and human 
umbilical cord blood (UCB)-derived MSCs than in the 
control groups (RR = 0.77, 95% CI 0.65 to 0.91; RR = 
0.68, 95% CI 0.51 to 0.93; RR = 0.56, 95% CI 0.37 to 0.85, 
respectively) (Supplementary Table 4). However, there were 
no significant group differences when adipose tissue- and 
umbilical cord (UC)-derived MSCs were compared to the 
control group (RR = 0.49, 95% CI 0.23 to 1.06; RR = 0.51, 
95% CI 0.20 to 1.31, respectively) (Supplementary Table 
4). Consistent with the aGVHD mortality results, aGVHD 
clinical scores were significantly lower in the groups that 
received mice BM-, human BM-, and human UCB-derived 
MSCs than in the control group, and there was no significant 
difference between the human adipose tissue-derived MSC 
group and the control group (Supplementary Table 5).

To identify the potential source of heterogeneity, 
we conducted a meta-regression based on the factors 
mentioned above. The results indicated that the 
MSC source and dose accounted for a significant 
proportion of the heterogeneity in aGVHD-associated 
mortality (adjusted R2 = 5.41% and 1.73%, respectively) 
(Supplementary Table 4).

Publication bias

Funnel plots based on both aGVHD mortality and 
clinical scores showed asymmetry, suggesting the presence 
of publication bias (Figure 3). A subsequent Egger’s test 
confirmed the existence of publication bias (P = 4.07×10-6, 
P = 0.001, respectively).

Small-study effects may contribute to the 
asymmetry observed in the funnel plots (Figure 3). 
However, the beneficial effect of MSCs on aGVHD 
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mortality was similar between fixed- and random-effects 
models (Supplementary Table 6), implying that small-
study effects did not substantially affect final estimates 
[64]. Moreover, no study was added in the trim and fill 
analysis. Thus, the funnel plot asymmetry may have been 
associated with other types of bias.

DISCUSSION

To our knowledge, this is the first meta-analysis to 
evaluate the prophylactic effects of MSCs on aGVHD in 
animal models of allo-HSCT. This meta-analysis indicates 
that MSCs significantly prevent mortality and alleviate the 

Table 2: Methodological quality of the included studies

Quality score criterion Proportion of studies (%)

Published in peer-reviewed journal 100

Randomization 10

Allocation concealment 0

Blinding of outcome assessors 8

Estimation of sample sizes 0

Compliance with animal welfare requirement 82

Conflict of interest statement 64

Table 1: Characteristics of the included studies

Characteristics No. of comparisons

No. of publications 50

No. of MSC arms 94

Species receiving MSCs

 Rat 7

 Mouse 87

MSC sources

 Rat BM 7

 Mouse BM 48

 Human BM 13

 Human UCB 9

 Human UC 4

 Mouse adipose tissue 3

 Human adipose tissue 2

 Human menstrual blood 1

 Mouse skin 1

 Human decidua 4

 Human placenta 2

Range of MSC doses 0.02 × 106 to 20 × 106

MSC administration time

 Co-transplantation with allo-HSCT 46

 Multiple doses including co-transplantation 21

 Single or multiple doses, 1 day post-allo-HSCT 27

Abbreviations: BM, bone marrow; UCB, umbilical cord blood; UC, umbilical cord.
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Figure 1: The prophylactic effect of MSCs on aGVHD mortality following allo-HSCT. MSCs: mesenchymal stem cells, 
aGVHD: acute graft-versus-host disease, allo-HSCT: allogeneic hematopoietic stem cell transplantation, RR: risk ratio, CI: confidence 
interval.
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clinical manifestations of aGVHD in animals that undergo 
allo-HSCT. In addition, MSCs provided robust favorable 
prophylactic effects against aGVHD across recipient 
species, MSC doses and administration times.

It should be noted that this meta-analysis included 
only mice and rats because few large animal studies are 
available. Several clinically relevant parameters, including 
the MSC source, dose and administration time, may have 
contributed to the heterogeneity and inconsistent results 

observed in these studies. We therefore conducted a 
subgroup meta-analysis based on these factors. One study 
reported that MSCs suppress immune responses only in 
an inflammatory environment [65], raising the question of 
whether co-transplanting MSCs with grafts may prevent 
aGVHD. The results of the subgroup meta-analysis 
indicated that co-transplanting MSCs had a prophylactic 
effect that was similar to the effect of infused MSCs 
administered more than one day after allo-HSCT. Our 

Figure 2: The prophylactic effect of MSCs on aGVHD clinical scores following allo-HSCT. MSCs: mesenchymal stem 
cells, aGVHD: acute graft-versus-host disease, allo-HSCT: allogeneic hematopoietic stem cell transplantation, SMD: standardized mean 
difference, CI: confidence interval.
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subgroup meta-analysis demonstrated that MSCs produced 
a better prophylactic effect when administered at relatively 
high doses, consistent with another study that evaluated 
the effects of increasing doses of MSCs [40]. However, 
this dose-response effect may not be beneficial when the 
MSC dose is above a threshold [66]. Furthermore, the 
results of the subgroup meta-analysis seemed to suggest 
that differences might be based on the MSC source 
because favorable prophylactic effects were observed for 
BM- and UCB-derived MSCs but not adipose tissue- and 
UC-derived MSCs. Subsequent meta-regression analyses 
have consistently indicated that the MSC source is a 
significant contributor to heterogeneity. However, these 
results should be interpreted with caution because only 
a small number of relevant studies were included in the 
analysis.

A number of questions should be considered 
when translating these results into clinical trials. First, 
this meta-analysis focused on un-manipulated MSCs. 
Therefore, whether genetically modified or cytokine 
pre-treated MSCs are superior to un-manipulated MSCs 
as aGVHD prophylactics warrants further investigation. 
Second, cryopreserved MSCs may exert smaller 
immunomodulatory effects than freshly harvested cells 
[67]. However, we cannot directly compare cryopreserved 

MSCs to fresh MSCs because of the limited number of 
available studies. Third, whether cell senescence impairs 
the immunomodulatory effects of MSCs remains unclear. 
Fourth, this meta-analysis exhibited publication bias that 
was often associated with overestimations of the efficacy 
of the intervention. We acknowledge this is a limitation of 
this meta-analysis. Finally, while murine models cannot 
fully replicate the pathophysiology of human aGVHD 
[68, 69], such models are useful because they increase our 
understanding of GVHD and provide a basis for forming 
clinically translatable ideas [69].

In summary, in this meta-analysis, we show that 
MSCs significantly prevent mortality and alleviate the 
clinical manifestations of aGVHD in animal models, 
supporting further investigations into the use of MSCs as 
prophylactics against aGVHD in clinical trials.

MATERIALS AND METHODS

Search strategy

A systematic literature search of PubMed and the 
Excerpta Medica Database (Embase) was conducted to 
identify studies published before February 2016 using the 
following key word search terms: “mesenchymal stem 

Figure 3: Funnel plots of aGVHD mortality and clinical scores. A. Funnel plot of aGVHD mortality. B. Funnel plot of aGVHD 
clinical scores. aGVHD: acute graft-versus-host disease.
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cell”, “mesenchymal stromal cell”, “MSC”, “graft versus 
host”, “graft vs host” and “GVHD”. The language was 
restricted to English. The detailed search criteria are listed 
in Supplementary Tables 7 and 8. Relevant controlled 
studies evaluating the prophylactic effect of MSCs on 
aGVHD in rat or mouse models of allo-HSCT were 
identified. In addition, the reference lists of all identified 
studies were manually searched.

Selection criteria

Two independent researchers evaluated all potentially 
relevant studies. After titles/abstracts were screened, all 
suspect articles were submitted to full-text screening to 
avoid discarding relevant reports. All controlled studies 
that evaluated the prophylactic efficacy of MSC adoptive 
transplantation in aGVHD in rat or mouse models of allo-
HSCT and that reported aGVHD mortality or aGVHD 
clinical score outcomes, regardless of animal age, sex 
or strain, were included. Control interventions included 
saline, culture medium and no treatment.

Studies using manipulated MSCs (i.e., MSCs 
genetically modified to overexpress particular molecules 
or MSCs pre-treated with cytokines) were excluded. 
Furthermore, studies using MSCs concomitantly with other 
cell types or other therapies were also excluded. Because 
we were interested only in the prophylactic effects of MSCs 
on aGVHD, studies evaluating therapeutic effects of MSCs 
on established aGVHD were excluded. All discrepancies 
were resolved by consulting with a specialist.

Data extraction

Two researchers independently extracted the data. 
All related data, including reference details (the first 
author and publication year), donor animals (species 
and strain), recipient animals (strain, age and sex), graft, 
sample size, MSC source (donor species and tissue origin), 
MSC dose, administration time and the above-mentioned 
outcomes (aGVHD mortality and aGVHD clinical scores), 
were extracted.

The corresponding authors were contacted if 
the data were incomplete (i.e., if values for the mean 
and standard deviations (SD) were not reported). If no 
response was received from the corresponding authors, 
the values for the means and SDs were calculated from 
graphs in the original articles using digital ruler software. 
If a single study compared different MSC doses and/or 
administration times using one control group, the data 
were treated as independent comparison experiments, 
and the control group was divided by the number of 
experimental groups to ensure that the total number of 
controls was not changed [70]. If aGVHD clinical scores 
were serially monitored, only the data for the time point at 
which the most severe aGVHD manifestations developed 
were extracted.

Methodological quality evaluation

Two researchers independently assessed the 
methodological quality of each included study using 
previously reported criteria [70], with slight modifications. 
These criteria included seven items: peer-reviewed 
publication, randomization, concealment of allocation, 
blindness to outcome assessors, estimation of sample size, 
compliance with animal welfare requirements and conflict 
of interest statements.

Statistical analysis

Statistical analyses were performed using Stata 
software (version 12.0, Stata Corporation, College 
Station, TX, USA). A risk ratio (RR) and 95% confidence 
interval (CI) were used to pool the aGVHD mortality 
data. Furthermore, because the clinical scoring system 
differed between studies, the standardized mean difference 
(SMD) and 95% CI were used to pool the aGVHD clinical 
score data. Statistical heterogeneity among studies was 
assessed using the I2 statistic. Values of I2 > 50% and 
P < 0.1 indicated significant heterogeneity among the 
studies. Next, to reveal the potential source of statistical 
heterogeneity, we conducted a subgroup meta-analysis and 
univariate meta-regression based on the following clinical 
variables: recipient species, MSC source, MSC dose and 
administration time. The DerSimonian and Laird random-
effects model was used to provide more conservative 
conclusions when anticipated significant heterogeneity was 
identified among the included studies [71]. Funnel plots 
were constructed to examine the potential publication bias 
[72]. If funnel plot asymmetry was found, Egger’s tests 
were conducted to confirm the existence of publication bias 
[73], and the asymmetry was adjusted using the Duval and 
Tweedie trim and fill analysis [74]. A P value of less than 
0.05 was considered statistically significant.
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