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Nuclearmedicine, a subspecialty of radiology, plays an important role in proper diagnosis and timely treatment.Multiple resources,
especially short-lived radiopharmaceuticals involved in the process of nuclear medical examination, constitute a unique problem
in appointment scheduling. Aiming at achieving scientific and reasonable appointment scheduling in the West China Hospital
(WCH), a typical class A tertiary hospital in China, we developed an online appointment scheduling algorithm based on an offline
nonlinear integer programming model which considers multiresources allocation, the time window constraints imposed by short-
lived radiopharmaceuticals, and the stochastic nature of the patient requests when scheduling patients. A series of experiments
are conducted to show the effectiveness of the proposed strategy based on data provided by the WCH. The results show that the
examination amount increases by 29.76% compared with the current one with a significant increase in the resource utilization
and timely rate. Besides, it also has a high stability for stochastic factors and bears the advantage of convenient and economic
operation.

1. Introduction

Because of the persistent combination of rapid demand and
slow supply, “difficulty and high cost to access medical ser-
vice” has become one of the hot social issues in China, which
draws extensive attention in the study of medical services.
Nuclear medicine, a subspecialty of radiology, playing an
important role in the proper diagnosis and timely treatment
of diseases, has its unique problem in patient appointment
scheduling. In the process of nuclear medical examination,
short-lived radiopharmaceuticals (drugs that give off radi-
ation) produced by special generators are administered to
take high-quality images within the body with the help of
ionizing radiation, and improper scheduling probably leads
to its unavailability. Therefore, hospital managers are under a
great pressure to manage such special resource efficiently and
effectively.

This problem is very critical in large tertiary hospitals
which are heavily overloaded. For example, the demand

for nuclear medicine in the West China Hospital (WCH)
which is one of the largest single-site hospitals in the world,
with 4,300 inpatient beds, and the major referral center for
complex health problems for Southwestern China, grows
rapidly at a rate of nearly 20% a year, intensifying the conflict
between supply and demand of medical resources. One
solution is to increase resource supply, such as purchasing
more equipment. However, due to their high fixed cost
and operation cost, expensive equipment has been strictly
controlled by the authorities to control healthcare costs.
Furthermore, according to our investigation, the current
scheduling strategy based on experience does not make full
use of resources. For instance, under the condition of current
scheduling strategy, the contradiction of supply and demand
of two key resources (equipment and medicine) involved in
the process of nuclear medical examination is prominent.
During a week, the bottleneck of nuclear medical exami-
nation shifted from equipment to medicine. From Monday
to Tuesday, excessive production of medicine resulting in
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low medicine utilization (the average utilization rate is only
64.1%) causes an equipment bottleneck. From Wednesday
to Friday, however, insufficient medicine production leads
to poor efficiency of the resource use (idle equipment and
staff) and low patient satisfaction. In this case, medicine
becomes another bottleneck. Furthermore, at weekends, the
fluctuation of the patient flow makes the resource utilization
instable. Therefore, applying scientific methods to achieve
appointment scheduling of radiology resources at theNuclear
Medicine Department in the WCH has important applicable
significance.

Patient requests in nuclear medicine arrive in an online
fashion during the day as the scheduling proceeds, which
makes it unique with very limited research reported in the
literature. Stochastic planning techniques are an alternative
to address this problem. However, unlike common online
problems considering only one kind of resource, such as
devices working hours or plane capacity, this one is more
complex under multiple resource constraints within the time
window originating from the short half-life of the radiophar-
maceuticals. Adopting a method similar to that of Pérez et
al. [1], we solve this problem through two steps: determining
the offline optimal value (the offline scheduling) and the
reasonable online scheduling strategy (online scheduling).
In the first step, based on the known arrival sequence, we
develop a nonlinear integer programmingmodel considering
the characteristics of theNuclearMedicineDepartment, such
as multiresources constraints and time window constraint,
and apply a multipopulation genetic algorithm (MPGA) for
its solving. In the second step, as the overall time sequence
is unknown, the optimum solution of the previews step
cannot guarantee global optimum.We apply stochastic online
algorithms to solve stochastic integer programs.

The contributions of this paper are as follows. First, we
develop a nonlinear integer programmingmodel considering
the characteristics of the nuclear medicine department, such
as multiresources constraints and time window constraint,
and get optimal solution by MPGA. Second, we design
a stochastic online algorithm considering the demands of
various types of patients and arrival unpredictability, which
is close to the greatest level of reality by removing many
assumptions in previous studies, such as the risk-neutral
and predicable assumption about the patient demands.These
contributions will help the practice of nuclear medicine by
providing increased patient throughput and higher utiliza-
tion of resources and will improve the methodology of the
appointment scheduling in nuclear medicine.

The rest of this paper is organized as follows. Section 2
reviews related research works on this problem and summa-
rizes the application of online algorithms in theNuclearMed-
ical Department. The nuclear medicine scheduling problems
are described and corresponding solutions are proposed in
Section 3. Section 4 provides a nonlinear integer program-
ming model in offline scheduling and genetic algorithms
for its solving. The intractability and sensitivity analysis of
this problem are also carried out in this section. An optimal
dynamic scheduling strategy is proposed and a series of

simulation experiments are conducted in Section 5.Thepaper
ends with some concluding remarks and directions for future
research in Section 6.

2. Literature Review

As healthcare expenditures and demand have been rising
dramatically worldwide, increasing attention from many
academicians and practitioners has been paid to the efficiency
of health service, such as medical personnel staffing, medical
resource allocation, and appointment scheduling. Appoint-
ment scheduling is an important determinant of efficiency,
timely access to health services, and patient satisfaction
[2]. In recent years, medical appointment scheduling has
grown comprehensively in the literature, including outpatient
scheduling [3–5], surgery scheduling [6–8], and medical
examination scheduling [9–11]. Regarding the review papers
[2, 12], the appointment scheduling system can be regarded
as a queuing system, of which the simplest case is when
all scheduled patients arrive punctually in their appoint-
ment times and a single doctor serves them with stochastic
processing times. Factors like multiple patients, servers and
service, presence of unpunctual patients, no-shows, walk-
ins, and emergencies make the scheduling problem more
complicated. Regarding the limited existing literature on
the nuclear medicine scheduling problem, similar research
approaches are taken. Green et al. [13] solved the scheduling
problem for different types of patients with random arrival in
the MRI Department. Taking it as a finite-horizon dynamic
schedule problem that allows only one patient to arrive at
each slot where a single sever is available and only one patient
can be served at a time, they obtain some properties related to
the optimal strategy. Based on this study, Patrick et al. [14] set
different priorities among patients, modeled the scheduling
process as a Markov decision process, and then solved the
equivalent linear program through approximate dynamic
programming, for the state space is too large for a direct solu-
tion. Kolisch and Sickinger [15] worked on a similar problem.
Different from former researches, they considered two CT
scanners and compared the decision rules under different
schedule strategies. They made a qualitative leap in theory
for two servers, although the two are taken from an identical
machine.Wu et al. [16] designed scheduling rules considering
the diversity of examination tasks and the different levels
of facilities and the simulation results show that allocating
the tasks in this way can fix the service time, balance the
medical task among several resources, and improve the
utilization rate. Akhavizadegan et al. [17] applied a finite-
horizon Markov decision process as dynamic programming
to formulate a scheduling problem in a nuclearmedical center
by considering the patients’ choice behavior and different no-
show rates for patients. Seeking to reduce the potential impact
of delays on radiation therapy cancer patients, Sauré et al. [18]
studied scheduling practices at a local hospital. Formulating
a discounted infinite-horizon Markov decision process for
scheduling cancer treatments in radiation therapy units,
using an affine architecture to approximate the value func-
tion, and adopting the column generation method to solve
the equivalent linear programming model, they obtained an
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Table 1: Source of medicine.

Medicine Half-life Source Comments
Iodine-131 (I131) 8.3 days Outsourcing Purchased directly from the market
Technetium-99 (Tc99) 6.02 hours Self-manufacturing Generated by centrifugal accelerator

approximate optimal strategy. Liu and Geng [19] considered
two different examinations, two urgency levels, patients’ no-
shows, and physicians’ overtime and proposed a discount-
cost Markov decision process (MDP) with the objective of
maximizing the expected revenue from examining patients
and minimizing the overtime penalty. In a word, most
published papers regard the nuclear medicine scheduling
problem as a common one without considering the use
of radioactive isotopes with short half-life, which makes it
a unique problem within the time window. Furthermore,
multiple resources, such as medicine and equipment, are
required in the procedure. However, to our knowledge, few
published papers have considered such factor in patient
scheduling in this field.

Regarding the literature, there are two common
approaches to schedule an appointment, namely, offline
scheduling and online scheduling. The offline scheduling
approach, static [12] or allocation [17] scheduling approach,
makes decisions at the beginning of planning and scheduling
and allocates known demand to available resources, whereas
the online scheduling approach, dynamic [12] or advanced
[17] scheduling approach, revises continuously during the
scheduling period based on the current state of the system
and assigns resources to the patient in advance of the service
date. As the most common appointment scheduling problem
in healthcare, the offline problem is themost concentrated on
by most of the literature. To the best of our knowledge, there
are few researches applying online algorithms in healthcare,
especially in nuclear medicine departments, despite having
good application and fruitful theory achievement in various
areas, especially in manufacturing and services. For example,
Karhi and Shabtay [20] studied an online scheduling problem
of two job types on a set of multipurpose machines aiming at
minimizing the makespan. Ma et al. [21] studied the online
scheduling of linear deteriorating jobs on a single machine to
minimize the total weighted completion time. Ni and Xu [22]
considered the joint ticket pricing and booking problem in
the airline industry from the perspective of online algorithms
and competitive analysis and proposed policies which can
dynamically adjust price and allocate the tickets according
to the set of bookings previously offered at any point in time.
Referring to the literature, one of the advantages of online
scheduling system is that it can be adjusted according to the
practical situation and bring about better resource utilization.
Ball and Queyranne [23] pointed out that although the static
strategy can guarantee an optimal competitive ratio, it is
more realistic to adjust the strategy according to the actual
demand. Moreover, for patient requests in nuclear medicine
arriving in an online fashion during the day as the scheduling
proceeds, it is more suitable to apply stochastic planning
techniques to address the appointment scheduling problem.
Our work is inspired by Pérez et al. [1]. They used the

online algorithm for appointment scheduling in the nuclear
medicine considering the multiresource constraints and time
window characteristics. They divided the operation time
in a day into time slots of equal length and assumed that
patients’ appointment times coincide with the beginning of
a time slot and patients show up for their appointment most
of the time. Under these conditions, they built an integer
programming model which can be directly solved by a linear
programming solver. We also considered multiresource and
time window constraints and proposed a nonlinear integer
programming model which is solved by the multipopulation
genetic algorithm (MPGA) in the offline scheduling, but only
two key resources, medicine and equipment, are focused
on and examination items are divided into four groups
accordingly, whereas in Eduardo’s study, they analyzed
several resources such as technologists, nurses, gamma
cameras, and sometimes a treadmill in each procedure
performed in nuclear medicine with their current procedural
terminology (CPT) codes. Considering real situations in
Chinese hospitals, ourmodelmay be a good tradeoff between
feasibility and scientificity. Furthermore, our scheduling
system is easier to be used and understood by a practicer,
usually a nurse in the nuclear medicine department, with
limited computer operation skills, compared to Pérez et al.’s
NMOS (nuclear medicine online scheduling) and NMSOS
(nuclear medicine stochastic online scheduling) algorithms
that must be implemented in JAVA and ILOG CPLEX.

In conclusion, the characteristics of multiresources con-
straints and specific timewindow in nuclearmedicine consti-
tute a unique problem with very limited research reported in
the literature. Moreover, there is hardly any research in radi-
ology appointment scheduling applying online algorithms
considering patient’s demand and arrival distribution. For
this reason, this paper not only has guiding significance
for nuclear medical departments in practice, but also is a
supplement to the theory.

3. Problem Definition and Notation

3.1. Resource Constraint. The practice in the Nuclear
Medicine Department of the WCH can be divided into two
categories: treatment and examination. The latter includes
PET/CT and SPECT/CT. We focus on SPECT/CT for its
heavy use. The resource constraints include equipment
and medicine. Technetium and iodine are the two major
medicines involved in SPECT/CT scans (see Table 1). I131
is not taken as a constraint for its long half-life and easy
access, whereas Tc99 imposes constraints on appointment
scheduling. It is produced by two molybdenum generators
purchased from another place once a week. Due to the decay
of molybdenum with a half-life of only 67.2 h, the production
of Tc99 decreases exponentially within a week. We take
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Table 2: The resource consumption of item groups.

Item groups Procedure time
A

Medicine type
B

Dosage
C

Injection method
D C/A

Group 1
Whole body bone scan
Bone dynamic scan

18min Tc 30mCi Nonbedside 1.67

Group 2
Thyroid scan 4min Tc 2-3mCi Bedside 0.5

Group 3
Salivary glands scan
Kidney scan
GFR

35min Tc 5mCi Bedside 0.15

Group 4
I131 therapeutic agent scan
I131 whole body scan

12min I ∗ Per os 0

Preparation Time. 30 s for getting in and out of bed, 1–3min for bedside injection.

three pieces of equipment available for SPECT/CT scans
as identical machines for their tiny efficiency variance and
being used for similar examination item.

Examination items in the Nuclear Medicine Department
of the WCH are up to 24 types. Among them, whole body
bone scan, kidney scan, thyroid scan, salivary glands scan,
I131 therapeutic agent scan, bone dynamic scan, assessment
of glomerular filtration rate (GFR), and I131 whole body scan
account for 95.59%, while the rest account for less than 5%.
For this reason, the top eight are studied and then are divided
into four groups according to similar resource consumption
and injection method (see Table 2).

3.2. Problem Description. Compared with other kinds of
online scheduling problems, this one has its unique charac-
teristics by considering the multiresources constraints and
the time window. A similar scheduling problem has been
deeply researched in the field of revenue and production
management, though only one resource constraint (e.g.,
device working time or plane capacity) is considered. In the
nuclear medicine department, two key resource constraints
are involved, which makes the scheduling more difficult. In
addition, this scheduling problem has a time window of 1–3
days. On the one hand, for the timely examination being the
premise of timelymedical practices and care, the examination
date is fixed within 3 days after their arrival day; on the other
hand, patients will not be examined on the arrival day due to
the particularity of nuclear medicine.

4. Offline Scheduling Model

4.1. Nonlinear Integer Programming Model. In the offline
problem, all patient requests are assumed to be known in
advance. Thus, patient scheduling is made by considering
all requests for the day. Considering multiresources and
time window constraints, we propose a nonlinear integer
programmingmodel aiming atmaximizing the weekly exam-
ination amount while satisfying all constraints. A set of
patient requests (𝑥𝑔𝑝𝑑) is used as input to the model. Each
patient 𝑝 requests an examination in group 𝑔 on day 𝑑 with
binary value (1 for acceptance, 0 for denial).

The notations required are listed in Scheduling Problem
Sets and Parameters, and the offline scheduling model is

max ∑
𝑔∈𝐺

∑
𝑝∈𝑃

∑
𝑑∈𝐷

𝑥𝑔𝑝𝑑, (1a)

∑
𝑑∈𝐷

𝑥𝑔𝑝𝑑 ≤ 1, 𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃; (1b)

∑
𝑔∈𝐺

∑
𝑝∈𝑃

𝑡𝑔 ∗ 𝑥𝑔𝑝𝑑 ≤ 𝑡𝑑, 𝑑 ∈ 𝐷; (1c)

∑
𝑔∈𝐺

∑
𝑝∈𝑃

𝑘𝑔 ∗ 𝑥𝑔𝑝𝑑 ≤ 𝑘𝑑, 𝑑 ∈ 𝐷; (1d)

𝑤𝑙 ≤ (𝑑 ∗ ∑
𝑑∈𝐷

𝑥𝑔𝑝𝑑 − 𝑎𝑔𝑝) ≤ 𝑤𝑢
𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃;

(1e)

𝑥𝑔𝑝𝑑 is the binary. (1f)
The objective function of (1a) maximizes the weekly

examination amount. Constraint (1b) enforces examination
for each patient to be at most once a week to avoid overlap-
ping. Constraint (1c) limits the working time of equipment
for each day. Constraints (1d) enforce the medicine amount
for each day. Constraint (1e) is the time window constraints
which make sure the examination day is within a certain
period after the arrival day.

4.2. The Offline Model Solving. Being an NP problem, the 0-1
integer programmingmodel, a typicalmodel extensively used
in operations research, is hard to be solved.This paper adopts
a more complex nonlinear integer programming model with
a large scale. Therefore, the solution for this model is more
complicated and differs substantially from the general one.
Thus, this problem cannot be solved by common methods
used in general integer linear programming models which
may be theoretically possible, like branch and boundmethod
or enumeration method. For the same reason, neither can
software like Cplex.

Due to the dramatic expanding search space, it is difficult
or even impossible to get optimal solution by enumeration
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Table 3: Weekly medicine production.

Mon. Tues. Wed. Thur. Fri. Sat. Sun.
Production (unit: mCi) 2900 2140 1660 1450 1300 990 620

Table 4: Arrival distribution of four item groups in one week.

Group 1 Group 2 Group 3 Group 4
Mon. Poisson (43) Poisson (12) Poisson (15) Uniform (0, 2)
Tues. Poisson (49) Poisson (11) Poisson (20) Poisson (4)
Wed. Poisson (53) Poisson (8) Poisson (21) Poisson (5)
Thur. Poisson (50) Poisson (4) Poisson (18) Poisson (5)
Fri. Poisson (41) Uniform (0, 3) Poisson (13) Poisson (8)
Sat. Poisson (13) Uniform (0, 1) Poisson (5) Poisson (3)
Sun. Poisson (11) Poisson (3) Poisson (3) Uniform (0, 1)

Table 5: The results of the genetic algorithm.

Population size Generation Crossover probability Mutation probability Operation time Optimum
700 3000 0.9 0.2 721 s 576

Start Generate random
population Gen = 0

Fitness/
penalty Select Crossover Mutation

Over Output results Generate new
population

Stopping
criteria?

Gen = Gen + 1

Figure 1: The logic diagram of the algorithm.

method in large-scale problem solving, so researchers turn
to a satisfactory one. Genetic algorithm (GA) is one of the
best tools for satisfactory solution with advantages like good
convergence, low computational complexity, high robustness,
and so forth. Practices show that the GA is quite effective in
the nondeterministic polynomial complete problem (NPC)
solving. For this reason, we apply the genetic algorithm to
solve this problem.

4.2.1. Standard Genetic Algorithm

(1) AlgorithmicDesign and Implementation.The logic diagram
of the algorithm is shown in Figure 1.

Here, the floating-point coding method is adopted for
not producing larger redundant space and being good at
satisfying complicated constraints of decision variables in
large space searching, compared to the binary encoding
method. The string length of chromosomes is set as the
weekly demand and is divided into 28 parts, each of which is
for one type of patient decided by arrival day and examination
item. Each position on the chromosome is for an unprocessed
demand and is expressed numerically as 0–7. 0 is for denial
and 1–7 is for what day of the week the examination day is.
Since the demand is about 600 a week, the solution space will
be up to 8∧600 (2∧1800). Fitness is represented by objective

function value, but to better satisfy all the constraints, the
evaluation function of individual fitness is adjusted by penalty
value to limit functions which do notmeet all the restrictions.
Roulette selection is used as a selection operator, two-point
crossover is adopted as crossover operator, and adaptive
mutation and basic bit mutation are introduced as mutation
operators.

(2) Parameter Setting

Equipment Constraint. Based on a real situation, working
hours are set to about 10 h a day.

Medicine Constraint. Medicine production varies from day to
day within a week as in Table 3.

TimeWindowConstraint.The examination day is fixedwithin
1–3 days after the arrival day.

Arrival Rate. Data analysis indicates that most of the data
obey Poisson distribution by K-S test while only a few do not
but can be fit by uniform distribution, so we take stochastic
arrival sequence as an input as in Table 4.

(3) Results. The problem is solved by GA program on Matlab
with a total running time of 721 s and the optimum of 576.
The rest of the other results are shown in Table 5.
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Table 6: Performance comparison of SGA and MPGA.

Mean Median Standard deviation Standard error Range Min. Max.
SGA 567.8 566 8.01249 3.58329 18 558 576
MPGA 576.2 577 1.09545 0.4899 2 575 577

Immigration
operator

Immigration
operator

Immigration
operator

Population 1

SGA

Artificial
selection

Population 2

SGA

Artificial
selection

Population n

SGA

Artificial
selection

Essence

· · · · · ·

Figure 2: The logic diagrams of multipopulation genetic algorithm.

4.2.2. Multiple Population Genetic Algorithm. Aiming at
solving the existing problems of standard genetic algorithm
(SGA) like premature convergence, multipopulation genetic
algorithm (MPGA) is proposed to improve the algorithm
efficiency. The logic diagram of the algorithm is shown in
Figure 2.

4.2.3. Comparison of SGA and MPGA Performance. As
shown inTable 6,MPGAhas better performance in algorithm
stability andmore powerful ability of global search than SGA.

4.3. Sensitivity Analysis

4.3.1. Arrival Rate. We study the influence of increased
demand on outputs which are shown in Figures 3 and 4.

As seen in Figure 3, with the arrival rate gradually
doubling its original one, total examination amount is rising
slowly and flattens in the end which indicates the maximum
utilization of resources. Acceptance rate is the percentage of
accepted patients to patients’ arrivals in a week. It decreases
with the increasing of the arrival rate at an increasing rate
because of resource constraints. When the arrivals attain a
certain degree, a higher proportion of patients are refused.

As seen in Figure 4, equipment and medicine utilization
rates tend to reach an equilibrium situation after experiencing
a slow increase in the arrival rate. The medicine utilization
curve is above the equipment one, which indicates that the
tighter resource is medicine.

As seen in Figure 6, the acceptance rate of bone scan
decreases from 100% to 63.95% with the increasing of arrival
rate, while the rest stays above 95% mainly because the bone
scan is the biggest resource consumer (see Figure 5). It also
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Figure 3: Arrival rate and acceptance rate.

shows that the equipment and medicine resources can only
meet 1.1 times the demand. That is to say, when the arrival
rate is within 1.1 times, all patients are accepted; otherwise,
the acceptance rates of every item start to fall.

4.3.2. Equipment and Medicine Constraints. Being two key
constraints in scheduling, the equipment and medicine con-
straints are studied for how their changes might affect the
target value. The equipment working time is set at 8 to 12
hours every half hour and the medicine production is set
at 80% to 120% of the original production every 5%. Since
there are nine equipment constraint values andninemedicine
constraint values, the combination of both has 81 values.
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Figure 7 shows that the target value gradually increases
with broadening constraints of equipment (working time)
and medicine (production), but the sensitive effect of the
medicine production change on the target value is greater
than that of the equipmentworking time, which also indicates
that the tighter resource is medicine.

5. Online Scheduling Model

5.1. Online Schedule Strategy. The online schedule strategy
mainly aims at adjusting the daily amount of each item to
maximize the resource utilization. Three online scheduling
strategies together with the current one are compared and
analyzed to obtain the optimum solution. In addition, for
the offline optimal scheduling programming rule, hereinafter
referred to as “Offline” for short, being an ideal one (because,
in the evaluation stage, the arrival sequence is known), it is
added as the highest standard.

Strategy 1 (current). This is the current scheduling strategy
(see Table 7).
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Figure 6: Arrival rate and acceptance rate of each item.
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Figure 7: Sensitivity analysis of resource constraints.

Strategy 2 (FCFS). Making no reservation for any items,
scheduling is based on constraints of equipment and
medicine with FCFS discipline.

Strategy 3 (Offopt). This is the offline optimal schedul-
ing strategy solved by MPGA based on history data (see
Table 8).

Strategy 4 (dynamic). This is the optimal dynamic scheduling
strategy.

Strategy 3 based on history data cannot ensure the opti-
mal online results due to the randomness of the daily arrival
rate and arrival sequence. Therefore, we design Strategy 4
which specifies that when the arrivals reach the threshold
level while the resource becomes surplus the next day, the
scheduling rule shifts from Strategy 3 to Strategy 2. The logic
diagram of Strategy 4 is shown in Figure 8.
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Table 7: Scheduling rule of Strategy 1.

Item Mon. Tues. Wed. Thur. Fri. Sat. Sun.
Bone scan (whole body
bone/bone dynamic scan) 70 60 50 43 35 30 0

Others 15 20 22 20 15 25 25

Table 8: Scheduling rule of Strategy 3.

Item groups Mon. Tue. Wed. Thur. Fri. Sat. Sun.
Group 1 72 57 59 50 47 15 10
Group 2 5 9 15 5 3 2 0
Group 3 6 22 18 20 0 26 17
Group 4 0 3 5 9 18 5 1

Patient
a arrives on day n

The resource
on day n + 1
is enough

The arrival
number > threshold
on day n

Remove all restrictions of the 
examination amount on all items;
put the resource restriction’s
FCFS as scheduling rules

Put the best strategy of offline
scheduling as scheduling rules

Check date d = n + 1 Check date d = n + 2

The resource
on day n + 2 
is enough

Put the best strategy of offline
scheduling as scheduling rules

If N > 7
(the beds are full this
week)

Check date d = 0

Put out the check date d of patient a

N = n + 1

No No

Yes

Yes No

No

Yes

Figure 8: The logic diagrams of Strategy 4.

5.2. Simulation Results Analysis

5.2.1. Target Value. The target value is the weekly exami-
nation amount which is the key indicator of the strategy
assessments. As seen in Figure 9, Strategy 1 is always the
worst. The performance of Strategy 2 is consistent with that
of “Offline” before the arrival rate reaches 1.2 times, but after
1.3 times, it declines markedly and is only slightly better
than Strategy 1. Strategy 3 is always lower than Strategy 4
which is very close to “Offline.” Although Strategy 4 has
some differencewith “Offline” after the arrival rate reaches 1.3
times, it is far better than the other three. Therefore, Strategy
4 is the optimal one.

5.2.2. Utilization of Equipment and Medicine. Due to the
distribution of examination items, strategies with the same
target value will have different utilization of equipment and
medicine. The essential characteristic of optimization is to
improve resource utilization. Therefore, the utilization of
equipment and medicine is another indicator in strategy
assessment. As seen in Figures 10 and 11, Strategy 4 is the best
of the four in utilization of equipment and medicine.

5.2.3. Acceptance Rate and Timely Rate. Patients who cannot
get an appointment within a week (the scheduling period)
are regarded as being refused. Therefore, the acceptance rate,
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Figure 9: The comparison of target value of 4 strategies.
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Figure 10: The comparison of equipment utilization of 4 strategies.

the percentage of received patients to patients’ arrivals in a
week, measures the ability to satisfy timewindow constraints.
However, even when people get an appointment during the
scheduling period, their examination date may not be within
the time window. Therefore, timely rate, the percentage of
patients getting an appointment within the time window to
received patients, is another index for estimating the ability
to satisfy time window constraints.

As seen in Figures 12 and 13, constrained by the time
window, “Offline” has the highest acceptance rate and 100%
timely rate. Strategy 4 is marginally under the “Offline” but
better than the others, followed by Strategies 3 and 2. The
current strategy is the worst.

5.3. Strategy Stability Analysis

5.3.1. The Random Arrival Sequence. The data in this paper
contains information of arrival date without exact arrival
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Figure 11: The comparison of medicine utilization of 4 strategies.
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Figure 12: Comparison of the acceptance rate of 4 strategies.

time, so the daily arrivals of each item are known and
the arrival sequence is unknown. Considering weak statis-
tical regularity of real arrival sequence, we generate arrival
sequence by random method based on history data. Then,
the effect of the random arrival sequence on output result
is analyzed. To be more detailed, 10 arrival sequences are
generated with the daily arrivals of each item group being
fixed and the effects on the target value of the four strategies
are compared under two supply and demand situations.

As shown in Figure 14, in the oversupply situation, the
curve of Strategy 2 overlaps with that of “Offline” and
only Strategy 4 is affected by the randomness of the arrival
sequence; in the undersupply situation (see Figure 15), both
Strategies 2 and 4 are affected. However, the rank of strategy
is not affected.

5.3.2. The Randomness of the Arrival Rate. As mentioned in
Section 4, most data of arrival obey Poisson’s distribution
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Figure 13: Comparison of the timely rate of 4 strategies.
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Figure 14: Arrival sequence random testing in the oversupply
situation.

and the randomness of arrival rate may have a certain
impact on output in the online scheduling. Furthermore,
the performances of strategies vary with different demands.
Therefore, the randomness of the arrival rate is tested under
two supply and demand situations, respectively. In the over-
supply situation the arrival rate is set to 1 time, and in the
undersupply situation it is set to 1.5 times. In both situations,
the simulation tests for the 4 strategies are conducted 10 times.

Figure 16 shows that each strategy is affected by the
randomness of arrival rate to a certain extent when there is
less demand. But Strategy 2 always coincides with the offline
optimal scheduling rules, which shows that, in the oversupply
situation, Strategy 2 can achieve the optimal value. Strategy 4
which in most cases coincides with “Offline” comes second
and is much better than Strategies 1 and 3. Strategy 1 is always
the worst.
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Figure 15: Arrival sequence random testing in the undersupply
situation.
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Figure 16: Arrival rate random testing in the oversupply situation.

Figure 17 shows that, in the undersupply situation, Strat-
egy 1 can only receive a fixed number of patients and does
not have fluctuations with the randomness of arrival rate
for being artificially designed and not making full use of
resources; the randomness of arrival rate has higher influence
on Strategy 2 which is only preferable over Strategy 1.Though
Strategy 4 fails to reach “Offline,” it has optimal result and is
less affected by the randomness.

5.4. Discussion. From the above analysis, we can see that,
in the current situation, the gap between Strategy 1 and the
others is not obvious owing to the hospital having already
got a good scheduling strategy tailored to its circumstances.
However, as the simulation has shown, the weekly examina-
tion amount and the utilization of equipment and medicine
will not increase with demand, which is growing at a rate of
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Table 9: Comparison of Strategies 1 and 4.

Situation Strategy Examination amount Equipment utilization Medicine utilization Acceptance rate Timely rate

Oversupply 1 402 63.90% 74.92% 95.04% 100.00%
4 417 67.40% 75.50% 98.58% 99.04%

Undersupply 1 430 67.96% 82.59% 66.87% 68.60%
4 563 90.44% 99.84% 87.56% 91.65%
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Figure 17: Arrival rate random testing in the undersupply situation.

nearly 20% a year in theWCH, under this strategy, which will
lead to sharp declines in the acceptance rate and timely rate,
resulting in supply and demand contradiction. To solve this
problem, there are two major methods. One is to invest more
resources and the other is to maximize resource utilization.
In view of heavy spending on expensive equipment and
other resources, it might be more effective and economical
to optimize scheduling strategy.

Strategy 2 uses FCFS rule, which specifies that a job with
the longest waiting time in the ready queue containing jobs
that are ready to run should be executed first.The advantages
of this algorithm are simple in theory and easy to accomplish.
On the face of it, it might seem like a fair rule, but essentially
it is not for quite a few short run-time jobs needing to wait
for a long time for an earlier started long run-time job.
Obviously, it ismore favorable than the latter. In less resource-
critical situations, Strategy 2 can still have good performance.
Simulation results show that theweekly examination amount,
the utilization of equipment and medicine, acceptance rate,
and timely rate are all approximate to those of “Offline” before
the arrival rate reaches 1.2 times. But with severe shortage of
key resources, the influence from the long run-time job using
a large quantity of resources becomes preeminent, resulting
in bad strategy performance. As the simulation has shown,
after the arrival rate reaches 1.2 times, it becomes inferior
to “Offline” and above 1.3 times it declines markedly with
the weekly examination amount, acceptance rate, and timely
rate being the second lowest. Besides, FCFS rule is easily

affected by many random factors. Therefore, FCFS rule is not
appropriate to be used separately and should be combined
with other rules in scheduling strategy.

Strategy 3 is more scientific and complicated than the
current one. It is based on the real data collected from
the Nuclear Medicine Department of the WCH and is an
offline optimum value solved by MPGA after systematically
analyzing the status quo, such as the examination flow,
the resource constraints, and current strategy. Unlike all
the examination items that are only roughly split into two
categories in the current strategy, the top 8 examination
items, making up 96.59% of the total amount, are focused
on and further divided into four groups based on similar
resources consumption in Strategy 3. However, Strategy 3
cannot ensure the online optimization result due to the
randomness of daily arrival rate and arrival sequence. For
instance, restricted by Strategy 3, even when a certain type
of patient arrival is insufficient the next day, spare resources
cannot be allocated to other types of patients, which leads to
serious resource waste.

To solve this problem, Strategy 4 is designed to make
our scheduling strategy dynamically adjust to actual patient
arrivals, which specifies that when the arrivals reach the
threshold level while the resource becomes surplus the next
day, the rule shifts from Strategy 3 to FCFS rule. Such
dynamic scheduling strategy is widely used in various areas.
In airline revenue management [24–26], for example, airlines
are generally divided into first class, business class, and
economy class with a constant proportion. If economy-class
seats have been sold out with only first- or business-class
seats available shortly before takeoff, the first- or business-
class ticket will be reduced, costing the same as an economy-
class ticket to better utilize resources and maximize the
overall operational revenue. Among four scheduling strate-
gies, Strategy 4 based on offline optimal dynamic scheduling
strategy has the best performance and has a high stability.
As shown in Table 9, the examination amount increases by
29.76% compared with the current one with a significant
increase in the resource utilization and timely rate. In
addition, this strategy bears the advantage of convenient
and economic operation. Pérez et al. [1] derived a compli-
cated stochastic online scheduling algorithm considering the
human resources (technologists, nurses), equipment (gamma
cameras or a treadmill), and radiopharmaceuticals in more
than 60 procedures in nuclear medicine. Accurate algorithm
as it is, it should be implemented in JAVA and ILOG CPLEX.
In this paper, however, only two key resources are considered
based on four examination item groups and FCFS rule is
applied when the arrivals reach the preset point, which
enable the practicer, usually nurse in the nuclear medicine
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department, with limited computer operation skills to do
the job. Therefore, it is perhaps a good tradeoff between the
feasibility and scientificity.

6. Conclusions

Due to the special characteristics of multiresources and time
window constraints, scientific and reasonable appointment
scheduling in the nuclear medicine department is not an
easy task. In this paper, a stochastic online appointment
schedule strategy is derived considering multiresources allo-
cation, the time window constraints imposed by short-lived
radiopharmaceuticals, and the stochastic nature of the patient
requests. A series of experiments are conducted to show the
effectiveness of the proposed strategy based on data provided
by the WCH. The results show that the examination amount
increases by 29.76% compared with the current one with a
significant increase in the resource utilization and timely rate.
Besides, it also has a high stability for stochastic factor and
bears the advantage of convenient and economic operation.
Although the study and the related results are based on
the nuclear medicine department, the online appointment
scheduling system can play a reference and instructive role for
the other radiology departments. There are some limitations
in the present study which has a wide range of the time
window (1–3 days), hoping that the research can get a more
accurate scheduling strategy by refining the time window
constraints in the next step.

Scheduling Problem Sets and Parameters

𝐺: Set of examination items, indexed 𝑔𝑃: Set of patients, indexed 𝑝𝐷: Set of working days, indexed 𝑑𝑡𝑔: Examination period of item group 𝑔𝑘𝑔: Dose of item group 𝑔𝑡𝑑: Working time of day 𝑑𝑘𝑑: Medicine production of day 𝑑𝑤𝑙: Lower limit of time window𝑤𝑢: Upper limit of time window𝑥𝑔𝑝𝑑: Whether patient 𝑝 of item group 𝑔 is
examined on day 𝑑𝑎𝑔𝑝: Patient 𝑝 of arrival day 𝑔.
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