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Genome-wise association studies have identified a number of common single-nucleotide polymorphisms
(SNPs), each of small effect, associated with risk to bipolar disorder (BD). Several risk-conferring SNPs have
been individually shown to influence regional brain activation thus linking genetic risk for BD to altered brain
function. The current study examined whether the polygenic risk score method, which models the cumulative
load of all known risk-conferring SNPs, may be useful in the identification of brain regions whose function may
be related to the polygenic architecture of BD. We calculated the individual polygenic risk score for BD (PGR-
BD) in forty-one patients with the disorder, twenty-five unaffected first-degree relatives and forty-six unrelated
healthy controls using the most recent Psychiatric Genomics Consortium data. Functional magnetic resonance
imaging was used to define task-related brain activation patterns in response to facial affect and working mem-
ory processing. We found significant effects of the PGR-BD score on task-related activation irrespective of diag-
nostic group. There was a negative association between the PGR-BD score and activation in the visual
association cortex during facial affect processing. In contrast, the PGR-BD scorewas associatedwith failure to de-
activate the ventromedial prefrontal region of the default mode network during working memory processing.
These results are consistent with the threshold-liability model of BD, and demonstrate the usefulness of the
PGR-BD score in identifying brain functional alternations associated with vulnerability to BD. Additionally, our
findings suggest that the polygenic architecture of BD is not regionally confined but impacts on the task-depen-
dent recruitment of multiple brain regions.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bipolar Disorder (BD) is a complex disorder characterized by mood
dysregulation resulting in significant psychosocial impairment (van
der Voort et al., 2015). Family, twin, adoption and genome-wide associ-
ation (GWAS) studies have consistently shown a substantial genetic
contribution to disease etiology (Smoller and Finn, 2003; Alsabban et
al., 2011) with heritability estimates ranging from 0.6 to 0.8 (Smoller
and Finn, 2003; Lichtenstein et al., 2009). It is widely acknowledged
that the genetic architecture of the BD is polygenic and consistent
with a threshold-liability model (Gottesman and Shields, 1967). Candi-
date gene and GWAS genetic studies have identified a number of single-
nucleotide polymorphisms (SNPs) that are associated with increased
risk for BD (International Schizophrenia Consortium et al., 2009;
gy, School of Arts and Social
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Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011;
Green et al., 2013). Individual risk-alleles for BD have been shown to in-
fluence brain structure and function in healthy individuals (Kempton et
al., 2009; Bigos et al., 2010; Erk et al., 2010; Franke et al., 2010; Krug et
al., 2010; Wessa et al., 2010; Heinrich et al., 2013; Paulus et al., 2014),
patients with BD (Mechelli et al., 2008; Perrier et al., 2011; Chakirova
et al., 2011; Prata et al., 2011; Soeiro-de-Souza et al., 2012; Dima et al.,
2013; Tesli et al., 2013) and their unaffected relatives (Lelli-Chiesa et
al., 2011; Jogia et al., 2011; Whalley et al., 2012; Erk et al., 2014;
Delvecchio et al., 2015). Collectively, these studies have established
that risk-variants for BD are linked to brain alterations considered rele-
vant to thepathophysiology of thedisorder. For example,meta-analyses
of functional magnetic resonance imaging (fMRI) studies have consis-
tently shown increased activation in the amygdala and decreased acti-
vation in the ventrolateral prefrontal cortex (vlPFC) across a number
of cognitive tasks in patients with BD compared to healthy controls
(Chen et al., 2011; Delvecchio et al., 2013). Similarly, GWAS-supported
risk-alleles in the CACNA1C and ANK3 genes, have been independently
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Sample characteristics.

Patients with bipolar
disorder (n = 41)

Unrelated
controls
(n = 46)

Unaffected
relatives
(n = 25)

Age (years) 44.3 (11.9) 40.3 (13.2) 39.7 (13.7)
Sex (male/female) 20/21 25/21 13/12
IQ 117.9 (17.9) 112.6 (14.5) 115.8 (18.5)
Polygenic risk scorea 0.37 (0.04) 0.32 (0.06) 0.35 (0.04)
HDRS total scoreb 4.8 (5.3) 0.1 (0.5) 0.14 (0.4)
YMRS total scoreb 1.4 (3.0) 0.2 (0.6) 0.0 (0.0)
BPRS total scoreb 27.5 (4.0) 24.3 (0.7) 24.1 (0.4)
Age of onset (years) 24.7 (8.0) – –
Duration of illness
(years)

20.2 (10.5) – –

Depressive episodes
(n)

5.7 (7.5) – –

Manic episodes (n) 5.6 (7.7) – –
Facial affect recognition
accuracy (%)

90.3 (4.1) 93.1 (4.8) 90.1 (5.2)

Facial affect recognition
response time (sec)c

1.4 (0.20) 1.10 (0.24) 1.09 (0.14)

2-back accuracy (%) 83 (11.6) 88 (15.6) 92.3 (12.5)
2-back response time
(sec)

0.65 (0.19) 0.63 (0.31) 0.62 (0.35)

Continuous data are shown asmean (standard deviation); BPRS=Brief Psychiatric Rating
Scale; HDRS = Hamilton Depression Rating Scale); YMRS = Young Mania Rating Scale.

a Patients N Controls (p = 0.002).
b Patients N Relatives, Controls (p b 0.02).
c Patients N Relatives, Controls (p b 0.007).
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associated with increased amygdalar activity in patients with BD (Dima
et al., 2013; Jogia et al., 2011) and in the vlPFC (Jogia et al., 2011).

However, individual GWAS-supported genetic loci only account for a
very small fraction of the risk of BD (Visscher et al., 2012). In response,
the polygenic risk (PGR) score method has been developed to quantify
the extent towhich common risk-variantsmay collectively capture var-
iation in susceptibility to disease (International Schizophrenia
Consortium et al., 2009). The PGR score for BD (PGR-BD) is calculated
in each individual by aggregating variation across GWAS loci nominally
associated with BD into a quantitative score (International
Schizophrenia Consortium et al., 2009; Dima and Breen, 2015), with
the current PGR-BD explaining ~5% of the variance to BD (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2013). Two
previous studies have used the polygenic risk score method to examine
the cumulative impact of BD-related risk-conferring SNPs on task-relat-
ed brain activation during an emotional processing (Tesli et al., 2015)
and a word generation task (Whalley et al., 2012). During emotional
processing, a positive association was found in patients with BD and in
controls between PRG-BD score and brain activation in the right vlPFC.
In the word generation task a positive association was also present be-
tween the PGR-BD score and amygdalar activation in unaffected rela-
tives of patients and in controls. Neither study found an interaction
between PGR-BD score and diagnostic group on the patterns of brain ac-
tivation. This evidence collectively suggests that the influence of com-
mon risk-alleles on brain function may be more informative with
regards to brain phenotypes related to vulnerability to BD rather than
overt disease. The PGR method has a relatively higher explanatory
power compared to single SNP examinations (Dima and Breen, 2015),
and may be useful in identifying regions where the additive effect of
common risk-alleles converges to confer vulnerability to BD.

Based on the above we examined the effect of a PGR-BD on brain
fMRI data from patients with BD, unaffected relatives and unrelated
healthy controls while performing a facial affect and aworkingmemory
processing task. Current models of BD emphasise increased neural re-
sponse to affective stimuli coupled with reduced efficacy of the neural
systems responsible for cognitive control (Phillips et al., 2003; Cerullo
et al., 2009). We therefore chose the facial affect and working memory
tasks as the former maps onto the ventral PFC-limbic pathway (Dima
et al., 2011; Vuilleumier and Pourtois, 2007) implicated in the ability
to process the emotional significance of stimuli and the later engages
frontoparietal regions involved in cognitive control (Dima et al., 2014;
Niendam et al., 2012; Owen et al., 2005). Additionally, previous studies
have reported brain functional abnormalities in patients with BD while
performing these tasks (Cerullo et al., 2009) thus demonstrating their
relevance to BD. Using two different paradigms on the same study sam-
ple we aimed to test whether the polygenic load for BD has a localized
effect to a region or a network of regions that are task dependent and
may represent a common pathway linking genetic risk to BD-related
brain abnormalities.

2. Material and methods

2.1. Participants

Euthymic patients with BD (n = 41), their unaffected first-degree
relatives (n= 25) and demographically matched unrelated healthy in-
dividuals (n= 46)were selected from the VIBES study (Frangou, 2009)
(Table 1). All participants were of white British ancestry. They were
assessed using the structured clinical interview for the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition, revised (DSM-IV)
for Axis I diagnoses (First et al., 2002a, 2002b). Patients that fulfilled
the criteria for BD, type I according to the DSM-IV (APA, 1994) were in-
cluded. The relatives were carefully selected from the VIBES sample
based on the absence of any lifetime history of psychopathology. The
sample included 17 BD patients-sibling pairs from 17 different families.
Unrelated healthy individuals were selected based on the absence of
family history and personal lifetime history of psychiatric disorders. In
all participants, current IQwas assessed using theWechsler Adult Intel-
ligence Scale 3rd Edition (Wechsler, 1997) and psychopathology was
rated using the Hamilton Depression Rating Scale (Hamilton, 1960)
(HDRS), Young Mania Rating Scale (Young et al., 1978) (YMRS) and
Brief Psychiatric Rating Scale (Lukoff et al., 1986) (BPRS). Psychopathol-
ogy was assessed weekly in patients over a period of 1 month prior to
testing and at each assessment they scored below 7 in the HDRS and
YMRS. Patients were also required to have remained on the same type
and dose of medication for a minimum of 6 months. The BPRS, HDRS
and YMRS scores were highly correlated (all r N 0.73, p b 0.0001). To
avoid collinearity we used the total BPRS score as a covariate in subse-
quent neuroimaging analyses because, unlike the two other scales, it is
applicable to nonclinical populations.

2.2. DNA extraction and genotyping

WeobtainedDNA from the participants using buccal swabs and con-
ventional procedures. All participants were genotyped on the Psych
Chip (Illumina Infinium PsychArray-24). Data quality was controlled
in PLINK v1.07 (Purcell et al., 2007) using the same parameters as de-
scribed in Coleman et al. (2016). SNPs were excluded when
missingness N 1%, minor allele frequency (MAF) b 0.01 or Hardy-Wein-
berg equilibrium (HWE) b 0.00001 and participants were excluded
when missingness N 1%. Sex and relatedness checks were carried out,
in addition to principal component analyses to confirm self-reported
ethnicities (Patterson et al., 2006).

2.3. Polygenic risk scores

Genome-wide polygenic risk scores for BD (PGR-BD) were generat-
ed with the PRSice software (http://prsice.info/; Euesden et al., 2015)
using the most recent Psychiatric Genomics Consortium (PGC) GWAS
of BD from the cross disorder study (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013). The SNPs used were those se-
lected by the analysts of those studies using P-value-informed clumping
in PLINK with a cut-off of r2 = 0.25 within a 200-kb window, and ex-
cluding the Major Histocompatibility Complex (MHC) region of the

http://prsice.info/;
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genome because of its complex linkage disequilibrium structure. Of
108,834 clumped SNPs from the original analyses of BD, 108,217 existed
in our data. For each participant, seven PGR-BD scores were generated
using SNPs with p-values b0.001 (SNPs: 417), 0.05 (SNPs: 9715), 0.1
(SNPs: 16,691), 0.2 (SNPs: 28,450), 0.3 (SNPs: 38,207), 0.4 (SNPs:
46,753) and 0.5 (SNPs: 54,127).

2.4. Facial affect recognition paradigm

Three negative facial emotions (fear, anger and sadness)were exam-
ined in three event-related experiments presented in a random order
during a single acquisition session. In each experiment, 10 different fa-
cial identities (www.paulekman.com) depicting 150% intensity of an af-
fective or a neutral facial expressionwere presented in a pseudorandom
order interspersed with a fixation cross. Each stimulus (affect and neu-
tral faces; fixation cross) was displayed for 2 s and repeated 20 times.
Participantswere instructed to indicatewhether the facewas emotional
or neutral. Response time and accuracy data were collected.

2.5. Working memory paradigm

The 2-back task was presented as an alternating block paradigm in-
corporating the active (2-back) and baseline (0-back) conditions. Par-
ticipants were instructed to respond to target letters by button press.
In the baseline condition, participants responded to the X letter. In the
2-back condition participants responded when the letter presented
matched the one in the preceding 2 trials. Each stimulus was presented
for 2 s. There were 18 epochs in all, each lasting 30 s. Response time and
accuracy data were collected.

2.6. Image acquisition

Anatomical and functional imaging data were acquired during the
same session using a General Electric Sigma 1.5 Tesla. A high-resolution
T1-weighted structural image was acquired for each participant in the
same session in the axial plane for co-registration (inversion recovery
prepared, spoiled gradient-echo sequence; repetition time = 18 ms,
echo time= 5.1 ms, flip angle = 20°, slice thickness = 1.5 mm, matrix
size = 256 ∗ 192, field of view = 240 ∗ 180 mm, voxel dimensions =
0.9375 ∗ 0.9375 ∗ 1.5 mm).

For the facial affect recognition paradigm, 450 T2-weighted MR im-
ages reporting blood-oxygen-level dependent (BOLD) contrast were ac-
quired (repetition time = 2000 ms, echo time = 40 ms, flip angle =
70°, slice thickness= 7mm,matrix size= 64 ∗ 64, voxel dimensions=
3.75 ∗ 3.75 ∗ 7.7mm). For the 2-backparadigm, a total of 180 T2-weight-
ed MR volumes depicting BOLD contrast were acquired (repetition
time=3000ms, echo time=40ms, flip angle= 90°, slice thickness=
3 mm, matrix size = 64 ∗ 64, voxel dimensions =
3.75 ∗ 3.75 ∗ 3.30 mm).

2.7. Functional neuroimaging data analysis

Data were analysed in SPM8 (www.fil.ion.ucl.ac.uk/spm/software/
spm8/). Data from each paradigm were analysed separately. For both
paradigms, fMRI images were realigned, normalized and smoothed
using an 8-mm full-width-half maximumGaussian kernel. For the facial
affect recognition paradigm, each participant's fMRI data from the three
event-related experiments (fear, anger or sadness) were concatenated
and vectors of onset representing correct responses were convolved
with a canonical hemodynamic response function. The means of the
three sessions as well as the transition at the end of each session were
also modelled and images for the affect N neutral faces contrast were
produced for each participant. For the 2-back paradigm, the smoothed
single-participant images were analysed using the linear convolution
model, with vectors of onset representing the active (2-back) and
baseline (0-back) condition. For each participant, images for the 2-
back N baseline contrast were produced.

2.8. Effect of PGR-BD score on task-related activation

For each task separately, contrast images from each participant were
entered into second-level analyses using one-sample t-tests to identify
clusters of increased task-related activation at p b 0.05 with Family
Wise Error (FWE) correction and cluster size (k) N 20. The BPRS total
score and relatedness were added as covariates. Beta value from the
supra-threshold clusters were then extracted using the eigenvariate
function in SPM8 and entered into a multivariate model to examine
the effect of PGR-BD and its interaction with group (BD patients, unaf-
fected relatives, unrelated healthy controls) in SPSS22, with relatedness
as a covariate.

2.9. Effect of PGR-BD score on group differences on task-related activation

The effect of group (patients, relatives controls) was examined sep-
arately for each paradigm (affect faces N neutral faces; 2-back N base-
line) using a general lineal model in SMP8 with the BPRS total score as
covariate. In each of these analyses, supra-threshold clusters signifying
group differences were identified using FWE correction of p b 0.05,
k N 20. Beta values were extracted from each supra-threshold cluster
using the eigenvariate function in SPM8. To test whether the PGR-BD
score explained additional variance in group differences, Pearson's cor-
relation analyses were used to examine the relationship between mean
signal change in the suprathreshold clusters and PGR-BD score in
SPSS22, with relatedness as a covariate.

3. Results

3.1. Polygenic risk scores

Weused one-way analysis of variance to compare patients, relatives,
controls on PGR-BD scores derived using seven statistical thresholds
(i.e., using SNPswith p-values b 0.001, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). Al-
though the effect of group was significant at all thresholds, the highest
difference (F = 5.94, p = 0.004) was found for the PGR-BD score
using 16,691 SNPs with p b 0.1. This PGR-BD score was higher in pa-
tients than controls (p = 0.002) while in relatives it was numerically
intermediated between that of patients (p = 0.06) and controls (p =
0.09) (Table 1). All subsequent analyses and results refer to this PGR-
BD score. In the patient group, no significant correlations were found
between PGR-BD and symptom severity (based on the total score of
the HDRS, YMRS and BPRS), age of onset, duration of illness, and num-
ber of depressive and manic episodes (p N 0.27).

3.2. Behavioural task performance

Details of task performance are shown in Table 1. Patients' medica-
tion type and dose did not correlate with performance on either task
(all p N 0.40). In the facial affect recognition paradigm, we found a
main effect of group on response time (p = 0.004), with BD patients
being slower than the other two groups (p b 0.007). However, the
PGR-BD score showed a significant negative correlation with response
time to affect compared to neutral faces when controlling for group
(r = −0.31, p = 0.003). In the 2-back task, there was no effect of
group and no significant correlations were found between PGR-BD
score and task performance.

3.3. Effect of PGR-BD on task-related activation

3.3.1. Facial affect recognition
In all participants, activation in the affectN neutral faces contrastwas

found in the visual association and prefrontal cortical areas

http://www.paulekman.com
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/


841D. Dima et al. / NeuroImage: Clinical 12 (2016) 838–844
(Supplemental Table 1; Fig. 1A). There was a main effect of PGR-BD
score (F = 2.03, p = 0.04) but no group by PGR-BD interaction (F =
0.99, p = 0.46). The PGR-BD score influenced mean signal change in
the visual cortex (peak MNI coordinates at: x = −32, y = −88, z =
2; p = 0.006) (Fig. 1B).

3.3.2. Working memory
In all participants, activation in 2-back N baseline contrast was found

in the ventral and dorsal lateral prefrontal cortex and in the parietal cor-
tex (Supplemental Table 1; Fig. 2A). There was a main effect of PGR-BD
score (F = 2.83, p = 0.01) but no group by PGR-BD interaction (F =
1.13, p = 0.33). The PGR-BD score influenced mean signal change in
medial prefrontal cortex (peak MNI coordinates at: x = 22, y = 48,
z = −14; p = 0.004) (Fig. 2B).

3.4. Effect of PGR-BD on group differences on task-related activation

3.4.1. Facial affect recognition
In the contrast affect N neutral faces, an effect of group was noted in

the anterior cingulate cortex (ACC) and right superior frontal gyrus,
where BD patients showed, respectively, increased and decreased
Fig. 1.A) Task related activation during the facial affect recognition task (at p b 0.05 FamilyWise
B) Association between polygenic risk score for bipolar disorder and activation in the visual as
activation compared to their relatives and unrelated healthy individuals
(Supplemental Table 2). No significant correlation between the PGR-BD
score and signal change in the suprathreshold clusters was identified
(p N 0.05).

3.4.2. Working memory
No effect of group was noted in the 2-back N baseline contrast.

4. Discussion

The current study examined the cumulative impact of common risk-
alleles for BD, expressed as a polygenic risk score (PGR-BD), on brain ac-
tivation during facial affect andworkingmemory processing in patients
with BD, unaffected relatives and unrelated controls. As expected, the
PGR-BD score was higher in BD patients. Relatives had intermediate
values that were not statistically different from that of either patients
or controls. In line with previous reports (Whalley et al., 2012; Tesli et
al., 2015), there was a significant effect of PGR-BD on task-related
BOLD signal change independent of group but no significant PGR-BD
score by group interactions. The current findings therefore support the
notion that the polygenic load method is more informative in terms of
Error correction; peakMNI coordinates of suprathreshold clusters in Supplemental Table 1.
sociation cortex.



Fig. 2.A) Task related activation during the 2-back task (at p b 0.05 FamilyWise Error correction; peakMNI coordinates of suprathreshold clusters in Supplemental Table 1. B) Association
between polygenic risk score for bipolar disorder and activation in the ventromedial prefrontal cortex.
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identifying patterns of neural activation that mediate vulnerability to
BD rather than symptom expression. This is consistent with the liabili-
ty-threshold model of BD since a significant number of risk-alleles are
also present in healthy individuals that are unlikely to ever develop
BD. Our results also suggest that the effect of polygenic load for BD is
not localized to a single region or pathway, irrespective of task. Instead
we found that the PGR-BD score influenced task-dependent brain
activation.

During the facial affect recognition task, we found a negative associ-
ation between the PGR-BD score and activation in the visual association
cortex. This region is part of the ventral visual pathway, which together
with the amygdala and ventral prefrontal regions, form the core facial
affect processing network (Dima et al., 2011; Vuilleumier and
Pourtois, 2007). Reduced visual cortical activation and connectivity dur-
ing facial affect processing (Pavuluri et al., 2007; Dima et al., 2016) has
been previously reported in patients with BD and have been consistent-
ly coupled with increased amygdalar and decreased vlPFC activation
(Chen et al., 2011; Delvecchio et al., 2013). Studies of single SNPs on
brain function during emotional processing have found risk-variants
to be related to increased amygdalar activation (Jogia et al., 2011;
Dima et al., 2013; Tesli et al., 2013). However, when considering thou-
sands of risk-conferring alleles, as reflected in the PGR-BD score, we
found that their additive effect on the facial affect network involved pri-
marily the recruitment of visual cortical regions. These findings add to
the growing evidence of visual information processing abnormalities
in patients with BD observed in visual backward masking (McClure,
1999), vernier acuity (Kéri et al., 2005), motion discrimination (Chen
et al., 2006; O'Bryan et al., 2014), context modulation (Yang et al.,
2013) and early visual evoked potentials (Yeap et al., 2009). It is sug-
gested therefore that abnormalities in early sensory processing of affec-
tive visual stimuli may contribute to inadequate emotional regulation
and predispose individuals to development of the BD.

In the 2-back task,we found a positive association between the PGR-
BD score and activation in the ventromedial prefrontal cortex (vmPFC),
a brain region integral to the Default Mode Network (DMN), whose ac-
tivity represents emotional processing during the default state
(Gusnard et al., 2001; Raichle et al., 2001). Typically, vmPFC activation
is reduced during cognitively demanding task consistent with the fact
that such tasks attenuate emotional processing (Gusnard et al., 2001).
Failure to deactivate this region has been repeatedly reported in pa-
tients with BD both during acute episodes (Pomarol-Clotet et al.,
2012; Fernández-Corcuera et al., 2013) and during remission
(Pomarol-Clotet et al., 2015). Similar abnormalities in the deactivation
of the vmPFC have also been reported in unaffected relatives of patients
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(Thermenos et al., 2010; Alonso-Lana et al., 2016) and have been previ-
ously linked to risk-variants in the ANK3 gene (Delvecchio et al., 2015).
Our findings further confirm that abnormalities in suppressing vmPFC
activation are likely to represent a genetically mediated vulnerability
trait for BD that is linked to greater polygenic load for the disorder.

The main limitation of the current study relates to the sample size
which is relatively small for the purposes of genetic studies and could
be a potential reason why we did not find any significant group by
PGR-BD interaction. On the other hand, themain advantage of the poly-
genic risk score method is that it provides a quantitative measure of the
polygenic load of each studyparticipantwithout relying on their genetic
distance from an affected proband. Moreover, the PGR-BD allows
modelling the cumulative effect of multiple risk-variants for BD and is
known to explain a greater proportion of phenotypic variance that sin-
gle riks-alleles (International Schizophrenia Consortium et al., 2009;
Dima and Breen, 2015).

In conclusion, we demonstrated that the polygenic risk architecture
of BD influences the function of regions known to be involved in the
sensory and default state processing of emotional information. Func-
tional abnormalities in the visual cortex and ventromedial prefrontal re-
gions of theDMNemerge as genetically influenced vulnerability traits of
BD. The current results also indicate that the effect of genetic load for BD
on brain function affects task-related recruitment of different brain re-
gions. Future imaging genetics studies with large samples would be
uniquely informative in mapping the spatial distribution of the genetic
risk to BD on brain processes during various cognitive tasks and may
lead to the discovery of biological pathways that may be crucial in me-
diating the link between genetic factors and alterations in brain net-
works in this disorder.
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