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Abstract
Encoding properties of sensory neurons are commonly modeled using linear finite impulse

response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-

temporal receptive field (STRF), often in the framework of the generalized linear model.

Despite widespread use of the FIR STRF, numerous formulations for linear filters are possi-

ble that require many fewer parameters, potentially permitting more efficient and accurate

model estimates. To explore these alternative STRF architectures, we recorded single-unit

neural activity from auditory cortex of awake ferrets during presentation of natural sound sti-

muli. We compared performance of > 1000 linear STRF architectures, evaluating their abil-

ity to predict neural responses to a novel natural stimulus. Many were able to outperform the

FIR filter. Two basic constraints on the architecture lead to the improved performance: (1)

factorization of the STRFmatrix into a small number of spectral and temporal filters and (2)

low-dimensional parameterization of the factorized filters. The best parameterized model

was able to outperform the full FIR filter in both primary and secondary auditory cortex,

despite requiring fewer than 30 parameters, about 10% of the number required by the FIR

filter. After accounting for noise from finite data sampling, these STRFs were able to explain

an average of 40% of A1 response variance. The simpler models permitted more straight-

forward interpretation of sensory tuning properties. They also showed greater benefit from

incorporating nonlinear terms, such as short term plasticity, that provide theoretical

advances over the linear model. Architectures that minimize parameter count while main-

taining maximum predictive power provide insight into the essential degrees of freedom

governing auditory cortical function. They also maximize statistical power available for char-

acterizing additional nonlinear properties that limit current auditory models.

Author Summary

Understanding how the brain solves sensory problems can provide useful insight for the
development of automated systems such as speech recognizers and image classifiers.
Recent developments in nonlinear regression and machine learning have produced power-
ful algorithms for characterizing the input-output relationship of complex systems.
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However, the complexity of sensory neural systems, combined with practical limitations
on experimental data, make it difficult to apply arbitrarily complex analyses to neural data.
In this study we pushed analysis in the opposite direction, toward simpler models. We
asked how simple a model can be while still capturing the essential sensory properties of
neurons in auditory cortex. We found that substantially simpler formulations of the
widely-used spectro-temporal receptive field are able to perform as well as the best current
models. These simpler formulations define new basis sets that can be incorporated into
state-of-the-art machine learning algorithms for a more exhaustive exploration of sensory
processing.

Introduction
Encoding models provide a powerful, objective means to evaluate our understanding of how
sensory neural systems represent complex natural stimuli [1, 2]. An encoding model describes
any time-varying neural signal (single- or multiunit activity [3, 4], local field potential [5],
hemodynamic activity [6], or behavior [7]) as a function of the input stimulus, and it can predict
the neural response to an arbitrary novel stimulus, including complex natural sounds. Predic-
tion accuracy provides a quantitative measure of how well a model describes sensory-evoked
activity; a completely accurate model should predict neural responses to any stimulus without
error. More accurate models of sensory neural activity provide insight into algorithms that can
be integrated into automated systems, such as speech recognizers and image classifiers.

In the auditory system, the linear spectro-temporal receptive field (STRF), implemented as
a finite impulse response (FIR) filter, is the established “standard model” for neural representa-
tion [2, 4, 8–13]. This filter forms the core of generalized linear models (GLMs) applied to the
auditory system [14, 15], and models sharing the same analytical form as the FIR STRF have
been developed for studying visual [16–18], somatosensory [19, 20], and olfactory systems
[21]. Despite its widespread use, careful assessments of how well the linear STRF actually
describes auditory neural activity are limited [22]. A few studies have shown that the linear
STRF can explain only a limited portion of sound-evoked activity in cortex, especially for com-
plex natural stimuli [9, 23]. Others have argued that nonlinear variants of the classical linear
STRF can improve predictive power [3, 24–33]. These nonlinear variants of the STRF show
improved predictive power under specific experimental conditions. However, the more com-
plex models are difficult to estimate reliably when experimental data are limited [1, 18, 22],
especially for natural stimuli [12, 23, 34]. Difficulties associated with fitting and testing have
prevented any single alternative from replacing the linear STRF as a new standard.

The challenges encountered when evaluating alternatives to the FIR STRF highlight the
trade-off between model performance, how accurately it predicts neural activity, and complexity,
the degrees of freedom governing the stimulus-response relationship [35, 36]. In order to
completely describe a system’s function, an encoding model must account for all the degrees of
freedom of the actual system. If the system is not well understood, some degrees of freedom in a
model are likely to be mismatched to the system’s function. Any mismatched complexity does
not provide additional explanatory power, but it does introduce noise into model parameter
estimates. Because this complexity does not improve performance, there should exist a model
with fewer degrees of freedom that can perform as well as the more complex model.

In this study we focus on the problem of complexity. Rather than simply seeking the model
that performs best, we identify the simplest possible model that attains a minimum level of per-
formance. Specifically, we ask, can we produce a low-dimensional approximation of the linear
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STRF that performs as well as the full FIR STRF? The idea of improving STRF performance by
dimensionality reduction has been proposed previously. Isolated studies have shown benefits
of low-rank approximations of the STRF [28, 31, 37, 38]. In the visual system, several studies
have also proposed low-dimensional, system-specific parameterizations [18, 29, 39–43].
Despite the many parameterizations that have been proposed, however, direct comparisons
between them have been limited, especially for natural stimuli. Thus it remains difficult to
identify the important features of these different models.

We approached the complexity problem directly by systematic comparison of a large set of
alternative parameterizations. We generated a collection of models that instantiate a variety of
low-dimensional approximations to the FIR STRF. We then compared their performance on
single-unit data collected from primary auditory cortex during presentation of natural vocali-
zations. By exploring the performance of this family of models, we were able to identify the
minimal essential components required by linear STRFs that best described the data and to
study the relationship between the amount of data available and optimal model complexity.

We found that the standard FIR STRF is suboptimal according to the complexity criterion.
Instead, a much simpler model, which defines the STRF as a product of three Gaussian-tuned
spectral filters and biphasic temporal filters, outperformed the FIR STRF, while requiring only
about 10% of the parameters (29 vs. 276 free parameters). These results indicate that, for the
average A1 neuron, a model with about 30 free parameters is able to capture its linear filter
properties. The total degrees of freedom of a comprehensive nonlinear model is likely to be
higher, but our minimally complex linear STRF provides a starting point for developing better-
performing nonlinear models.

Results

Predictive model framework
We recorded single-unit neural activity from the auditory cortex (A1) of awake, passively lis-
tening ferrets during presentation of natural ferret vocalizations. The same set of 42 3-second
vocalizations was presented during recordings from all neurons (N = 176). We then fit a large
number of encoding models with different architectures to data from each neuron and com-
pared their performance. Data for each neuron were grouped into an estimation data set (40
vocalizations), which was used for fitting, and a validation data set (2 vocalizations), which was
used only to test how well each fit predicted responses to a novel stimulus (Fig 1A). Our pri-
mary performance metric was prediction correlation, i.e., the correlation coefficient (Pearson’s
R) between the actual peri-stimulus time histogram (PSTH), r(t), and the PSTH predicted by
the model, p(t) (Fig 1C). Other commonly used performance metrics showed the same pattern
of results (e.g., log-likelihood and mutual information, see below).

Models were structured as a sequence of signal transformations, or functionalmodules, cor-
responding to the block diagram in Fig 1B,

x0ðtÞ!f1ð�Þ x1ðtÞ!f2ð�Þ � � � !fnð�Þ yðtÞ ð1Þ

where the output, xi(t), of each module, fi(�), provides the input into the subsequent module.
The final module produced the predicted time-varying spike rate, y(t). In most models tested,
this sequence consisted of three modules, a cochlear filterbank [26, 44], followed by a linear
spectro-temporal filter [8, 9, 11, 12], and finally an output nonlinearity to account for spike
generation thresholds [13, 17].

Alternative model architectures were compared by replacing one or more modules in Eq 1,
while keeping the others the same. Thus the impact of the choice for each module on model
performance could be tested individually (see Fig 2C). Using this empirical approach, we
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selected optimal modules for the cochlear filterbank (Eqs 11–13) and output nonlinearity (Eq
14) for the same linear filter module (FIR filter, see below, Eq 3). These modules were then held
constant while we compared performance for the different formulations of the linear filter
module that follow.

Models were fit using an iterated coordinate descent (a.k.a. boosting) algorithm [34]. On
each iteration, the algorithm cycled through each module sequentially and performed a few
steps of coordinate descent within that module before moving on to the next one (see Meth-
ods). We have previously demonstrated that this coordinate descent algorithm is able to accu-
rately recover linear STRFs in simulation [30, 34].

Because datasets are finite, the performance of any model will be limited by sampling noise.
This noise impacts the analysis at two stages: producing error in the estimation of model
parameters and in validation of prediction accuracy [18, 22, 45]. Accounting for the first prob-
lem is a nuanced issue: more complex models that require a large number of parameters are
more susceptible to noise than simpler models. We address the issue of finite estimation data

Fig 1. Model estimation and validation procedures. A. Data for each neuron were split into an estimation data set, used to fit model parameters, and a
validation data set, used only for testing prediction accuracy. B.Models were defined by a sequence of functions mapping stimulus to predicted response.
This study focused on alternative parameterizations of the spectro-temporal filter module, and other modules were kept fixed for most comparisons. C.
Spectrogram of example 3-second ferret vocalization used for testing prediction accuracy (top). Raster response of one neuron to 20 repetitions (middle) and
PSTH binned at 100 Hz (bottom, blue). Predicted PSTH response is overlaid in red. D. The STRF is typically implemented as a multichannel finite impulse
response (FIR) filter, requiring one parameter for each frequency and time lag. In this heat map, red areas indicate stimulus frequencies and time lags
associated with increased neuronal spike rate and blue areas with decreased rate. E. Factorized STRF approximation is generated by the outer product of
spectral- and temporal filter matrices, reducing the total parameter count. F. Parameterized models generate factorized matrices from parametric tuning
curves, further reducing parameter count. Example Gaussian spectral and P3Z1 temporal parameterizations are shown. Factorized and parameterized
models also permit the insertion of nonlinear modules, such as a filter mimicking short-term plasticity (STP), after projection onto the spectral channels.

doi:10.1371/journal.pcbi.1004628.g001
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in a later section (see Parameterized models perform similarly to FIR models in the limit of
infinite data, below). To account for the latter problem, measures of prediction correlation
were normalized by a factor reflecting response reliability in the validation stimulus (Eq 23,
[45]). This factor was fixed for an individual neuron’s validation data. Thus it does not affect
the performance of one model relative to another. Numerically, this correction increased pre-
diction correlations in A1 by a mean of 20% (ranging from 3% to 39% for individual neurons).

Pareto front describes a trade-off between model performance and
complexity
Model complexity is often factored into cost functions for model fitting, in order to positively
weigh simpler models [35, 46]. Our goal was to study in depth the relationship between model
complexity and performance. Thus, rather than combining them into a single cost function, we
studied the trade-off between these criteria in detail, exploring the family of solutions that are
optimal with respect to both. This optimal set of solutions is known as the Pareto front [36,
47]. Formally, all items belonging to this front are non-dominated in the Pareto sense [47]
which means that for all pairs of models on the front, one is less complex while the other fits
more closely to the data. All models below the Pareto front are non-optimal: there is at least
one model on the front that is both less complex and more accurate.

We generated Pareto plots for the 1061 different linear STRF architectures tested, compar-
ing model parameter count against average prediction correlation for estimation data (Fig 2A)
and validation data (Fig 2B). Most models lie under the Pareto front (red line) and are subopti-
mal relative to models that are less complex, better performing, or both. More complex models
tend to perform better for estimation data, but they do not necessarily predict novel validation
data more accurately. The differences between estimation and validation plots illustrate the

Fig 2. Model complexity vs. performance. Pareto plots compare model parameter count (horizontal axis) versus prediction correlation (vertical axis) for
each linear STRF architecture, averaged overN = 176 A1 neurons. The Pareto front (red line) indicates the best prediction correlation for models with
parameter count at or below the current abscissa. Dark gray points indicate models at the focus of this study, varying in only in the linear filter module and
sharing the same input compression, spike nonlinearity, and fit algorithm. Black, purple, and orange points/arrows indicate the FIR, factorized, and
parameterized models, respectively, explored in detail in later sections.A. For estimation data, prediction correlation tends to increase for more complex
models.B. For validation data, performance reaches its maximum at just 29 parameters, suggesting that the increase in the estimation data for higher
parameter counts reflects overfitting to noise by the more complex models.C. Summary of model architecture variants. Each bar shows the number of
architectures evaluated using modules and fitting algorithms that differed from the core set of modules and procedures detailed in subsequent figures. For
example, “Filterbank+output NL” indicates the number of models tested with a filterbank other than the second-order gammatone (Eq 11) and output
nonlinearity other than the double exponential sigmoid (Eq 14).

doi:10.1371/journal.pcbi.1004628.g002
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problem of overfitting when available estimation data are finite. Among the more complex
models, the FIR STRF falls below the Pareto front for the validation data (black point, Fig 2B).
Instead, best performance in the current dataset is achieved by a model requiring just 29
parameters (orange point).

In the following sections, we discuss in detail the subset of 260 architectures in which only
the linear filtering module was varied, while all other modules (cochlear filterbank, input non-
linearity, output nonlinearity) and the fitting algorithm were held constant (dark gray points,
Fig 2A and 2B). Our focus is on identifying model architectures that fall on or near the Pareto
front, making them optimal for a given level of complexity. The remaining models were gener-
ated by manipulating one or more modules other than the linear filter (Fig 2C). Varying the
other modules had less dramatic effects on model complexity and performance, but they pro-
vide a dense sampling of the complexity-performance space. A complete list of architectures
evaluated is included in the supplementary materials (S1 Table).

STRF parameterization improves model predictive power
Finite impulse response (FIR) STRF. Classically, the STRF has been implemented as a

multi-channel FIR filter (Fig 1D, [8]). At its core, the FIR STRF is simply a matrix of weights
associated with different sound frequencies and time lags that predicts the time-varying neural
firing rate by convolution with the stimulus spectrogram. The STRF has proven to be a useful
tool for characterizing the feature selectivity of auditory neurons [4, 8, 10] and how that selec-
tivity changes across the auditory hierarchy [48]. In addition, the FIR STRF has been used as a
tool to study changes in sensory representation reflecting the modulatory effects of learning
and attention [49, 50]. For a stimulus spectrogram, x(t) = [x1(t) x2(t) � � � xc(t)], with C channels
binned each τms, the FIR filter,H, with a maximum memory of U time bins is a C × Umatrix

H ¼

h11 h12 � � � h1U

h21 h22

..

. . .
.

hC1 hCU

2
666666664

3
777777775

ð2Þ

The time-varying output yFIR of the filter is then the convolution with the stimulus in time and
sum across frequencies,

yFIRðtÞ ¼ bþ
XU
i¼1

XC
f¼1

hfixf t � i� 1ð Þtð Þ ð3Þ

Positive values of coefficients hfi indicate components of the stimulus that correlate with
increased output, and negative values with decreased output. The constant term, b, accounts
for the possibility of nonzero output even when the input is zero. Unless otherwise specified, in
the following results, x is produced by passing the raw sound waveform through a cochlear fil-
terbank with C = 18 channels, logarithmically spaced over 200–20,000 Hz [44]. The filterbank
output is log-compressed (Eq 13) before input to the linear spectro-temporal filter. The dura-
tion of the filter is 150 ms (i.e., U = 15 for τ = 10 ms temporal bins), requiring C × U = 270
parameters. From the linear filter, the signal finally passes through a static output nonlinearity
that accounts for spike threshold and saturation (Eq 14). An additional 6 parameters for the
baseline response, input compression and output nonlinearity make a total of 276 for the entire
FIR STRF. We explored the impact of varying C (see below) and U (S1 Table), and found no
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improvement for smaller or larger values of either parameter. Moreover, changing spectral or
temporal resolution had no impact on the relative performance of the different model architec-
tures compared below.

Fits using the full FIR implementation of the STRF typically show localized spectro-tempo-
ral regions of large excitatory and/or inhibitory filter weights, indicating a best frequency (BF)
and response latency for each neuron (Fig 3, left panels). Although we did not explicitly com-
pare tuning for different stimuli in the current study, the BF measured from the STRF is typi-
cally similar to the BF measured from other stimuli, such as pure tones [5] or broadband noise
[9]. Additional features of the STRF, away from BF and peak latency, often do depend on the
stimulus used for STRF estimation, and thus it is more challenging to determine if these fea-
tures reflect off-peak tuning or estimation noise.

Factorization of the FIR matrix. The first strategy we explored for reducing the number
of parameters required for the linear STRF was a factorized model (Fig 1E, [37, 38]). This
model follows the same sequence of modules as the FIR STRF, but the linear filter,H, is
approximated as the product of a C × D spectral weighting matrix,Hs, and a D × U temporal
filtering matrix,Ht,

H ¼ HsHt ð4Þ

Amodel with dimensionality D = 1 is often referred to as a space-time separable model, a com-
mon strategy for dimensionality reduction [20, 28, 51]. Varying D impacts the complexity of
the spectro-temporal filter [37, 38], and we explored the effect of different values of D on
model performance. Factorization is closely related to reduced-rank approximations of the
STRF, except that the factorized dimensions are not required to be orthogonal. For the linear
model, this distinction is trivial and has no effect on theoretical performance. However, when

Fig 3. Example STRF fits for different model architectures. A. STRF weight matrices (H) for the FIR,
factorized, and parameterized models fit to the same neuron. Prediction correlation (Pearson’s R) is indicated
in the corner of each STRF. For factorized and parameterized models, the STRF is computed from the outer
product of the spectral and temporal filters that specify those models,H = Hs Ht. Dimensionality (D) of the
spectral and temporal filters constrains frequency-time separability of the STRF, but it does not restrict tuning
bandwidth (i.e., spectral tuning can span more than D channels, as in this example). The factorized and
parameterized models exhibit less spurious noise, are easier to interpret, and show improved prediction
accuracy over the full FIR. B. Example STRFs for a second neuron exhibit more complex tuning and basis
functions in the parameterized model can account for tuning to distinct spectro-temporal features.

doi:10.1371/journal.pcbi.1004628.g003
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nonlinear terms are introduced between the spectral and temporal filtering stages, non-orthog-
onal spectral dimensions allow for additional model functionality (see STP STRF, below).

The factorizedH can be interpreted as breaking down the linear filter module into a
sequence of two modules (Eq 1, Fig 1E). First, a set of spectral filters, hsj (rows ofHs), maps the
C-dimensional input spectrogram into a D-dimensional subspace, s(t) = [s1(t) s2(t) � � � sD(t)],

sjðtÞ ¼
XC
f¼1

hsj
ðf Þxf ðtÞ ð5Þ

Second, the signal in each dimension of this new spectral subspace is convolved with a tempo-
ral filter, htj (columns of Ht), before summing across spectral channels,

yFACðtÞ ¼ bþ
XU
i¼1

XD
j¼1

htj
ðiÞsj t � i� 1ð Þtð Þ ð6Þ

Factorization reduces the number of parameters required to defineH to D × (C + U), which is
usually much less than C × U. Although small values of D constrain the spectro-temporal com-
plexity of the STRF, they do not limit spectral tuning bandwidth, as a single spectral channel
can have arbitrarily broad tuning bandwidth. Similarly, the factorized temporal filter can inte-
grate across many time lags.

We compared performance of the factorized model for different values ofD. The same fitting
algorithm was used as for the FIR STRF, but iterating separately on the spectral- and temporal fil-
ter modules (see Methods). Across the entire vocalization dataset, factorization withD = 2 spec-
tral channels produced the highest mean prediction correlation and performed significantly
better than the FIR STRF (Fig 4A and 4B, mean R = 0.464 vs. 0.406, p< 0.0001, sign test).
Depending on the convergence of synaptic inputs, there is a theoretically optimal number of
dimensionsD that describe spectro-temporal selectivity [37]. Beyond that number, STRF perfor-
mance should asymptote to the performance of the full FIR STRF. In practice, however, factorized
models for all values ofD tested surpassed the FIR STRF performance, indicating that the reduced
number of parameters also improves model performance by reducing estimation noise (Fig 4C).

Fig 4. Factorized model performance. A. Scatter plot of D = 2 factorized- versus FIR model prediction correlation per neuron shows that the factorized
model predicts more accurately for most neurons.B. Histogram of difference in prediction correlationD = 2 factorized and FIR models for each neuron. Error
bar at top shows 1 SEM on the difference between model predictions, illustrating the procedure for measuring error bars in the comparisons of average model
performance that follow (see Methods). C. Pareto plot compares model complexity (parameter count) versus mean prediction correlation for the FIR model
and factorized models, plotted as in Fig 2 (channel count, D = 1. . .4). Error bars calculated as in B, relative to the FIR STRF. Despite having fewer
parameters, the factorized models perform consistently better than the FIR (p < 0.001, sign test, N = 176). The D = 2 factorized model performs best, with
about a 15% average increase in correlation over the FIR STRF, despite requiring about one-quarter of the parameters.

doi:10.1371/journal.pcbi.1004628.g004
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Factorized models motivate parameterization for further dimensionality reduction. To
explore models with further reduced complexity, we considered ways to approximate spectral
and temporal tuning with even fewer parameters than the factorized model. In the factorized
model, the columns ofHs and the rows ofHt describe selectivity in the spectral and temporal
domains, respectively. These spectral and temporal tuning functions are nonparametric, in the
sense that they are not constrained to have a specific functional form. We identified candidate
parameterizations of these curves by measuring their average shape across the neural popula-
tion for the D = 2 factorized model.

When spectral filters were aligned at best frequency (BF, Fig 5A), sensitivity in neighboring
frequency bands covaried with the response at BF, producing approximately Gaussian tuning.
Weights for off-BF bins were often negative, suggesting that sideband inhibition could be useful
to include in a parameterized model. After subtracting the mean, we also performed principal
components analysis to identify any additional patterns in the distribution ofHs fits, but the
resulting principal components were quite small (29%, 13% of the variance) and did not have
any clear structure. Based on the average tuning curve, we hypothesized thatHs might be well
parameterized by one of two functions (Fig 5B): a Gaussian function, parameterized by a mean
frequency and tuning bandwidth, or a Morlet wavelet, which also permits inhibitory sidebands.

Temporal filters were aligned at their peak latency before averaging (Fig 5C). They tended to
have a longer tail following the peak latency, compared to a relatively rapid rise before the peak.
Thus they were not well characterized by a Gaussian. The first two principal components ofHt

were again small (31%, 14% of variance) but resembled high-pass filters (i.e., temporal differen-
tiators), consistent with sensitivity to changes in stimulus intensity within a spectral frequency
band. We therefore hypothesized thatHtmight be well-parameterized by either a difference of
exponentials, describing a fast rise followed by a slow decay [29], or a more general linear filter
that could generate peaked impulse responses yet could also be weakly high pass (Fig 5D).

Gaussian spectral parameterization. We parameterized the spectral channel matrixHs

using a single Gaussian function per channel (Fig 5B). Thus the weights for column, j, and fre-
quency bin, i, are specified by two parameters, center frequency f0 and bandwidth σ,

hsj
ðiÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �ðfi � f0Þ2
2s2

� �
ð7Þ

For D spectral channels, the Gaussian spectral filter requires only 2D parameters, compared to

Fig 5. Parameterization of spectral and temporal tuning. A. Values of factorized spectral weighting matrixHs, centered about their peak and normalized
by variance across all weights. B. Based on the Gaussian-like mean weights and presence of negative values in the sidebands, we parameterized spectral
filters using either a Gaussian function or Morlet wavelet. C. Values of the temporal weighting matrixHt binned at 100 Hz and aligned at peak latency. The -40
ms bin was cropped because very few neurons had peak latency longer than 40 ms. The asymmetric rapid onset and slower fall-off are not well-described by
a Gaussian. D. Temporal filters were parameterized using either a difference of exponentials or a pole-zero filter.

doi:10.1371/journal.pcbi.1004628.g005
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C × D parameters for the factorized model. When we replaced the factorized spectral filter with
the Gaussian parameterization (while preserving the factorized temporal filter), model perfor-
mance again improved, despite the further decrease in parameter count (Fig 6A). The D = 3
Gaussian spectral model showed the highest average correlation (mean R = 0.476), significantly
surpassing the performance of the FIR STRF by about 10% (p< 0.0001) and the best factorized
model by about 3% (p< 0.01, sign test).

Morlet spectral parameterization. The Morlet wavelet provided an alternative spectral
parameterization similar to the Gaussian (Fig 5B), which could also account for sideband inhi-
bition. The Morlet wavelet determines coefficients according to three parameters, center fre-
quency, f0, bandwidth, σ, and sideband amplitude, z,

hsj
ðiÞ ¼ < exp

� fi � f0ð Þ2
s2

� iz fi � f0ð Þ
� �� �

ð8Þ

where <(�) indicates taking the real component. Thus 3D parameters are required for the D
spectral filters. The best Morlet parameterization (D = 3) performed significantly better than
the factorized model (Fig 6A, mean R = 0.479, p< 0.001, sign test). However, its performance
was not significantly different from the Gaussian parameterization. Because increasing the
parameter count to account for spectral sidebands did not improve predictive power, we subse-
quently focused on the Gaussian spectral parameterization.

Difference of exponentials temporal parameterization. The difference of exponentials
temporal filter produces a family of curves that resemble the mean ofHt (Fig 5D),

htj
ðiÞ ¼ A1 exp � i� y1

t1

� �
� A2 exp � i� y2

t2

� �
ð9Þ

where the output exp() is set to zero for i< θn. This filter requires six parameters (A1, τ1, θ1, A2,
τ2, θ2) per spectral channel and thus a total of 6D parameters, compared to D × U for the fac-
torized temporal filter. The D = 3 difference of exponentials parameterization performed nearly

Fig 6. Parameterized model performance. A. Average performance of spectrally parameterized (Gaussian and Morlet) models (Ws), using a factorized
temporal filter (Wt) and plotted as in Fig 4C. For a given spectral channel count, D, the improvement over the factorized model is significant for both
parameterizations (p < 0.01, sign test), despite requiring fewer parameters. B. Average performance of temporally parameterized models, using Gaussian
spectral parameterization and plotted as in A. The P3Z1 pole-zero parameterization performed significantly better than the difference of exponentials
(p < 0.01, sign test), although neither showed a significant difference from the factorized temporal filter. C. Summary of performance for the factorized model
and the best parameterized model (GaussianWs, P3Z1Wt) for each channel count. Performance of the parameterized model is significantly better than the
factorized (p < 0.01, sign test) and the FIR model (p < 0.001).

doi:10.1371/journal.pcbi.1004628.g006
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as well as the Gaussian spectral model (mean R = 0.467, p> 0.05, sign test), indicating that this
filter captures many of the features of the factorized temporal filter (Fig 6B).

Pole-zero temporal parameterization. Many physical systems are well-described by lin-
ear ordinary differential equations, or infinite impulse response (IIR) filters. This parameteriza-
tion can be defined in the frequency domain using pole-zero (PZ) notation. We compared
performance of parameterizations with variable numbers of poles and zeros (Fig 7A). The
number of poles determines the shape of the filter, and the number of zeros determines the
number of zero crossings. We also included parameters for filter gain and latency. Thus, a
3-pole, 1-zero filter (P3Z1) is defined in the frequency domain (s),

GP3Z1ðsÞ ¼ A exp ð�l � sÞ s� z1
ðsþ p3Þðsþ p2Þðsþ p3Þ ð10Þ

where A is magnitude, l is delay, p1, p2, p3 are the poles, and z1 is the zero (6 parameters per
spectral channel). PZ filters provide a more general formulation of temporal dynamics than the
difference of exponentials. In fact, it is possible to construct a D = 2, P1Z0 model that is exactly
equivalent to a D = 1 difference of exponentials model. Here we constrained poles and zeros to
be real, which restricted the impulse response to being a sum of decaying exponentials. Includ-
ing complex poles and zeros doubles the number of parameters, and the neural data did not
show the oscillatory responses that this would characterize.

We tested all possible combinations of 1 to 5 poles and zeros over D = 1 − 5 spectral chan-
nels to determine possible candidate kernels (Fig 7B). The best model used P3Z1 parameteriza-
tion (D = 3, mean R = 0.485, Fig 6B). This model performed as well as the D = 3 Gaussian
model (p> 0.05, sign test) and significantly better than the difference of exponentials parame-
terization (p< 0.01, sign test). The simplest one- or two-pole filters could not fully describe
temporal encoding properties. Instead, a more complex temporal filter was required, and a
combination of Gaussian spectral and P3Z1 temporal filter for D = 3 spectral channels gave the
best performance among parameterizations of the linear STRF (Fig 6C).

Fig 7. Pole-zero IIR filters. A. Examples of parameterized temporal filters with varying numbers of poles (P)
and zeros (Z). Curve at top shows a very simple kernel with only one pole and no zeros (P1Z0). The curves
below showmore complex kernels requiring more parameters.B. Pareto plot comparing performance of the
different pole-zero parameterizations, each for D = 1. . .5 spectral channels (Gaussian parameterization),
plotted as in Fig 4C. The simplest temporal kernel requires more spectral channels to approach the
performance of more complex kernels. The D = 3, P3Z1 kernel showed the trend for best performance
overall.

doi:10.1371/journal.pcbi.1004628.g007
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Parameterized models perform similarly to FIR models in the limit of
infinite data
Parameterized STRFs are approximations of the FIR STRF. Thus, in theory, the FIR STRF
should perform as well as or better than any parameterized STRF. In practice, however, data
available for estimation are finite, and simpler models can be estimated more accurately than
the full FIR STRF. Thus simpler models are able to perform better than the FIR STRF in our
analysis (Fig 6). The results so far demonstrate a clear practical advantage of the factorized and
parameterized models, but they do not answer the question of whether any simpler model fully
accounts for the linear STRF. Such a question can only be answered by comparing the relative
performance of these models in the limit of infinite estimation data [18, 22].

Extrapolating performance to infinite estimation data is challenging because there is no
widely agreed upon model of variability in sensory-evoked neural activity. We made a simplify-
ing assumption that prediction error from estimation noise is additive and inversely propor-
tional to the square root of the number of samples used to estimate the STRF, T (see Methods,
Eq 31, [18, 45]). When these assumptions hold, then the effect of noise on model variance
explained (square of prediction correlation, R2) also decreases proportionally to T. We varied T
by subsampling the available estimation data (10%–75%) and measured the average RT across
neurons for models fit with the different data subsets. We then fit the free parameters in Eq 31
to determine the theoretical limit on performance for each model, Rinf.

We measured the asymptotic performance limit of four model architectures, ranging from
high to low complexity: the full FIR model (FIR, 276 parameters), D = 3 factorized model (Fac-
torized x3, 109 parameters), D = 3 Gaussian spectral/P3Z1 temporal parameterization
(P3Z1x3, 29 parameters), and D = 1 Gaussian spectral/P3Z1 temporal parameterization
(P3Z1x1, 13 parameters). We removed very noisy data and focused on the subset of 124 neu-
rons that produced reliable auditory-evoked responses (SNR> 0.005, see Methods, Eq 21).

For all models, performance improved as more estimation data became available (Fig 8A). As
expected, the lower-dimensional models performed better for small data sets and neared asymp-
totic performance sooner than higher-dimensional models. Consistent with this observation,
performance of the FIR STRF showed the greatest improvement in the asymptote (Rinf = 0.63,
Fig 8B). However, performance of the Factorized x3 (Rinf = 0.63) and P3Z1x3 models (Rinf =
0.62) was not significantly different from the FIR STRF (jackknifed t-test). Thus within the pre-
cision we could achieve with this analysis, both models captured the essential features of the FIR
STRF. Error bars on asymptotic performance are relatively large, especially for the FIR STRF, so
a strong conclusion about relative performance of these models is difficult. However, asymptotic
performance of the P3Z1x1 model was significantly worse than the other models (Rinf = 0.56,
p< 0.001), indicating a failure of this very simple model to capture the full linear model.

For comparison with a previous analysis [22], we also measured asymptotic performance
for the FIR STRF with no output nonlinearity. This model performed better than the standard
FIR STRF for smaller estimation sets, presumably due to its reduced complexity, but its advan-
tage diminished for larger datasets. Asymptotic performance was slightly lower than the stan-
dard FIR STRF that included an output nonlinearity (Rinf = 0.61, p< 0.05, Fig 8B).

Additional benefits of STRF parameterization
In addition to outperforming the FIR model in finite data conditions, reduced-dimensionality
factorized and parameterized STRFs demonstrated several other benefits over the FIR STRF,
which we detail below. For brevity in this section, factorized model refers specifically to the
D = 2 factorized model, and parameterized model refers to the D = 3 Gaussian spectral parame-
terization with P3Z1 temporal parameterization. These models were chosen because they
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represent the best-performing models, respectively, among the factorized and parameterized
models tested (Fig 6C).

Parameterization permits higher spectral and temporal resolution STRFs. The
dimensionality of the smooth, continuous parameterized basis functions is independent of
spectral and temporal sampling resolution, similar to spline basis functions used in other
encoding models [29, 33]. Thus, unlike the FIR models, these models do not require more
parameters as spectral or temporal granularity is increased. To test the impact of increasing res-
olution, we compared performance of the FIR, factorized and parameterized models for
increasing spectral (24 or 36 channels instead of 18) and temporal resolution (200- or 400 Hz
sampling instead of 100 Hz). At higher spectral resolution, performance of the FIR models
decreased, reflecting greater estimation noise from the larger number of parameters (p< 0.001,
sign test, Fig 9A). At the same time, performance of the parameterized models remained stable
with higher spectral resolution.

Increasing temporal resolution decreased performance of all models, as expected for the
greater temporal bandwidth of the predicted PSTH [45] and the tuning of some A1 neurons
for fast temporal modulations [27]. The general decrease in performance may also reflect fast
temporal nonlinearities such as the spike refractory period that are incorporated into some
implementations of the GLM [14, 31]. Although performance decreased for all models, the rel-
ative decrease for the FIR model was greater than for the others (Fig 9B). Thus the parameter-
ized models are consistently less sensitive to effects of increased temporal resolution.

Parameterization improves performance of models with additional nonlinear terms.
Parameterization need not be limited to the linear STRF. By minimizing the number of param-
eters required to account for linear response properties, this strategy preserves statistical power
for incorporating additional nonlinear terms. To test the feasibility of adding nonlinear terms
to the parameterized model, we incorporated a module that mimicked the effects of short-term
synaptic plasticity on each spectral channel prior to temporal filtering (STP, Fig 1F, [52]). This

Fig 8. Theoretical performance in the limit of infinite estimation data. A. Curves compare average performance of models of varying complexity as a
function of the fraction of estimation data used for fitting (N = 124 neurons with response SNR > 0.005). Error bars indicate the standard error on the mean
difference between each model’s performance and average performance of all models estimated using 100% of available data. If only 10% of estimation data
are used (12 sec of stimulation), the best-predicting model is the D = 1 P2Z1 model (peach), requiring only 13 parameters. For this estimation set, the FIR
STRF (black, 276 parameters) performs substantially worse. As the quantity of available data increases, more complex models perform better, although the
FIR model still lags behind the factorized (purple) and P3Z1 parameterized (orange) models of intermediate complexity. Fits to theses curves are plotted with
dashed lines (Eq 31), and asymptotic performance is indicated at far right. Note that prediction correlation plotted for 100% of estimation data is higher than in
Fig 6 because only high-SNR neurons are included here.B. Average asymptotic performance of each model in the limit of infinite estimation data. Actual
performance for each model with 100% of estimation data is plotted with the thinner bars. The FIR STRF with no spike nonlinearity is also included (gray) for
comparison with previous asymptotic analysis [22].

doi:10.1371/journal.pcbi.1004628.g008
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architecture permits distinct, nonlinear adaptation for each spectral channel and may explain
some properties of stimulus-specific adaptation [53]. Incorporating nonlinear STP into encod-
ing models improves prediction accuracy for responses to narrowband noise stimuli [30], and
we expected that it would also improve model performance for the more spectrally complex
vocalizations.

In our general model framework, STP is incorporated by inserting an extra module into the
sequence of transformations that maps input stimulus to output spike rate (Eq 1). The STP
module mimicked the effects of short-term depression and/or facilitation prior to the linear
temporal filter (Fig 1F). Each STP synapse was specified by three free parameters: baseline pre-
synaptic activity level (in the absence of an auditory stimulus), probability of vesicle release and
rate of vesicle recovery (Eq 17). We first tested the effect of incorporating STP into the FIR
STRF. For the C = 18 channel FIR, STP required 54 additional parameters, but it did not signif-
icantly improve performance (Fig 9C), presumably because the many additional parameters
lead to overfitting. However, adding STP to the factorized and parameterized models did sig-
nificantly improve predictions (Fig 9C, parameterized model: R = 0.510 vs. 0.485, p< 0.001,
sign test). These results suggest that the STP module introduced useful new degrees of freedom,
reflecting properties of A1 neurons that are not captured by the linear model.

Parameterization tolerates unreliable sensory responses. In auditory cortex, the reliabil-
ity of auditory-evoked responses varies from neuron to neuron [22, 45]. Thus for a fixed data
set size, such as the vocalization data in the current study, the amount of information available
for measuring sensory coding properties is also variable across neurons. To account for differ-
ences in response reliability, we computed a signal-to-noise ratio for each neuron, based on the
variability of single-trial responses to repetitions of the same vocalization (SNR, Eq 21). The
SNR provided a simple measure of the fraction of single-trial neural activity that could be
accounted for by the stimulus.

Neurons with low SNR were more susceptible to fitting error and produced STRFs with
lower predictive power (Fig 10A). We measured prediction correlation (validation data) as a
function of SNR (estimation data) and found a positive correlation (Fig 10B). We expected
noise from overfitting to be particularly severe for models such as the FIR STRF that require a
large number of parameters. To test this prediction, we sorted neural data according to SNR
and compared performance of the FIR, factorized and parameterized models in the top and

Fig 9. Effects of spectral and temporal resolution onmodel performance. A. As the number of cochlear filterbank channels increases from C = 18 to 24
or 36, there is no significant change in performance of the parameterized model. However, performance of the factorized and FIR models is significantly
decreased (sign test). B. As temporal resolution is increased from 100 to 200 or 400 Hz, the average prediction correlation of all models decreases. However,
FIR model performance degrades more than the factorized and parameterized models. Numbers in parentheses denote the number of temporal bins U used.
C. Average performance of models with and without nonlinear short-term plasticity (STP) incorporated into the STRF. STP does not significantly improve
performance of the FIR STRF, but it does improve performance of the factorized and parameterized models.

doi:10.1371/journal.pcbi.1004628.g009
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bottom quintiles (Fig 10C). In the top quintile, performance of all three models was nearly the
same, and the FIR model performed only slightly worse than the others (p< 0.05, sign test). In
the bottom quintile, all models performed worse, but the average prediction correlation for the
parameterized model was about 50% greater than the FIR model (p< 0.0001, sign test). Thus
when SNR is low, the FIR model is particularly susceptible to overfitting compared to parame-
terized models.

Broader applicability
Results are not specific only to a brain region or stimulus. Because of the large number

of model comparisons in the current study, our best parameterization could be overly specific
to the A1 vocalization dataset (Fig 11A). The question remains whether the performance of the
factorized and/or parameterized models generalizes to different brain areas and different sti-
muli. To test for generalization across brain areas, we compared model performance on data
collected with the same vocalization stimuli from a secondary (belt) auditory cortical area (dor-
sal posterior ectosylvian gyrus, dPEG [54, 55]). Overall, prediction correlation was lower than
for A1, as expected for a more central brain area (Fig 11B). The dimensionality of the best-per-
forming models also differed slightly. However, the factorized and parameterized models again
showed the same pattern of improved performance over the FIR STRF.

To test for generalization across stimuli, we compared model performance for a dataset col-
lected from a different population of A1 neurons during presentation of continuous human
speech (data reanalyzed from [9]) and during presentation 1/f spectro-temporal noise [56]. For
the noise stimulus, first order spectral and temporal modulation power spectra were matched
to natural stimuli, but higher order correlations were not. As in the case of vocalizations, we
observed a pattern of greater prediction accuracy by the parameterized and factorized STRFs in
both datasets (Fig 11C and 11D). In the case of 1/f noise, relative differences in model perfor-
mance were not as large as for the natural stimuli, possibly because the noise did not contain as
many sharp onsets as vocalizations. Despite the quantitative differences, these results confirm

Fig 10. Model performance versus neuronal signal-to-noise. A. Example data for two neurons with high (left) or low (right) response SNR. A validation
stimulus (spectrogram, top) was presented over 20 repetitions (raster response, middle). Both the FIR and parameterized STRFs were able to predict activity
of the high-SNR neuron more accurately than the low-SNR (predicted versus actual PSTHs, bottom). However, the relative improvement for the
parameterized STRF was greater for the low-SNR neuron (prediction correlations shown, R). B. Scatter plot compares signal-to-noise ratio (SNR, estimation
data) against prediction correlation (validation data) by the parameterized model for each A1 neuron. Orange line plots the average for data grouped in
quintiles according to SNR, showing a correlation (R = 0.45). C. Average prediction correlation for the FIR, factorized, and parameterized models separately
for top and bottom quintile of neurons, ranked by response SNR. The factorized and parameterized models show greater improvement over the FIR model for
the low-SNR neurons than the high-SNR neurons.

doi:10.1371/journal.pcbi.1004628.g010

Essential Complexity of Auditory Receptive Fields

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004628 December 18, 2015 15 / 33



that the improved performance of the low-dimensional models is a general property across
auditory cortical areas and across stimulus conditions.

Parameterized models provide more direct measures of neural circuit properties. Any
encoding model captures information about function of the underlying biological circuit, but
extracting this information is more straightforward for parameterized models. Parameterized
model fits provide direct measures of sensory tuning such as response latency (l in Eq 10) and
spectral tuning bandwidth (σ in Eq 7). We compared response latencies between A1 and dPEG
for the parameterized model and found longer average response latency in dPEG (p< 0.001,
Wilcoxon rank-sum test, Fig 12A). The tendency toward longer response latency in belt versus
core fields is consistent with previous reports [54, 55]. This difference is typically attributed to
the greater number of synapses (and associated delays) required for auditory signals to reach
belt than core areas. However, nonlinearities in the temporal response can also shift response
latency in the linear STRF, which may explain why some latencies in the current results are
shorter than the minimum of 10–15 ms typically reported for cortex [30]. Thus differences
between A1 and dPEG could reflect nonlinear response properties in addition to differences in
accumulated synaptic delays.

The structure of parameterized models can also be studied at a higher level to assess the gen-
eral complexity of STRFs. To illustrate this idea, we determined the number of spectral channels,
D = 1 toD = 5, that produced the best-performing parameterized model for each neuron in A1
and PEG. The average best number of spectral channels is D = 3.04 for A1 andD = 3.41 for
dPEG (Fig 12B, p< 0.05, rank-sum test). Optimal channel counts were determined from perfor-
mance on validation data only. Thus this effect is not biased by the lower SNR typically observed
in dPEG relative to A1 [55]). Instead, the larger average channel count indicates greater com-
plexity in dPEG STRFs and that encoding models require greater degrees of freedom in dPEG
than in A1. Identifying optimal channel counts also provides a form of relevancy determination
that groups model parameters logically (i.e., entire spectro-temporal dimensions) for inclusion
or exclusion, rather than individual parameters of a much larger model [38, 46].

In practice, properties such as response latency and optimal spectral channel count can also
be measured from FIR STRF coefficients [9]. However, this procedure requires a second stage

Fig 11. Comparison of model architectures across brain areas and stimulus domains. A. Pareto plot summarizes performance of the FIR, factorized,
parameterized and parameterized-STPmodels for A1 vocalization data. Error bars indicate SEM for the difference from performance by the FIR STRF, as in
Fig 4C. B. Comparison of model performance for vocalization data recorded in ferret belt auditory cortex (dPEG), plotted as in A. Overall performance is
lower than in A1, but performance rankings are the same: D = 2 factorized > FIR model (p < 0.001, sign test), D = 3 parameterized > D = 2 factorized model
(p < 0.01), D = 3 parameterized-STP > D = 3 parameterized model (p < 0.001). Thus results of the model comparison generalize across areas in the auditory
processing hierarchy. C. Comparison of model performance for human speech data recorded in A1. The parameterized-STPmodels again show the
strongest performance with successive significant improvements for each model architecture (p < 0.001, sign test, for all comparisons), indicating that the
results generalize across different natural stimuli.D. Comparison of model performance for 1/f noise data recorded in A1. The models again show the same
pattern of relative performance, indicating that the results also generalize to synthetic noise stimuli.

doi:10.1371/journal.pcbi.1004628.g011
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of analysis in which tuning properties must be fit to the FIR parameters, an approach that
requires more involved analysis and is susceptible to the effects of noise in the FIR parameter
estimates. For a parameterized model, these properties are fit in a single procedure that maxi-
mizes predictive power. Either approach makes assumptions about tuning properties that may
introduce bias their measurement, but that bias is made explicit in a single operation for a
parameterized model rather than in the multiple stages of fitting and feature extraction
required for more complex models.

Parameterized model performance holds under alternative prediction accuracy met-
rics. Finally, a number of alternative metrics have been proposed for evaluating the perfor-
mance of receptive field models, including mutual information (MI) [57], mean coherence
(closely related to mutual information) [45], and negative log likelihood (NLOGL, maximum
likelihood for a Poisson-spiking noise model) [14, 15, 29]. We compared the performance of
the FIR, factorized and parameterized models according to these different metrics (Fig 13).
There was some variability in scores across individual neurons, but the relative performance of
the different models was largely consistent for all the metrics, particularly the improved perfor-
mance of the parameterized model over the FIR.

Discussion

Reduced complexity of auditory encoding models without reduced
performance
The finite impulse response (FIR) STRF represents the current standard model for stimulus-
response filtering in the auditory system [2, 4, 8–13]. Our results agree with previous findings
that, as a general architecture, the linear STRF accounts only partially for the neural response

Fig 12. Direct interpretation of parameterized models. A. Histogram compares latency measured directly
from the P3Z1 temporal filter for neurons in A1 and dPEG. Mean response latency is shorter in A1 (12.6 ms)
than in PEG (17.9 ms, p < 0.001, Wilcoxon rank-sum test,N = 124 neurons with SNR > 0.005).B. Histogram
of optimal spectral channel count for neurons in A1 and dPEG. Neurons were classified according to the
spectral channel count (D = 1. . .5) of the P3Z1 parameterized model that produced the best prediction in the
validation data. Mean optimal channel count in A1 (3.04) was lower than in dPEG (3.41, p < 0.05, rank-sum
test)

doi:10.1371/journal.pcbi.1004628.g012
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to natural sounds in A1 [9, 23]. However, we find that the same level of performance can be
achieved by much simpler models. A model requiring fewer than 30 parameters not only
matches performance of the FIR STRF (> 250 parameters) but actually outperforms it for large
but finite datasets. The simplest parameterization that works optimally for a neural population
provides insight into the neural circuitry underlying system function [36]. According to this
logic, the average linear STRF of an A1 neuron can be captured by the sum of three channels
with Gaussian spectral tuning and an IIR temporal filter.

When data are finite, a critical issue is that a simpler model with fewer free parameters will
be less susceptible to estimation noise than a more complex model. Thus the simpler model
may perform better, even if it fails to account for important degrees of freedom in the more
complex one. Accounting for the impact of estimation noise on model performance is difficult,
as it requires extrapolation to the condition where data are infinite [18, 22]. By assuming that
estimation noise is additive, we found that a simple inverse relationship between estimation set
size and prediction error accurately described performance for several different architectures
(Fig 8A). In the limit of infinite data and under these assumptions, the FIR STRF did not per-
form significantly better than the simple parameterized model. These results should be con-
firmed with a larger dataset, but the current analysis suggests that the essential degrees of
freedom for the linear STRF are much closer to 29 than to the 276 specified by the FIR STRF.

Fig 13. Different performancemetrics yield the samemodel ranking. Average performance of the FIR,
factorized and parameterized models evaluated using four different metrics of prediction accuracy. All four
metrics produce the same rankings of relative model performance. Data are shown for N = 117 neurons with
SNR > 0.01 because some performance metrics were susceptible to noise for low-SNR neurons.

doi:10.1371/journal.pcbi.1004628.g013
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The average linear STRF in A1 may be described by about 30 parameters, but STRFs for
individual neurons do vary substantially in their complexity. Some neurons require only one
spectral channel for optimal performance while others require four or more channels (Fig
12B). The fact that only a minority of neurons were best described by a single dimension argues
that most linear STRFs are not frequency-time separable [37, 51]. At the other extreme, even
STRFs with four or five spectral channels required substantially fewer parameters than the
standard FIR STRF.

This low dimensionality generalizes across other natural and synthentic stimuli in A1, but
our analysis of data from the belt area dPEG indicates that more complex models are required
for non-primary cortex (Fig 11). Moreover, even in A1, the full dimensionality of encoding
models is likely to be greater than what is required to specify the linear STRF. As demonstrated
by the enhanced performance of the nonlinear STP STRFs (Fig 11), introducing additional
dimensionality that extends outside of the linear STRF architecture can improve model
performance.

Upper bounds on linear STRF performance
How well can the linear STRF actually describe sensory responses in A1? Issues surrounding
finite sampling of experimental data again make it difficult to answer this question definitively
[18, 45]. After implementing our estimation noise model, we found that the FIR STRF is able
to account for 40% of A1 response variance on average (i.e., variance explained is 100R2 for
R = 0.63, Fig 8). Factorized and parameterized STRFs very nearly matched performance of the
FIR model (39% of response variance), indicating that these approximations capture the essen-
tial features of the more complex model, despite requiring only about 50% and 10% of the
parameters, respectively. These measurements establish baseline performance by the linear
STRF that must be surpassed by any more accurate model. At the Pareto frontier, a better
model must either produce more accurate predictions or require fewer parameters and perform
as well.

Only one previous study has attempted to answer this question rigorously, using activity
driven by random chord stimuli in anesthetized mice [22]. Although we focused primarily on
models that included an output nonlinearity [13, 14], we also computed asymptotic perfor-
mance of STRFs without this nonlinear term in order to make a more direct comparison to the
previous analysis of asymptotic performance. Without a spiking nonlinearity, the average FIR
STRF was able to account for about 37% of response variance. This result falls in the range of
18–40% reported previously [22], although several factors make a direct comparison difficult.
In the current study, recordings were performed in awake ferrets and used natural vocalizations
rather than anesthetized mice and noise stimuli. Anesthesia can impact auditory neural activity
[58, 59], and natural sounds evoke nonlinear response properties in a different functional
domain than noise stimuli [9, 60].

The number of models tested here was relatively large, but they are still likely to be subopti-
mal compared to as-yet-untested parameterizations. The current study explored only two spec-
tral parameterizations (Gaussian and Morlet functions) and the pole-zero family of IIR
temporal filters. Numerous other basis functions could be considered, including Gabor wave-
lets [42, 61] or empirically-derived basis functions [29, 31, 33]. There is a clear trade-off
between basis function complexity and the number of spectral dimensions needed. Better-per-
forming temporal kernels like the P3Z1 filter reach their peak performance when D = 3, while
simpler kernels like P1Z0 need D� 4 to reach the same performance. Thus the interaction
between channel count and basis function complexity will be relevant to identifying optimal
parameterizations.
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Parameterization supports exploration of nonlinear and state-dependent
models
The efficiency of estimating parameterized STRFs allows the introduction of new, nonlinear
terms that can account for encoding properties that are not captured by the linear model [30,
31]. When nonlinear short-term plasticity was introduced to the FIR STRF, it did not change
model performance, but when it was introduced to the parameterized model, it improved pre-
dictive power. Thus the benefits of nonlinear terms may only become apparent when sufficient
statistical power is available in the current dataset.

The family of models used in this study incorporate static nonlinearities that are commonly
part of STRFs. This include log-compression of the input spectrogram to account for basilar
membrane mechanics [25, 26] and an output nonlinearity to account for spike threshold and
saturation [13, 14]. Other studies have incorporated nonlinear terms into the core computation
of the filter. Some use general Volterra series expansions to account for second- and higher-
order nonlinearities [3, 27, 57, 62]. Others incorporate more specific terms aimed at capturing
contextual influences [28, 29] or mimicking biological circuit elements [26, 31]. These addi-
tional nonlinear terms can be incorporated into the parameterized framework, potentially pro-
viding substantial improvements in predictive power.

Neurons also undergo plasticity at multiple timescales due to stimulus context [12, 30, 63,
64], changes in behavioral state [50, 65, 66], and learning [49, 67]. In many experimental set-
tings, the quantity of data available in a single behavioral state may provide a critical limitation
on statistical power. Low-dimensional parameterized models may be particularly beneficial for
exploring changes in spectro-temporal response properties in these experimental settings.

Parameterization as regularization
From a general analytical perspective, parameterization is similar to regularization during
model estimation [1, 12, 46, 68]. In both cases, pre-existing knowledge or a hypothesis about
the system’s function is used to constrain model fits. The idea that sensory receptive fields
should vary smoothly in space and time has motivated the use of priors for smoothly varying
STRFs [46, 68]. Similarly, the idea that receptive fields should have a relatively small number of
non-zero parameters has motivated a sparse prior on model fits [14, 46]. Constraining the
STRF to have analytical form of the factorized or parameterized models serves the same pur-
pose of imposing a prior on the fit [38]. In the current study, the spectral and temporal parame-
terizations constrain both sparseness (limiting the model’s degrees of freedom) and
smoothness (Gaussian spectral tuning and exponential temporal tuning).

To simplify model comparisons in this study, we used a single fit algorithm across all mod-
els. Thus it was not optimized specifically for the FIR STRF. Incorporating stricter stop criteria
and sparseness constraints improve FIR STRF performance, but even after tuning the cost
function, it did not match the performance of the parameterized model. The factorized and
parameterized models were less sensitive to details of the fit algorithm such as the stop crite-
rion, emphasizing the benefits of regularization effectively built into parameterization.

Pareto fronts describe optimal trade-offs in model performance
Most real world optimization problems involve the simultaneous minimization of several
objectives [69]. Thus when comparing different model architectures, it may be helpful to con-
sider trade-offs separately along different dimensions [36, 70, 71]. The current study focused in
particular on the trade-off between model prediction accuracy and parameter count. In general,
however, such an approach can be used to define an N-dimensional Pareto front containing
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the best models according to numerous other measures, including alternative performance
metrics (Fig 13, see also [72]), alternative model complexity metrics [73, 74], data required to
fit (Fig 8), computational cost [75], or model plausibility [76].

Pareto fronts are extensively used in the context of multiobjective optimization for the for-
mulation of heuristics [69]. Given the complexity of performing a search on the space of model
architectures, we relied here on inspection of the Pareto front to guide model design. While
developing new analytic models to test, we found it most helpful to generate new models by
adding to or discarding from a model on the current Pareto front. Variants of non-Pareto-opti-
mal models rarely improved performance or provided insight into the relevancy of new param-
eters. Of particular note, the FIR implementation falls far from the Pareto front (Fig 2B),
making it difficult to test variants based on the FIR STRF.

Methods

Experimental procedures
Single-unit neural activity was recorded from five awake, passively listening ferrets. For the
main analysis of responses to vocalizations, a total of 176 single units were recorded in primary
auditory cortex (A1) and 130 units in belt auditory cortex (dPEG). For one analysis (Fig 11C
and 11D), responses were analyzed for 808 A1 units recorded during the presentation of con-
tinuous speech (reanalyzed from a previous publication [9]) and for 139 A1 units recorded
during the presentation of 1/f noise [56].

Data used in this study will be made publicly available online via the Neural Prediction
Challenge (http://neuralprediction.berkeley.edu/).

Neurophysiological recordings. Prior to experiments, animals were implanted with a cus-
tom steel head post to allow for stable recording. While under anesthesia (ketamine followed
by isoflurane) and under sterile conditions, the skin and muscles on the top of the head were
retracted from the central 4 cm diameter of skull. Several stainless steel bone screws (Synthes, 6
mm) were attached to the skull, the head post was glued on the mid-line (3M Durelon), and
the site was covered with bone cement (Zimmer Palacos). After surgery, the skin around the
implant was allowed to heal. Analgesics and antibiotics were administered under veterinary
supervision until recovery.

After animals fully recovered from surgery and were habituated to a head-fixed posture, a
small craniotomy (1–2 mm diameter) was opened over A1. Neurophysiological activity was
recorded using tungsten microelectrodes (1–5 MO, A.M. Systems). One to four electrodes posi-
tioned by independent microdrives (Alpha-Omega Engineering EPS) were inserted into the
cortex. Electrophysiological activity was amplified (A.M. Systems 3600), digitized (National
Instruments PCI-6259), and recorded using the MANTA open-source data acquisition soft-
ware [77]. Recording site locations were confirmed as being in A1 based on tonotopy, relatively
well-defined frequency tuning and short response latency [11].

Spiking events were extracted from the continuous raw electrophysiological trace by princi-
pal components analysis and k-means clustering [9]. Single unit isolation was quantified from
cluster variance and overlap as the fraction of spikes that were likely to be from a single cell
rather than from another cell. Only units with> 80% isolation were used for analysis.

Stimulus presentation was controlled by custom software written in Matlab (version 2012A,
Mathworks). Digital acoustic signals were transformed to analog (National Instruments PCI-
6259) and amplified (Crown D-75a) to the desired sound level. Stimuli were presented through
a flat-gain, free-field speaker (Manger) 80 cm distant, 0-deg elevation and 30-deg azimuth con-
tralateral to the neurophysiological recording site. Prior to experiments, sound level was cali-
brated using to a standard reference (Brüel & Kjær). Stimuli were presented at 60–65 dB SPL.
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Auditory stimuli. For most experiments, stimuli used for estimation were ferret vocaliza-
tions, which were recorded in a sound-attenuating chamber using a commercial digital
recorder (44-KHz sampling, Tascam DR-400). Recordings included infant calls (1 week to 1
month of age), adult aggression calls, and adult play calls. No animals that produced the vocali-
zations in the stimulus library were used in the current study. Neural activity was recorded dur-
ing 4–6 repetitions of 40 randomly ordered 3-second stimuli, used for model estimation, and
during 20 repetitions of two additional 3-second stimuli, used for model validation.

Because validation data always used the same two vocalization sequences, one possible con-
cern is that the vocalization results might not generalize to other stimuli. To test whether the
improved performance of reduced-parameter models generalized across stimulus conditions,
model performance was also compared for A1 neural activity recorded during presentation of
continuous human speech. The stimulus consisted of 4–5 repetitions of 30 3-second sentences
from the TIMIT library [78], each uttered by a different speaker. Data for 28 sentences were
used for model estimation, and data from the remaining two were used for validation. Activity
was recorded from a different set of A1 neurons during presentation of continuous 1/f noise.
The noise was generated by computing the spectrogram of a white noise signal, low-pass filter-
ing the spectrogram to impose temporal and spectral modulations matched to natural stimuli,
and then inverting the spectrogram into a time-varying acoustic signal [56]. Neurophysiologi-
cal recording techniques and the experimental protocol were identical to those used for vocali-
zations, except the speech stimuli were presented through a calibrated, closed-field earphone
(Etymotic ER2) contralateral to the recording site. Data collected using the speech stimulus
have been published previously [9].

Receptive field model framework
The relationship between the time-varying input auditory stimulus, x(t), and simultaneously
recorded single-unit firing rate response, y(t), is described by the spectro-temporal receptive
field (STRF [8, 9, 11, 12]) or, more generally, any function that maps x to y. In the current
study, this mapping was cast as a sequence of functional modules, in which each function was
applied to the output of the previous one (Eq 1, Fig 1C). The series of functions maps roughly
to the physical elements that transmit auditory information to cortex. A detailed list of all mod-
els tested in this framework is included in S1 Table.

Cochlear filterbank. The first stage of each STRF consisted of a second-order gammatone
filterbank that modeled spectral processing in the a cochlea [44]. The frequency domain trans-
fer function, Gi, for the ith filter (i = 1. . .C) was parameterized in terms of quality factor Q and
center frequency fi:

GiðsÞ ¼
K

s2 þ o0

Q

� �
sþ 2pfi

� �4 ð11Þ

All filters had fixed Q:

Q ¼ fhigh
flow

� � 1
C�1

� 1

 !�1

ð12Þ

For most analyses, the filterbank included C = 18 filters with fi spaced logarithmically from flow
= 200 to fhigh = 20,000Hz.

The complex output of each gammatone filter was transformed into a positive, real signal
by taking the absolute value of its Hilbert transform. The signal was then smoothed and
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downsampled to match the temporal bin size of the PSTH, usually 100 Hz, but sometimes 200
or 400 Hz. We found that the second-order filters used here produce models with better predic-
tion accuracy than the classical gammatone (S1 Table, [44]). However, it is likely that more
detailed cochlear models would further improve performance [26].

To account for nonlinear level sensitivity in the auditory periphery, each spectrogram chan-
nel was then passed through a logarithmic compressor (LOGn), which required a single free
parameter, ϕ1, that determined the amount of compression,

yLOGnðtÞ ¼ log xðtÞ þ �1ð Þ ð13Þ
The gammatone filterbank itself did not require any additional free parameters for model
estimation.

Linear filter. The core of STRF models is the linear filter that performs a weighted sum of
the spectrogram over frequency and time (Fig 3, [8, 9, 11, 12]). The details of the different for-
mulations used in the current study are provided in the Results.

Output nonlinearity. After linear filtering, a static sigmoid nonlinearity produced a pre-
diction of instantaneous spike rate that accounted for spike threshold and saturation. The spike
nonlinearity was modeled as a double-exponential (DEXP) and required four parameters, ϕ1 − 4,

yDEXPðtÞ ¼ �1 þ �2e
�e�3ðxðtÞ��4Þ ð14Þ

As in the case of the cochlear model, a large number of alternative spike nonlinearities are possi-
ble [13, 17]. Our priority for the current study was to keep the output nonlinearity constant
across all variants tested for the linear filter. The double-exponential performed as well as other
sigmoid functions and proved consistently stable in the fitting algorithm used here. A complete
list of output nonlinearities tested is included in S1 Table.

Nonlinear short-term plasticity (STP). To test performance of a nonlinear architecture
with theoretically broader explanatory power than the linear STRF, we incorporated a new
module prior to the temporal filtering module (Fig 1F). Each spectral channel (either output
from the cochlear filterbank or from a spectral filterbank), provided input into a simulated syn-
apse that could undergo either depression or facilitation [30, 52]. In this simple model, the
number of presynaptic vesicles available for release is dictated by the fraction of vesicles
released by previous stimulation, ν, and a recovery time constant, τ. For depression, ν> 0, and
the fraction of available vesicles, d(t), is updated,

diðtÞ ¼ diðt � 1Þ � nsiðt � 1Þdiðt � 1Þ þ 1� diðt � 1Þ
t

ð15Þ

For facilitation, ν< 0, and d(t) is updated,

diðtÞ ¼ diðt � 1Þ � nsiðt � 1Þ½2� diðt � 1Þ� þ 1� diðt � 1Þ
t

ð16Þ

The input to the synapse is scaled by the fraction of available vesicles and output to the next
module,

sdiðtÞ ¼ diðtÞsiðtÞ ð17Þ

Model estimation and validation
For most models, stimulus and response data were binned at 10 ms (100 Hz) and averaged
across repetitions. Stimulus binning was applied after transformation to the spectrogram.

Essential Complexity of Auditory Receptive Fields

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004628 December 18, 2015 23 / 33



Data recorded from each neuron were divided into two subsets, one used only for model
estimation (4–6 repetitions of 40 3-sec vocalization sequences) and the other for validation (20
repetitions of 2 3-sec sequences). Model parameters were fit using an iterated, greedy version
of boosting that minimized mean-squared error prediction of the neural PSTH in the estima-
tion dataset (details below). Each model was then evaluated based on its ability to predict the
time-varying PSTH response in the reserved validation data set. Prediction accuracy was mea-
sured as the correlation coefficient (Pearson’s R) between the predicted and observed PSTH
[12, 34]. The correlation coefficient provides a useful metric because it scales performance
between 0 (completely random) and 1 (perfect correlation). Model performance can be variable
across single neurons. Thus to compare models we focused on average performance across the
entire set of neurons studied, using the nonparametric Wilcoxon signed rank test (sign test) to
assess significant differences in performance. Error bars for average prediction correlation
plots were computed on the difference between prediction correlation for each model and the
FIR STRF fit to the same neuron. Computing error bars based on the difference per neuron
removed variability in overall neural response SNR (e.g., Figs 4A and 10B) and revealed model
differences commensurate with the sign test.

Signal-to-noise ratio (SNR) of neural sensory responses. Because neural responses vary
across repeated stimulus presentations, some fit error resulted from uncertainty in the response
in the estimation data set [22]. Therefore, we evaluated the repeatability of each neuron’s
response by computing a signal-to-noise ratio. We assume that the neural noise is additive so
that the response for trial i, is

riðtÞ ¼ ractualðtÞ þ �iðtÞ ð18Þ

and the total response variance is the sum of the actual response and noise variance,
s2
r ¼ s2

actual þ s2
� . Total variance is measured as the autocovariance of the single trial response

averaged across trials,

s2
r ¼ hcovðri; riÞii ð19Þ

Because �i is uncorrelated between trials, the actual response variance is the covariance between
trials,

s2
actual ¼ hcovðri; rjÞii 6¼j ð20Þ

and SNR is the ratio of actual response variance to noise variance,

SNR ¼ s2
actual

s2
�

¼ s2
actual

s2
r � s2

actual

ð21Þ

This simple statistic correlates strongly with how well the estimation set data can be described
by linear models, and provides a means for ranking neurons according to how well they can be
modeled (Fig 10).

Although we included the entire set of 176 neurons in most comparisons of prediction accu-
racy, we excluded a subset with SNR< 0.005 (leaving 124 high-SNR neurons) for the analysis
of asymptotic behavior (Fig 8) and tuning properties (Fig 12).

Prediction correlation adjusted for finite sampling of validation data. The validation
PSTH is also susceptible to noise from finite sampling, and the practical limit on the correlation
coefficient is less than the ideal value of 1.0. The effect of this non-predictable variability can be
compensated for by normalizing the measured correlation coefficient by the trial-to-trial
response correlation (TTRC) [45]. If we define TTRC as the mean correlation coefficient
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(Pearson’s R) between all unique trial pairs, i 6¼ j,

TTRC ¼ corr riðtÞ; rjðtÞ
� �D E

i;j
ð22Þ

then the corrected prediction correlation is the mean correlation between the predicted and the
single-trial actual response, normalized by the TTRC,

rnorm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
TTRC

p hcorr ri; pð Þii ð23Þ

For very small TTRC or for small number of repetitions, this approximation can be unstable,
but for the 20-repetition validation datasets in the current study, this approximation was stable,
adjusting prediction scores by 3–39% (mean 20%). Importantly, applying this correction
allowed for accurate measures of prediction accuracy, but it had no impact on relative model
performance, as it was computed independent of the model fit.

Prediction correlation adjusted for finite sampling of estimation data. To account for
prediction error resulting from finite sampling of estimation data, we adapted a technique
applied to the visual system for linear FIR STRFs [18]. We treated the observed neural activity
as the sum of three components,

rðtÞ ¼ rlinðtÞ þ rresðtÞ þ �rðtÞ ð24Þ

where rlin is the portion of stimulus-dependent activity that can be explained by the current
model architecture, with optimal STRF estimateHlin, rres is the residual stimulus-dependent
portion that cannot be explained by the model, and �r is stimulus-independent activity that
produces trial-to-trial variability. The components rres and �r cannot be predicted by the cur-
rent model architecture,Hlin. Thus they should have no impact on optimal model estimates
and should not be correlated with rlin in the limit of infinite data. However, for finite data, they
can be correlated with stimuli by chance, introducing error in the STRF estimate,Hest =Hlin +
Herr, and subsequent error in STRF predictions,

pðtÞ ¼ rlinðtÞ þ �pðtÞ: ð25Þ

Given this formulation of the observed and predicted response, the squared prediction cor-
relation is

R2 ¼ hrpi2
hr2ihp2i ¼

ðrlin þ �pÞ rlin þ rres þ �rð Þ
D E2

ðrlin þ �pÞ2
D E

ðrlin þ rres þ �rÞ2
	 
 ð26Þ

Angled brackets, h. . .i, indicate taking the mean over time. For simplicity, we omit t from each
term and assume the individual signals have mean zero (subtracting the mean from each signal
has no impact on prediction correlation). If we then assume that error in the validation data, �r,
is zero (having been accounted for by Eq 23) and that correlations between rlin, rres, and �p are
negligible (because noise is additive), then the experimentally measured prediction correlation
reduces to,

R2 ¼ hr2lini
hr2lini þ hr2resi þ h�2pi

ð27Þ
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For linear STRFs estimated by reverse correlation, variance of the prediction error decreases
proportionally to the number of samples used for model estimation, T [18],

h�2pi / k Herr k2 /
1

T
ð28Þ

STRFs estimated by boosting show a similar dependence on estimation dataset size [34]. For
data set size T, prediction correlation is then

R2
T ¼ hr2lini

hr2lini þ hr2resi þ A=T
ð29Þ

where A is a constant reflecting the response signal-to-noise level of the neuron. As T
approaches infinity, the noise term disappears leaving the prediction correlation for the opti-
mal linear model in the absence of noise,

R2
inf ¼

hr2lini
hr2lini þ hr2resi

ð30Þ

Substituting Eq 30 into Eq 29 produces a model for the impact of estimation sampling on pre-
diction correlation [18, 45],

1

R2
T

¼ 1

R2
inf

� A
T

ð31Þ

Wemeasured prediction correlation, RT, for models estimated using variable sample set sizes
T, and fit eq 31 to determine the limit on prediction correlation for infinite data, Rinf. Although
estimation noise is not likely to be completely additive, this model provides a good fit to the
data (see Fig 8).

Fitting algorithm
Our goal was to compare the ability of different analytical model structures to describe the neu-
ral data. Ideally, the details of the fitting algorithm used to fit the different models should not
be relevant to this comparison, but in practice, there is no single algorithm that can be applied
to different models without some bias [1]. Thus, the best fitting algorithm and model analytical
structures are not separable in practice. We tested a variety of fit algorithms (Fig 2, S1 Table),
but we focused on a single algorithm that performed best, on average, across all the models
tested.

The fit algorithm consisted of nested iterations through each STRF module, initially opti-
mizing each module with a conservative stop criterion. Once all modules had converged for the
current stop criterion, its value was reduced and procedure was repeated for the smaller crite-
rion. When fitting each module, two different coordinate descent algorithms were used. For
non-parameterized modules (FIR filter, factorized spectral filter, and factorized temporal fil-
ter), a standard coordinate descent algorithm was used. For the remaining, parameterized
modules (including the input filterbank and spike nonlinearities), greedy coordinate descent
was used. The details of the fit algorithm are as follows:

1. Remove the spike nonlinearity module.

2. Set initial stop criterion to � = 10−3 (NMSE cost function ranges from 0 to 1, see below).

3. For each module,

a. If module is non-parameterized, use non-greedy coordinate descent:
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i. Set initial step size for all parameters to δ = 1

ii. For each parameter ϕi 2 {ϕ1, ϕ2, . . .}, evaluate the cost function for ϕi + δ and ϕi − δ

iii. If no step improves performance, reduce δ by 50%.

iv. If any step improves performance, update the parameter that decreases the cost
function the most by δ and increase δ by 10%.

v. If improvement in cost function> �, δ> 10−6, and fewer than 10 steps have been
taken, repeat iteration for this module.

b. If module is parameterized, use greedy coordinate descent:

i. Set initial step size for each parameter to δi = 1

ii. For each parameter ϕi 2 {ϕ1, ϕ2, . . .},

A. Evaluate the cost function for ϕi + δi and ϕi − δi

B. If neither step improves the cost function, reduce δ by 50%.

C. If the step helped, update ϕi by δi and increase δi by 10%.

D. If improvement in cost function>�, δi > 10−6, and fewer than 10 steps have been
taken, repeat iteration for this parameter.

4. After all modules cease to show cost function improvements> �, decrease � by 30%.

5. If � > 10−4 (without spike nonlinearity) or � > 10−6 (with spike nonlinearity), iterate
through modules again.

6. Replace spike nonlinearity and repeat all of the above, starting with step 2.

In general, we found that fitting parameters separately within modules and iterating through
modules with progressively smaller stop criteria helped avoid local minima. Fitting first with-
out the spike nonlinearity also helped avoid local minima. The greedy algorithm increased the
risk of overfitting complex models, but on average greatly improved predictions for models
with nonlinear and parameterized modules. The non-greedy algorithm worked best for non-
parameterized modules where all parameters are of similar scale.

Normalized mean squared error (NMSE). Model parameters were optimized by mini-
mizing a cost function based on normalized mean squared error (NMSE) between the pre-
dicted and actual neural response. For a time-varying response, r(t), averaged across
repetitions of the same stimulus (mean over time, �r), and corresponding predicted response, p
(t), the NMSE is,

eMSEðp; rÞ ¼
PT

ðt¼1 pðtÞ � rðtÞð Þ2PT
t¼1 rðtÞ � �rð Þ2

ð32Þ

A value of eMSE = 1 indicates a random prediction, eMSE = 0 indicates a perfect prediction. To
reduce overfitting to noise, a shrinkage factor was applied to the NMSE [18]. Shrinkage scaled
the NMSE according to its reliability across the estimation dataset. Standard error on the
NMSE, σMSE, was computed by a 10-fold jackknife [79]. The final NMSE was then scaled
according to reliability,

eðp; rÞ ¼ 1� ð1� eMSEÞ 1�
sMSE

1� eMSE

� �2
�����

�����
þ" #

ð33Þ
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where |� � �|+ indicates positive rectification. Thus if σMSE >>(1 − eMSE), e was shrunk toward a
value of 1 (i.e., less improvement in prediction).

For linear systems with Gaussian noise, the NMSE is equivalent to Bayesian maximum like-
lihood (ML) optimization. Because noise in neural systems is non-Gaussian, alternative error
metrics have been proposed, such as those based on a Poisson noise model [15] or mutual
information [57]. Changing the cost function affected relative model performance for individ-
ual neurons, but we did not observe any systematic effect of alternative metrics across the data-
set Fig 13. Other datasets may be more sensitive to the specific cost function used, but we chose
to use the NMSE here for its efficiency and relative stability.

Signal normalization. Not shown in Fig 1B are signal normalization computations, which
occur inside each arrow connecting modules. Normalization prevents signals from taking arbi-
trarily high values and is thus helpful to avoid numerical issues during fitting. If xi(t) is the ith
input, then yi(t) is the positive-definite output from the normalization module,

mi ¼ 1

N

XT
t¼1

xiðtÞ ð34Þ

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XT
t¼1

xiðtÞ � mið Þ2
s

ð35Þ

miðtÞ ¼ 1

si

xiðtÞ � mð Þ ð36Þ

zi ¼ min ðmiðtÞ;miðt þ 1Þ; :::Þ ð37Þ

yiðtÞ ¼ 1

si

xiðtÞ � zið Þ ð38Þ

We normalized each channel by its mean power only over the estimation dataset and applied
these same scaling terms to predictions on the validation set. This approach did not introduce
additional free parameters to the final model, as the scaling terms could be merged post-hoc
into other fit parameters. However, it provided substantial benefit to performance on the vali-
dation set.

Fit algorithm performance. In the current study, we used a single fit algorithm in an
attempt to simplify comparisons between different model architectures. It is likely that better
fit algorithms exist, particularly for the FIR STRF, where careful regularization can significantly
improve model performance [12, 14, 34]. We tested several alternative regularization schemes
on performance of the FIR STRF (Fig 14). Several of these alternatives produced improved per-
formance over the standard algorithm used in this study (“shrinkage, 1e-6 stop”, defined
above). Incorporating a stricter stop criterion (“1e-4 stop”), an L1 norm, or both into the cost
function all produced similar improvements in performance, indicating that choosing a regu-
larization scheme appropriate to the current model architecture is critical for optimizing per-
formance. However, the parameterized model still performed slightly better than even the best
alternative FIR STRF fits, consistent with our conclusion that the linear STRF can be approxi-
mated by a much lower dimensional architecture than the FIR STRF.
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S1 Table. Full list of models tested. Summary of performance for 1061 formulations of the lin-
ear STRF (see Fig 2), averaged across the N = 176 A1 vocalization datasets. Each row indicates
parameter count, fit performance (estimation data), test performance (validation data), and
test performance after correcting for validation sampling limitations (Eq 23) for a single
model. The first 163 rows describe models detailed in this study, and the remainder are addi-
tional suboptimal models that were tested. The key on the first two pages indicates how to
interpret model names.
(PDF)
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Fig 14. Impact of alternative regularization schemes on STRF performance. Bar chart compares mean
prediction correlation of FIR STRFs estimated using alternative regularization schemes (black) to that of
parameterized STRFs estimated using the standard algorithm used for the main model comparison
(“shrinkage, 1e-6 stop”). Incorporating a shrinkage factors on NMSEmeasures (“shrinkage”), early stopping
(“1e-4 stop” versus “1e-6 stop”), and an L1 norm on parameter estimates (“L1 norm” [14]) all lead to
improvements in performance. The parameterized STRF still maintains greater prediction accuracy than the
best regularization scheme (“Shrinkage, 1e-4 stop”).

doi:10.1371/journal.pcbi.1004628.g014
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